10.03.2015 Views

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

418 CHAPTER 5. EUCLIDEAN DISTANCE MATRIX<br />

D ∈ EDM N ⇒<br />

⎧<br />

λ(−D) i ≥ 0, i=1... N −1<br />

⎪⎨ ( N<br />

)<br />

∑<br />

λ(−D) i = 0<br />

i=1<br />

⎪⎩<br />

D ∈ S N h ∩ R N×N<br />

+<br />

(1009)<br />

where the λ(−D) i are nonincreasingly ordered eigenvalues of −D whose<br />

sum must be 0 only because trD = 0 [287,5.1]. The eigenvalue summation<br />

condition, therefore, can be considered redundant. Even so, all these<br />

conditions are insufficient to determine whether some given H ∈ S N h is an<br />

EDM, as shown by counter-example. 5.47<br />

5.11.1.0.1 Exercise. Spectral inequality.<br />

Prove whether it holds: for D=[d ij ]∈ EDM N<br />

λ(−D) 1 ≥ d ij ≥ λ(−D) N−1 ∀i ≠ j (1010)<br />

Terminology: a spectral cone is a convex cone containing all eigenspectra<br />

[197, p.365] [285, p.26] corresponding to some set of matrices. Any<br />

positive semidefinite matrix, for example, possesses a vector of nonnegative<br />

eigenvalues corresponding to an eigenspectrum contained in a spectral cone<br />

that is a nonnegative orthant.<br />

<br />

5.11.2 Spectral cones<br />

[ 0 1<br />

T<br />

Denoting the eigenvalues of Cayley-Menger matrix<br />

1 −D<br />

([ 0 1<br />

T<br />

λ<br />

1 −D<br />

5.47 When N = 3, for example, the symmetric hollow matrix<br />

H =<br />

⎡<br />

⎣ 0 1 1<br />

1 0 5<br />

1 5 0<br />

⎤<br />

]<br />

∈ S N+1 by<br />

])<br />

∈ R N+1 (1011)<br />

⎦ ∈ S N h ∩ R N×N<br />

+<br />

is not an EDM, although λ(−H) = [5 0.3723 −5.3723] T conforms to (1009).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!