10.03.2015 Views

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

5.4. EDM DEFINITION 379<br />

where ([√the numerator ]) forms an inner product of vectors. Distance-square<br />

dik<br />

d ij √dkj is a convex quadratic function 5.20 on R 2 + whereas d ij (θ ikj ) is<br />

quasiconvex (3.3) minimized over domain {−π ≤θ ikj ≤π} by θ ⋆ ikj =0, we<br />

get the Pythagorean theorem when θ ikj = ±π/2, and d ij (θ ikj ) is maximized<br />

when θ ⋆ ikj =±π ; d ij = (√ d ik + √ ) 2,<br />

d kj θikj = ±π<br />

so<br />

d ij = d ik + d kj , θ ikj = ± π 2<br />

d ij = (√ d ik − √ d kj<br />

) 2,<br />

θikj = 0<br />

(860)<br />

| √ d ik − √ d kj | ≤ √ d ij ≤ √ d ik + √ d kj (861)<br />

Hence the triangle inequality, Euclidean metric property 4, holds for any<br />

EDM D .<br />

We may construct an inner-product form of the EDM definition for<br />

matrices by evaluating (858) for k=1: By defining<br />

⎡<br />

√ √ √ ⎤<br />

d 12 d12 d 13 cosθ 213 d12 d 14 cos θ 214 · · · d12 d 1N cos θ 21N<br />

√ √ √ d12 d<br />

Θ T Θ =<br />

∆ 13 cos θ 213 d 13 d13 d 14 cos θ 314 · · · d13 d 1N cos θ 31N<br />

√ √ √ d12 d 14 cos θ 214 d13 d 14 cosθ 314 d 14<br />

... d14 d 1N cos θ 41N<br />

∈ S N−1<br />

⎢<br />

⎥<br />

⎣ .<br />

.<br />

...<br />

...<br />

√ √<br />

. ⎦<br />

√<br />

d12 d 1N cos θ 21N d13 d 1N cosθ 31N d14 d 1N cos θ 41N · · · d 1N<br />

then any EDM may be expressed<br />

[ ]<br />

D(Θ) =<br />

∆ 0<br />

δ(Θ T 1<br />

Θ)<br />

T + 1 [ [<br />

0 δ(Θ T Θ) T] 0 0<br />

T<br />

− 2<br />

0 Θ T Θ<br />

=<br />

[<br />

0 δ(Θ T Θ) T<br />

δ(Θ T Θ) δ(Θ T Θ)1 T + 1δ(Θ T Θ) T − 2Θ T Θ<br />

]<br />

]<br />

(862)<br />

∈ EDM N<br />

(863)<br />

EDM N = { D(Θ) | Θ ∈ R N−1×N−1} (864)<br />

for which all Euclidean metric properties hold. Entries of Θ T Θ result from<br />

vector inner-products as in (859); id est,<br />

[<br />

]<br />

5.20 1 −e ıθ ikj<br />

−e −ıθ ≽ 0, having eigenvalues {0,2}. Minimum is attained for<br />

ikj<br />

1<br />

[ √ ] {<br />

dik<br />

√dkj<br />

µ1, µ ≥ 0, θikj = 0<br />

=<br />

0, −π ≤ θ ikj ≤ π , θ ikj ≠ 0 . (D.2.1, [53, exmp.4.5])

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!