10.03.2015 Views

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

222 CHAPTER 3. GEOMETRY OF CONVEX FUNCTIONS<br />

respect to its vector argument is traditionally called the Hessian ; 3.12<br />

⎡<br />

∇ 2 f(x) =<br />

∆ ⎢<br />

⎣<br />

∂ 2 f(x)<br />

∂ 2 x 1<br />

∂ 2 f(x)<br />

∂x 2 ∂x 1<br />

.<br />

∂ 2 f(x)<br />

∂x K ∂x 1<br />

∂ 2 f(x)<br />

∂x 1 ∂x 2<br />

· · ·<br />

∂ 2 f(x)<br />

∂ 2 x 2<br />

· · ·<br />

.<br />

...<br />

∂ 2 f(x)<br />

∂x K ∂x 2<br />

· · ·<br />

∂ 2 f(x)<br />

∂x 1 ∂x K<br />

∂ 2 f(x)<br />

∂x 2 ∂x K<br />

.<br />

∂ 2 f(x)<br />

∂ 2 x K<br />

⎤<br />

∈ S K (1638)<br />

⎥<br />

⎦<br />

The gradient can be interpreted as a vector pointing in the direction of<br />

greatest change. [190,15.6] The gradient can also be interpreted as that<br />

vector normal to a level set; e.g., Figure 68, Figure 59.<br />

For the quadratic bowl in Figure 67, the gradient maps to R 2 ; illustrated<br />

in Figure 66. For a one-dimensional function of real variable, for example,<br />

the gradient evaluated at any point in the function domain is just the slope<br />

(or derivative) of that function there. (conferD.1.4.1)<br />

For any differentiable multidimensional function, zero gradient ∇f = 0<br />

is a necessary condition for its unconstrained minimization [128,3.2]:<br />

3.1.8.0.1 Example. Projection on a rank-1 subset.<br />

For A∈ S N having eigenvalues λ(A)= [λ i ]∈ R N , consider the unconstrained<br />

nonconvex optimization that is a projection on the rank-1 subset (2.9.2.1)<br />

of positive semidefinite cone S N + : Defining λ 1 ∆ = max<br />

i<br />

{λ(A) i } and<br />

corresponding eigenvector v 1<br />

minimize<br />

x<br />

‖xx T − A‖ 2 F = minimize tr(xx T (x T x) − 2Axx T + A T A)<br />

x<br />

{<br />

‖λ(A)‖ 2 , λ 1 ≤ 0<br />

=<br />

‖λ(A)‖ 2 − λ 2 (1576)<br />

1 , λ 1 > 0<br />

arg minimize<br />

x<br />

‖xx T − A‖ 2 F =<br />

{<br />

0 , λ1 ≤ 0<br />

v 1<br />

√<br />

λ1 , λ 1 > 0<br />

(1577)<br />

From (1666) andD.2.1, the gradient of ‖xx T − A‖ 2 F is<br />

∇ x<br />

(<br />

(x T x) 2 − 2x T Ax ) = 4(x T x)x − 4Ax (527)<br />

3.12 Jacobian is the Hessian transpose, so commonly confused in matrix calculus.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!