Signal Processing

Signal Processing Signal Processing

06.03.2015 Views

Transform theory Convolution theorem for the Fourier transform (linear convolution in continuous frequency) Let Then Proof: z(t) = x(t)y(t) Z(ω) = 1 ∫ 1 ∞ X(ω) ∗ Y (ω) = X(ω − ϕ)Y (ϕ) dϕ 2π 2π −∞ { } 1 z(t) = F −1 2π X(ω) ∗ Y (ω) = 1 ∫ ∞ { ∫ 1 ∞ } X(ω − ϕ)Y (ϕ) dϕ e iωt dω 2π −∞ 2π −∞ = {(υ, ϕ) = (ω − ϕ, ϕ), dυ dϕ = dω dϕ} = 1 ∫ ∞ ∫ ∞ (2π) 2 X(υ)Y (ϕ)e i(υ+ϕ)t dυ dϕ −∞ −∞ = 1 ∫ ∞ X(υ)e iυt dυ 1 ∫ ∞ Y (ϕ)e iϕt dϕ = x(t)y(t) 2π −∞ 2π −∞ Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 16(28)

Transform theory Convolution theorem for the Fourier series (periodic convolution in continuous time) Let Then Proof: ˜z(t) = 1 T ˜x(t) ⊗ ỹ(t) = 1 ∫ ˜x(t − τ)ỹ(τ) dτ T T Z k = X k Y k Z k = 1 ∫ ˜z(t)e −i 2π T kt dt = 1 ∫ T { ∫ 1 T } ˜x(t − τ)ỹ(τ) dτ e −i 2π T kt dt T T T 0 T 0 = {(u, τ) = (t − τ, τ), du dτ = dt dτ} = 1 ∫ T ∫ T −τ T 2 ˜x(u)ỹ(τ)e −i 2π T k(u+τ) du dτ 0 −τ = 1 ∫ ˜x(u)e −i 2π T ku du 1 ∫ ỹ(τ)e −i 2π T kτ dτ = X k Y k T T T T Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 17(28)

Transform theory<br />

Convolution theorem for the Fourier transform (linear convolution in<br />

continuous frequency)<br />

Let<br />

Then<br />

Proof:<br />

z(t) = x(t)y(t)<br />

Z(ω) = 1<br />

∫<br />

1 ∞<br />

X(ω) ∗ Y (ω) = X(ω − ϕ)Y (ϕ) dϕ<br />

2π 2π −∞<br />

{ }<br />

1<br />

z(t) = F −1 2π X(ω) ∗ Y (ω) = 1 ∫ ∞ { ∫ 1 ∞<br />

}<br />

X(ω − ϕ)Y (ϕ) dϕ e iωt dω<br />

2π −∞ 2π −∞<br />

= {(υ, ϕ) = (ω − ϕ, ϕ), dυ dϕ = dω dϕ} = 1 ∫ ∞ ∫ ∞<br />

(2π) 2 X(υ)Y (ϕ)e i(υ+ϕ)t dυ dϕ<br />

−∞ −∞<br />

= 1 ∫ ∞<br />

X(υ)e iυt dυ 1 ∫ ∞<br />

Y (ϕ)e iϕt dϕ = x(t)y(t)<br />

2π −∞<br />

2π −∞<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 16(28)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!