Signal Processing

Signal Processing Signal Processing

06.03.2015 Views

Transform theory Time-shift in the Discrete-Time Fourier transform F{x n−n0 } = e −i2πνn 0 ˜X(ν) Proof: ∞∑ F{x n−n0 } = x n−n0 e −i2πνn = {p = n − n 0 } n=−∞ ∞∑ = p=−∞ x pe −i2πν(p+n0) = e −i2πνn 0 ∞∑ p=−∞ x pe −i2πνp = e −i2πνn 0 ˜X(ν) Frequency-shift in the Discrete-Time Fourier transform F{x ne i2πν0n } = ˜X(ν − ν 0 ) Proof: F{x ne i2πν0n } = ∞∑ n=−∞ x ne i2πν0n e −i2πνn = ∞∑ n=−∞ x ne −i2π(ν−ν0)n = ˜X(ν−ν 0 ) Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 24(28)

Transform theory Time-derivative in the Fourier transform F { } ∂x = iωX(ω) ∂t Proof: ∂x ∂t = ∂ ∫ 1 ∞ X(ω)e iωt dω = 1 ∫ ∞ ∂ ∂t 2π −∞ 2π −∞ ∂t {X(ω)eiωt } dω = 1 ∫ ∞ iωX(ω)e iωt dω = F −1 {iωX(ω)} 2π −∞ Frequency-derivative in the Fourier transform Proof: F{tx(t)} = i ∂X(ω) ∂ω i ∂X(ω) ∂ω = i ∂ ∫ ∞ ∫ ∞ x(t)e −iωt ∂ dt = i ∂ω −∞ −∞ ∂ω {x(t)e−iωt } dt ∫ ∞ ∫ ∞ = i (−it)x(t)e −iωt dt = tx(t)e −iωt dt = F{tx(t)} −∞ −∞ Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 25(28)

Transform theory<br />

Time-derivative in the Fourier transform<br />

F<br />

{ } ∂x<br />

= iωX(ω)<br />

∂t<br />

Proof:<br />

∂x<br />

∂t = ∂ ∫<br />

1 ∞<br />

X(ω)e iωt dω = 1 ∫ ∞ ∂<br />

∂t 2π −∞<br />

2π −∞ ∂t {X(ω)eiωt } dω<br />

= 1 ∫ ∞<br />

iωX(ω)e iωt dω = F −1 {iωX(ω)}<br />

2π −∞<br />

Frequency-derivative in the Fourier transform<br />

Proof:<br />

F{tx(t)} = i ∂X(ω)<br />

∂ω<br />

i ∂X(ω)<br />

∂ω<br />

= i ∂ ∫ ∞<br />

∫ ∞<br />

x(t)e −iωt ∂<br />

dt = i<br />

∂ω −∞<br />

−∞ ∂ω {x(t)e−iωt } dt<br />

∫ ∞<br />

∫ ∞<br />

= i (−it)x(t)e −iωt dt = tx(t)e −iωt dt = F{tx(t)}<br />

−∞<br />

−∞<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 25(28)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!