v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization v2009.01.01 - Convex Optimization

convexoptimization.com
from convexoptimization.com More from this publisher
10.03.2015 Views

272 CHAPTER 4. SEMIDEFINITE PROGRAMMING (t ⋆ i) −1 = max {ψ(Z i )λ(Z i ) j , j =1... ρ} (649) When Z i is indefinite, the direction of perturbation (determined by ψ(Z i )) is arbitrary. We may take an early exit from the Procedure were Z i to become 0 or were rank [ svec R T iA 1 R i svec R T iA 2 R i · · · svec R T iA m R i ] = ρ(ρ + 1)/2 (650) which characterizes the rank ρ of any [sic] extreme point in A ∩ S n + . [206,2.4] [207] Proof. Assuming the form of every perturbation matrix is indeed (643), then by (646) svec Z i ⊥ [ svec(R T iA 1 R i ) svec(R T iA 2 R i ) · · · svec(R T iA m R i ) ] (651) By orthogonal complement we have rank [ svec(R T iA 1 R i ) · · · svec(R T iA m R i ) ] ⊥ + rank [ svec(R T iA 1 R i ) · · · svec(R T iA m R i ) ] = ρ(ρ + 1)/2 (652) When Z i can only be 0, then the perturbation is null because an extreme point has been found; thus [ svec(R T i A 1 R i ) · · · svec(R T iA m R i ) ] ⊥ = 0 (653) from which the stated result (650) directly follows.

4.3. RANK REDUCTION 273 4.3.3 Optimality of perturbed X ⋆ We show that the optimal objective value is unaltered by perturbation (643); id est, i∑ 〈C , X ⋆ + t j B j 〉 = 〈C , X ⋆ 〉 (654) j=1 Proof. From Corollary 4.2.3.0.1 we have the necessary and sufficient relationship between optimal primal and dual solutions under the assumption of existence of a relatively interior feasible point: S ⋆ X ⋆ = S ⋆ R 1 R T 1 = X ⋆ S ⋆ = R 1 R T 1 S ⋆ = 0 (655) This means R(R 1 ) ⊆ N(S ⋆ ) and R(S ⋆ ) ⊆ N(R T 1 ). From (644) and (647) we get the sequence: X ⋆ = R 1 R1 T X ⋆ + t 1 B 1 = R 2 R2 T = R 1 (I − t 1 ψ(Z 1 )Z 1 )R1 T X ⋆ + t 1 B 1 + t 2 B 2 = R 3 R3 T = R 2 (I − t 2 ψ(Z 2 )Z 2 )R2 T = R 1 (I − t 1 ψ(Z 1 )Z 1 )(I − t 2 ψ(Z 2 )Z 2 )R1 T . ( ) ∑ X ⋆ + i i∏ t j B j = R 1 (I − t j ψ(Z j )Z j ) R1 T (656) j=1 j=1 Substituting C = svec −1 (A T y ⋆ ) + S ⋆ from (584), ( ) ∑ 〈C , X ⋆ + i i∏ t j B j 〉 = 〈svec −1 (A T y ⋆ ) + S ⋆ , R 1 (I − t j ψ(Z j )Z j ) j=1 〈 〉 m∑ = yk ⋆A ∑ k , X ⋆ + i t j B j k=1 j=1 j=1 〈 m 〉 ∑ = yk ⋆A k + S ⋆ , X ⋆ = 〈C , X ⋆ 〉 (657) k=1 R T 1 〉 because 〈B i , A j 〉=0 ∀i, j by design (640).

4.3. RANK REDUCTION 273<br />

4.3.3 Optimality of perturbed X ⋆<br />

We show that the optimal objective value is unaltered by perturbation (643);<br />

id est,<br />

i∑<br />

〈C , X ⋆ + t j B j 〉 = 〈C , X ⋆ 〉 (654)<br />

j=1<br />

Proof. From Corollary 4.2.3.0.1 we have the necessary and sufficient<br />

relationship between optimal primal and dual solutions under the assumption<br />

of existence of a relatively interior feasible point:<br />

S ⋆ X ⋆ = S ⋆ R 1 R T 1 = X ⋆ S ⋆ = R 1 R T 1 S ⋆ = 0 (655)<br />

This means R(R 1 ) ⊆ N(S ⋆ ) and R(S ⋆ ) ⊆ N(R T 1 ). From (644) and (647)<br />

we get the sequence:<br />

X ⋆ = R 1 R1<br />

T<br />

X ⋆ + t 1 B 1 = R 2 R2 T = R 1 (I − t 1 ψ(Z 1 )Z 1 )R1<br />

T<br />

X ⋆ + t 1 B 1 + t 2 B 2 = R 3 R3 T = R 2 (I − t 2 ψ(Z 2 )Z 2 )R2 T = R 1 (I − t 1 ψ(Z 1 )Z 1 )(I − t 2 ψ(Z 2 )Z 2 )R1<br />

T<br />

.<br />

(<br />

)<br />

∑<br />

X ⋆ + i i∏<br />

t j B j = R 1 (I − t j ψ(Z j )Z j ) R1 T (656)<br />

j=1<br />

j=1<br />

Substituting C = svec −1 (A T y ⋆ ) + S ⋆ from (584),<br />

(<br />

)<br />

∑<br />

〈C , X ⋆ + i i∏<br />

t j B j 〉 =<br />

〈svec −1 (A T y ⋆ ) + S ⋆ , R 1 (I − t j ψ(Z j )Z j )<br />

j=1<br />

〈<br />

〉<br />

m∑<br />

= yk ⋆A ∑<br />

k , X ⋆ + i t j B j<br />

k=1<br />

j=1<br />

j=1<br />

〈 m<br />

〉<br />

∑<br />

= yk ⋆A k + S ⋆ , X ⋆ = 〈C , X ⋆ 〉 (657)<br />

k=1<br />

R T 1<br />

〉<br />

because 〈B i , A j 〉=0 ∀i, j by design (640).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!