v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization v2009.01.01 - Convex Optimization

convexoptimization.com
from convexoptimization.com More from this publisher
10.03.2015 Views

206 CHAPTER 3. GEOMETRY OF CONVEX FUNCTIONS 3.1.3.2 clipping Clipping negative vector entries is accomplished: where, for x = [x i ]∈ R n x + = t ⋆ = ‖x + ‖ 1 = minimize 1 T t t∈R n subject to x ≼ t [ xi , x i ≥ 0 0, x i < 0 } 0 ≼ t , i=1... n ] (472) (473) (clipping) minimize x∈R n ‖x + ‖ 1 subject to x ∈ C ≡ minimize 1 T t x∈R n , t∈R n subject to x ≼ t 0 ≼ t x ∈ C (474) 3.1.4 inverted We wish to implement objectives of the form x −1 . Suppose we have a 2×2 matrix [ ] T = ∆ x z ∈ R 2 (475) z y which is positive semidefinite by (1413) when T ≽ 0 ⇔ x > 0 and xy ≥ z 2 (476) A polynomial constraint such as this is therefore called a conic constraint. 3.9 This means we may formulate convex problems, having inverted variables, as semidefinite programs in Schur-form; e.g., minimize x −1 x∈R subject to x > 0 x ∈ C ≡ minimize x , y ∈ R subject to y [ ] x 1 ≽ 0 1 y x ∈ C (477) 3.9 In this dimension the cone is called a rotated quadratic or circular cone, or positive semidefinite cone.

3.1. CONVEX FUNCTION 207 rather x > 0, y ≥ 1 x ⇔ [ x 1 1 y ] ≽ 0 (478) (inverted) For vector x=[x i , i=1... n]∈ R n minimize x∈R n n∑ i=1 x −1 i subject to x ≻ 0 rather x ∈ C ≡ minimize x∈R n , y∈R subject to y [ √ xi n √ ] n ≽ 0 , y i=1... n x ∈ C (479) x ≻ 0, y ≥ tr ( δ(x) −1) ⇔ [ xi √ n √ n y ] ≽ 0 , i=1... n (480) 3.1.5 fractional power [124] To implement an objective of the form x α for positive α , we quantize α and work instead with that approximation. Choose nonnegative integer q for adequate quantization of α like so: α ∆ = k 2 q (481) where k ∈{0, 1, 2... 2 q −1}. Any k from that set may be written ∑ k= q b i 2 i−1 where b i ∈ {0, 1}. Define vector y=[y i , i=0... q] with y 0 =1. i=1 3.1.5.1 positive Then we have the equivalent semidefinite program for maximizing a concave function x α , for quantized 0≤α 0 x ∈ C ≡ maximize x∈R , y∈R q+1 subject to y q [ yi−1 y i y i x b i ] ≽ 0 , i=1... q x ∈ C (482)

3.1. CONVEX FUNCTION 207<br />

rather<br />

x > 0, y ≥ 1 x<br />

⇔<br />

[ x 1<br />

1 y<br />

]<br />

≽ 0 (478)<br />

(inverted) For vector x=[x i , i=1... n]∈ R n<br />

minimize<br />

x∈R n<br />

n∑<br />

i=1<br />

x −1<br />

i<br />

subject to x ≻ 0<br />

rather<br />

x ∈ C<br />

≡<br />

minimize<br />

x∈R n , y∈R<br />

subject to<br />

y<br />

[<br />

√ xi<br />

n<br />

√ ] n<br />

≽ 0 , y<br />

i=1... n<br />

x ∈ C (479)<br />

x ≻ 0, y ≥ tr ( δ(x) −1)<br />

⇔<br />

[<br />

xi<br />

√ n<br />

√ n y<br />

]<br />

≽ 0 , i=1... n (480)<br />

3.1.5 fractional power<br />

[124] To implement an objective of the form x α for positive α , we quantize<br />

α and work instead with that approximation. Choose nonnegative integer q<br />

for adequate quantization of α like so:<br />

α ∆ = k 2 q (481)<br />

where k ∈{0, 1, 2... 2 q −1}. Any k from that set may be written<br />

∑<br />

k= q b i 2 i−1 where b i ∈ {0, 1}. Define vector y=[y i , i=0... q] with y 0 =1.<br />

i=1<br />

3.1.5.1 positive<br />

Then we have the equivalent semidefinite program for maximizing a concave<br />

function x α , for quantized 0≤α 0<br />

x ∈ C<br />

≡<br />

maximize<br />

x∈R , y∈R q+1<br />

subject to<br />

y q<br />

[<br />

yi−1 y i<br />

y i x b i<br />

]<br />

≽ 0 , i=1... q<br />

x ∈ C (482)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!