10.03.2015 Views

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

420 CHAPTER 5. EUCLIDEAN DISTANCE MATRIX<br />

(confer (958))<br />

D ∈ EDM N<br />

⇔<br />

[ ][ ]<br />

0 1 1<br />

−D 2:N,2:N − [1 −D 2:N,1 ]<br />

T<br />

= −2VN 1 0 −D TDV N ≽ 0<br />

1,2:N<br />

and<br />

(1015)<br />

D ∈ S N h<br />

Positive semidefiniteness of that Schur complement insures nonnegativity<br />

(D ∈ R N×N<br />

+ ,5.8.1), whereas complementary inertia (1417) insures existence<br />

of that lone negative eigenvalue of the Cayley-Menger form.<br />

Now we apply results from chapter 2 with regard to polyhedral cones and<br />

their duals.<br />

5.11.2.2 Ordered eigenspectra<br />

Conditions (1012) specify eigenvalue [ membership ] to the smallest pointed<br />

0 1<br />

T<br />

polyhedral spectral cone for<br />

1 −EDM N :<br />

K ∆ λ = {ζ ∈ R N+1 | ζ 1 ≥ ζ 2 ≥ · · · ≥ ζ N ≥ 0 ≥ ζ N+1 , 1 T ζ = 0}<br />

[ ]<br />

R<br />

N<br />

+<br />

= K M ∩ ∩ ∂H<br />

R −<br />

([ ])<br />

0 1<br />

T<br />

= λ<br />

1 −EDM N<br />

(1016)<br />

where<br />

∂H ∆ = {ζ ∈ R N+1 | 1 T ζ = 0} (1017)<br />

is a hyperplane through the origin, and K M is the monotone cone<br />

(2.13.9.4.3, implying ordered eigenspectra) which has nonempty interior but<br />

is not pointed;<br />

K M = {ζ ∈ R N+1 | ζ 1 ≥ ζ 2 ≥ · · · ≥ ζ N+1 } (390)<br />

K ∗ M = { [e 1 − e 2 e 2 −e 3 · · · e N −e N+1 ]a | a ≽ 0 } ⊂ R N+1 (391)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!