10.03.2015 Views

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

v2009.01.01 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

180 CHAPTER 2. CONVEX GEOMETRY<br />

Its dual is therefore pointed but of empty interior, having vertex-description<br />

K ∗ M = {X ∗ b ∆ = [e 1 −e 2 e 2 −e 3 · · · e n−1 −e n ]b | b ≽ 0 } ⊂ R n (391)<br />

where the columns of X ∗ comprise the extreme directions of K ∗ M . Because<br />

K ∗ M is pointed and satisfies<br />

rank(X ∗ ∈ R n×N ) = N ∆ = dim aff K ∗ ≤ n (392)<br />

where N = n −1, and because K M is closed and convex, we may adapt Cone<br />

Table 1 (p.174) as follows:<br />

Cone Table 1* K ∗ K ∗∗ = K<br />

vertex-description X ∗ X ∗†T , ±X ∗⊥<br />

halfspace-description X ∗† , X ∗⊥T X ∗T<br />

The vertex-description for K M is therefore<br />

K M = {[X ∗†T X ∗⊥ −X ∗⊥ ]a | a ≽ 0} ⊂ R n (393)<br />

where X ∗⊥ = 1 and<br />

⎡<br />

⎤<br />

n − 1 −1 −1 · · · −1 −1 −1<br />

n − 2 n − 2 −2<br />

... · · · −2 −2<br />

X ∗† = 1 . n − 3 n − 3 . .. −(n − 4) . −3<br />

n<br />

3 . n − 4 . ∈ R<br />

.. n−1×n<br />

−(n − 3) −(n − 3) .<br />

⎢<br />

⎥<br />

⎣ 2 2 · · ·<br />

... 2 −(n − 2) −(n − 2) ⎦<br />

while<br />

1 1 1 · · · 1 1 −(n − 1)<br />

(394)<br />

K ∗ M = {y ∈ R n | X ∗† y ≽ 0, X ∗⊥T y = 0} (395)<br />

is the dual monotone cone halfspace-description.<br />

2.13.9.4.4 Exercise. Inside the monotone cones.<br />

Mathematically describe the respective interior of the monotone nonnegative<br />

cone and monotone cone. In three dimensions, also describe the relative<br />

interior of each face.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!