06.03.2015 Views

Signal Processing

Signal Processing

Signal Processing

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Signal</strong> <strong>Processing</strong><br />

Lecture 1<br />

Sven Nordebo<br />

School of Computer Science, Physics and Mathematics<br />

Linnæus University, Sweden<br />

4ED044 <strong>Signal</strong> <strong>Processing</strong>, September 20, 2012


Chapter 1: Transform theory<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

The Fourier transform:<br />

Continuous–time aperiodic signals x(t)<br />

∫ ∞<br />

X(f) = x(t)e −i2πft dt<br />

−∞<br />

∫ ∞<br />

x(t) = X(f)e i2πft df<br />

−∞<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

The Fourier series:<br />

Continuous–time T -periodic signals ˜x(t)<br />

Discrete spectrum f k = k/T<br />

X k = 1 ∫<br />

˜x(t)e −i 2π T kt dt<br />

T T<br />

∞∑<br />

˜x(t) = X k e i 2π T kt<br />

k=−∞<br />

⎧<br />

The Discrete-Time Fourier transform:<br />

⎧<br />

The Discrete Fourier Transform (DFT):<br />

Discrete–time aperiodic signals x n<br />

Discrete–time N-periodic signals ˜x n<br />

⎪⎨<br />

1-periodic spectrum:<br />

˜X(ν) =<br />

∞∑<br />

n=−∞<br />

x ne −i2πνn<br />

˜X(ν + 1) = ˜X(ν)<br />

⎪⎨<br />

N-periodic spectrum:<br />

˜Xk+N = ˜X k<br />

N−1 ∑<br />

˜X k = ˜x ne −i 2π N kn , k = 0, . . . , N − 1<br />

n=0<br />

⎪⎩<br />

∫ 1/2<br />

x n = ˜X(ν)e i2πνn dν<br />

−1/2<br />

⎪⎩<br />

˜x n = 1 N<br />

N−1 ∑<br />

k=0<br />

˜X k e i 2π N kn , n = 0, . . . , N − 1<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 2(28)


Transform theory<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

The Fourier transform: Alternative definition ω = 2πf [ rad/s]<br />

Continuous–time aperiodic signals<br />

∫ ∞<br />

X(ω) = x(t)e −iωt dt<br />

−∞<br />

x(t) = 1 ∫ ∞<br />

X(ω)e i2πωt dω<br />

2π −∞<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

The Discrete-Time Fourier transform: Alternative definition Ω = 2πν<br />

Discrete–time aperiodic signals<br />

2π-periodic spectrum: X(Ω + 2π) = X(Ω)<br />

X(Ω) =<br />

∞∑<br />

x(n)e −iΩn<br />

n=−∞<br />

x(n) = 1 ∫ π<br />

X(Ω)e iΩn dΩ<br />

2π −π<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 3(28)


Transform theory<br />

Exercise 1 (a): The Fourier transform for continuous–time aperiodic signals<br />

{ A 0 ≤ t ≤ Tp<br />

x(t) =<br />

0 otherwise<br />

∫ ∞<br />

X(f) = x(t)e −i2πft dt =<br />

−∞<br />

= A 1 − e−i2πfTp<br />

i2πf<br />

∫ Tp<br />

[ e<br />

Ae −i2πft −i2πft ] Tp<br />

dt = A<br />

0<br />

−i2πf 0<br />

= Ae −iπfTp eiπfTp − e −iπfTp<br />

i2πf<br />

−iπfTp sin(πfTp)<br />

= AT pe<br />

πfT p<br />

Zeros of X(f):<br />

X(f) = 0 ⇔ sin(πfT p) = 0 ⇔ πfT p = mπ ⇔ f = m T p<br />

, m = 0, ±1, ±2, . . .<br />

Draw a sketch of both the signal x(t) and its Fourier transform X(f).<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 4(28)


Transform theory<br />

Exercise 1 (b): The Fourier series for continuous–time T -periodic signals<br />

⎧<br />

A 0 ≤ t < T p<br />

⎪⎨<br />

˜x(t) = 0 T p < t < T<br />

⎪⎩<br />

˜x(t + T ) all t<br />

X k = 1 ∫<br />

˜x(t)e −i 2π T kt dt = 1 ∫ T<br />

˜x(t)e −i 2π T kt dt = 1 ∫ Tp<br />

Ae −i 2π T kt dt<br />

T T<br />

T 0<br />

T 0<br />

{<br />

= same integral as above with f k = k }<br />

= 1 T T ATpe−iπ T k sin(π k Tp T Tp)<br />

π k T Tp<br />

Draw a sketch of both the signal ˜x(t) and its Fourier series X k .<br />

Note that the Fourier series coefficients X k of ˜x(t) are equal to 1 times the Fourier<br />

T<br />

transform of one single period x(t) of the periodic signal ˜x(t), sampled at the<br />

frequencies f = k T<br />

X k = 1 ∫<br />

˜x(t)e −i 2π T kt dt = 1 ∫<br />

x(t)e −i 2π T kt dt = 1 ∫ ∞<br />

x(t)e −i 2π T kt dt<br />

T T<br />

T T<br />

T −∞<br />

= 1 T X(f)| f= k T<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 5(28)


Transform theory<br />

Exercise 1 (c): The Discrete-Time Fourier transform for discrete–time aperiodic signals<br />

{ A 0 ≤ n ≤ Np − 1<br />

x n =<br />

0 otherwise<br />

˜X(ν) =<br />

∞∑<br />

n=−∞<br />

N<br />

∑ p−1<br />

x ne −i2πνn = Ae −i2πνn =<br />

n=0<br />

⎧<br />

⎨<br />

N p−1<br />

⎩ Geom. ser. ∑<br />

n=0<br />

= A 1 − e−i2πνNp<br />

1 − e −i2πν = A e−iπνNp (e iπνNp − e −iπνNp )<br />

e −iπν (e iπν − e −iπν )<br />

= Ae −iπν(Np−1) (eiπνNp − e −iπνNp )/(2i)<br />

(e iπν − e −iπν )/(2i)<br />

q n = 1 − qNp<br />

1 − q<br />

−iπν(Np−1) sin(πνNp)<br />

= Ae<br />

sin(πν)<br />

Zeros of ˜X(ν):<br />

˜X(ν) = 0 ⇔ sin(πνN p) = 0 ⇔ πνN p = mπ ⇔ ν = m N p<br />

, m = 0, ±1, ±2, . . .<br />

⎫<br />

⎬<br />

⎭<br />

Draw a sketch of both the signal x n and its Fourier transform ˜X(ν).<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 6(28)


Transform theory<br />

Exercise 1 (d): The Discrete Fourier Transform (DFT) for discrete–time N-periodic<br />

signals<br />

⎧<br />

A 0 ≤ n ≤ N p − 1<br />

⎪⎨<br />

˜x n = 0 N p ≤ n ≤ N − 1<br />

⎪⎩<br />

˜x n+N all n<br />

N−1 ∑<br />

˜X k =<br />

n=0<br />

N<br />

˜x ne −i 2π ∑ p−1<br />

N kn =<br />

n=0<br />

Draw a sketch of both the signal ˜x n and its DFT ˜X k .<br />

{<br />

Ae −i 2π N kn = same sum as above with ν k = k }<br />

N<br />

= Ae −iπ k N (Np−1) sin(π k N Np)<br />

sin(π k N )<br />

Note that the DFT ˜X k of ˜x n is equal to the Fourier transform of one single period x n<br />

of the periodic signal ˜x n, sampled at the frequencies ν = k N<br />

˜X k =<br />

N−1 ∑<br />

n=0<br />

˜x ne −i 2π N kn =<br />

N−1 ∑<br />

n=0<br />

x ne −i 2π N kn =<br />

∞∑<br />

n=−∞<br />

x ne −i 2π N kn = ˜X(ν)| ν= k<br />

N<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 7(28)


Transform theory<br />

The Fourier transform as the limit of the Fourier series<br />

Let x(t) be an aperiodic continuos-time signal with the property<br />

lim x(t) = 0<br />

|t|→∞<br />

Extend this signal as a periodic signal with period T<br />

so that<br />

˜x(t) =<br />

∞∑<br />

n=−∞<br />

x(t − nT )<br />

lim ˜x(t) = x(t) for t ∈ [−T/2, T/2]<br />

T →∞<br />

It follows that<br />

X k = 1 ∫ T /2<br />

˜x(t)e −i2π T k t dt → 1 ∫ T /2<br />

x(t)e −i2π T k t dt → 1 T −T /2<br />

T −T /2<br />

T X( k T )<br />

as T → ∞. Moreover, let f k = k/T → f and f k+1 − f k = 1/T → df, so that<br />

˜x(t) =<br />

as T → ∞.<br />

∞∑<br />

k=−∞<br />

X k e i2πf kt →<br />

∞∑<br />

k=−∞<br />

∫<br />

1<br />

∞<br />

T X(f k)e i2πfkt → X(f)e i2πft df = x(t)<br />

−∞<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 8(28)


Transform theory<br />

Classical Fourier transform: F : L 2 → L 2<br />

⎧ ∫ ∞<br />

⎪⎨ Fx(t) = x(t)e −iωt dt<br />

⎪⎩<br />

Important properties:<br />

⎧<br />

Duality:<br />

⎪⎨<br />

⎪⎩<br />

−∞<br />

F −1 X(ω) = 1<br />

2π<br />

Time-derivative:<br />

Frequency-derivative:<br />

Time-shift:<br />

∫ ∞<br />

−∞<br />

X(ω)e iωt dω<br />

FFx(t) = 2πx(−t)<br />

F∂ t x(t) = iωX(ω)<br />

Ftx(t) = i∂ ω X(ω)<br />

Fx(t − t 0 ) = e −iωt0 X(ω)<br />

Frequency-shift: Fe iω0t x(t) = X(ω − ω 0 )<br />

Scaling: Fx(at) = 1<br />

|a| X(ω a )<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 9(28)


Transform theory<br />

Important properties:<br />

⎧<br />

Parseval:<br />

⎪⎨<br />

⎪⎩<br />

Parseval:<br />

Time-convolution:<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

−∞<br />

x(t)y ∗ (t)dt = 1<br />

2π<br />

|x(t)| 2 dt = 1<br />

2π<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

−∞<br />

Fx(t) ∗ y(t) = X(ω)Y (ω)<br />

Freq.-convolution: Fx(t)y(t) = 1 X(ω) ∗ Y (ω)<br />

2π<br />

Conj. symmetry: x(t) real ⇔ X(ω) = X ∗ (−ω)<br />

Conj. symmetry:<br />

Conj. asymmetry:<br />

Conj. asymmetry:<br />

X(ω) real ⇔ x(t) = x ∗ (−t)<br />

X(ω)Y ∗ (ω)dω<br />

|X(ω)| 2 dω<br />

x(t) imaginary ⇔ X(ω) = −X ∗ (−ω)<br />

X(ω) imaginary ⇔ x(t) = −x ∗ (−t)<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 10(28)


Transform theory<br />

The Parseval’s relations for Fourier series<br />

∫<br />

1<br />

T T<br />

∫<br />

1<br />

T T<br />

˜x(t)ỹ ∗ (t) dt =<br />

|˜x(t)| 2 dt =<br />

∞∑<br />

k=−∞<br />

∞∑<br />

k=−∞<br />

X k Y ∗ k<br />

|X k | 2<br />

Proof: Employ the orthogonality relationship of the basis functions<br />

We have<br />

∫<br />

{<br />

1<br />

e i 2π T (k−k′)t 1 k = k ′<br />

dt = δ kk ′ =<br />

T T<br />

0 k ≠ k ′<br />

∫<br />

1<br />

˜x(t)ỹ ∗ (t) dt = 1 ∫ ∞∑<br />

X k e i 2π ∑ ∞<br />

T kt Y ∗ 2π k<br />

T T<br />

T<br />

′e−i T k′t dt<br />

T<br />

k=−∞<br />

k ′ =−∞<br />

∞∑ ∞∑<br />

∫<br />

=<br />

X k Y ∗ 1<br />

∞∑ ∞∑<br />

k ′ e i 2π T (k−k′)t dt =<br />

X k Yk ∗ T<br />

′δ kk ′ =<br />

∑ ∞ X k Yk<br />

∗<br />

k=−∞ k ′ =−∞<br />

T<br />

k=−∞ k ′ =−∞<br />

k=−∞<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 11(28)


Transform theory<br />

The Parseval’s relations for Fourier transforms<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

∫ ∞<br />

x(t)y ∗ (t) dt =<br />

−∞<br />

−∞<br />

X(f)Y ∗ (f) df<br />

∫ ∞<br />

|x(t)| 2 dt = |X(f)| 2 df<br />

−∞<br />

Proof: Employ the orthogonality relationship of the basis functions<br />

We have<br />

∫ ∞<br />

e i2π(f−f ′ )t dt = δ(f − f ′ )<br />

−∞<br />

∫ ∞<br />

∫ ∞ ∫ ∞<br />

∫ ∞<br />

x(t)y ∗ (t) dt =<br />

X(f)e i2πft df Y ∗ (f ′ )e −i2πf ′t df ′ dt<br />

−∞<br />

−∞ −∞<br />

−∞<br />

∫ ∞ ∫ ∞<br />

∫ ∞<br />

=<br />

X(f)Y ∗ (f ′ ) e i2π(f−f ′ )t dt df df ′<br />

−∞ −∞<br />

−∞<br />

∫ ∞ ∫ ∞<br />

∫ ∞<br />

=<br />

X(f)Y ∗ (f ′ )δ(f − f ′ ) df ′ df = X(f)Y ∗ (f) df<br />

−∞ −∞<br />

−∞<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 12(28)


Transform theory<br />

The Parseval’s relations for the Discrete Fourier Transform (DFT)<br />

N−1 ∑<br />

n=0<br />

N−1 ∑<br />

n=0<br />

˜x nỹ ∗ n = 1 N<br />

|˜x n| 2 = 1 N<br />

N−1 ∑<br />

k=0<br />

N−1 ∑<br />

k=0<br />

˜X k Ỹ ∗ k<br />

| ˜X k | 2<br />

Proof: Employ the orthogonality relationship of the basis functions<br />

We have<br />

= 1 N<br />

N−1 ∑<br />

n=0<br />

N−1 ∑<br />

˜x nỹn ∗ =<br />

N−1 ∑<br />

N−1 ∑<br />

k=0 k ′ =0<br />

N−1<br />

1 ∑<br />

{<br />

e i 2π N (k−k′)n = ˜δ 1 k = k<br />

kk ′ =<br />

′ + mN<br />

N<br />

0 k ≠ k ′ + mN<br />

n=0<br />

n=0<br />

N−1<br />

1 ∑<br />

˜X k e i 2π N kn 1 N−1 ∑<br />

N<br />

N<br />

k=0<br />

N−1<br />

˜X k Ỹk ∗ 1 ∑<br />

′<br />

N<br />

n=0<br />

k ′ =0<br />

e i 2π N (k−k′ )n = 1 N<br />

Ỹ ∗ k ′e−i 2π N k′ n<br />

N−1 ∑<br />

N−1 ∑<br />

k=0 k ′ =0<br />

˜X k Ỹ ∗ k ′ ˜δ kk ′ = 1 N<br />

N−1 ∑<br />

k=0<br />

˜X k Ỹ ∗ k<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 13(28)


Transform theory<br />

The Parseval’s relations for Discrete-Time Fourier transforms<br />

∞∑<br />

n=−∞<br />

∞∑<br />

n=−∞<br />

x ny ∗ n = ∫ 1/2<br />

−1/2<br />

˜X(ν)Ỹ ∗ (ν) dν<br />

∫ 1/2<br />

|x n| 2 = | ˜X(ν)| 2 dν<br />

−1/2<br />

Proof: Employ the orthogonality relationship of the basis functions<br />

∞∑<br />

e i2π(ν−ν′ )n = ˜δ(ν − ν ′ ) mod 1<br />

n=−∞<br />

We have<br />

∞∑<br />

x nyn ∗ =<br />

∞∑<br />

∫ 1/2<br />

∫ 1/2<br />

˜X(ν)e i2πνn dν Ỹ ∗ (ν ′ )e −i2πν′n dν ′<br />

n=−∞<br />

n=−∞ −1/2<br />

−1/2<br />

∫ 1/2 ∫ 1/2<br />

=<br />

˜X(ν)Ỹ ∗ (ν ′ )<br />

∞∑<br />

e i2π(ν−ν′ )n dν dν ′<br />

−1/2 −1/2<br />

n=−∞<br />

∫ 1/2 ∫ 1/2<br />

∫ 1/2<br />

=<br />

˜X(ν)Ỹ ∗ (ν ′ )˜δ(ν − ν ′ ) dν ′ dν = ˜X(ν)Ỹ ∗ (ν) dν<br />

−1/2 −1/2<br />

−1/2<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 14(28)


Transform theory<br />

Convolution theorem for the Fourier transform (linear convolution in<br />

continuous time)<br />

Let<br />

Then<br />

Proof:<br />

∫ ∞<br />

z(t) = x(t) ∗ y(t) = x(t − τ)y(τ) dτ<br />

−∞<br />

Z(ω) = X(ω)Y (ω)<br />

∫ ∞<br />

∫ ∞ {∫ ∞<br />

}<br />

Z(ω) = z(t)e −iωt dt =<br />

x(t − τ)y(τ) dτ e −iωt dt<br />

−∞<br />

−∞ −∞<br />

∫ ∞ ∫ ∞<br />

= {(u, τ) = (t − τ, τ), du dτ = dt dτ} =<br />

x(u)y(τ)e −iω(u+τ) du dτ<br />

−∞ −∞<br />

∫ ∞<br />

∫ ∞<br />

= x(u)e −iωu du y(τ)e −iωτ dτ = X(ω)Y (ω)<br />

−∞<br />

−∞<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 15(28)


Transform theory<br />

Convolution theorem for the Fourier transform (linear convolution in<br />

continuous frequency)<br />

Let<br />

Then<br />

Proof:<br />

z(t) = x(t)y(t)<br />

Z(ω) = 1<br />

∫<br />

1 ∞<br />

X(ω) ∗ Y (ω) = X(ω − ϕ)Y (ϕ) dϕ<br />

2π 2π −∞<br />

{ }<br />

1<br />

z(t) = F −1 2π X(ω) ∗ Y (ω) = 1 ∫ ∞ { ∫ 1 ∞<br />

}<br />

X(ω − ϕ)Y (ϕ) dϕ e iωt dω<br />

2π −∞ 2π −∞<br />

= {(υ, ϕ) = (ω − ϕ, ϕ), dυ dϕ = dω dϕ} = 1 ∫ ∞ ∫ ∞<br />

(2π) 2 X(υ)Y (ϕ)e i(υ+ϕ)t dυ dϕ<br />

−∞ −∞<br />

= 1 ∫ ∞<br />

X(υ)e iυt dυ 1 ∫ ∞<br />

Y (ϕ)e iϕt dϕ = x(t)y(t)<br />

2π −∞<br />

2π −∞<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 16(28)


Transform theory<br />

Convolution theorem for the Fourier series (periodic convolution in<br />

continuous time)<br />

Let<br />

Then<br />

Proof:<br />

˜z(t) = 1 T ˜x(t) ⊗ ỹ(t) = 1 ∫<br />

˜x(t − τ)ỹ(τ) dτ<br />

T T<br />

Z k = X k Y k<br />

Z k = 1 ∫<br />

˜z(t)e −i 2π T kt dt = 1 ∫ T { ∫ 1 T<br />

}<br />

˜x(t − τ)ỹ(τ) dτ e −i 2π T kt dt<br />

T T<br />

T 0 T 0<br />

= {(u, τ) = (t − τ, τ), du dτ = dt dτ} = 1 ∫ T ∫ T −τ<br />

T 2 ˜x(u)ỹ(τ)e −i 2π T k(u+τ) du dτ<br />

0 −τ<br />

= 1 ∫<br />

˜x(u)e −i 2π T ku du 1 ∫<br />

ỹ(τ)e −i 2π T kτ dτ = X k Y k<br />

T T<br />

T T<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 17(28)


Transform theory<br />

Convolution theorem for the Fourier series (linear convolution in discrete<br />

frequency)<br />

Let<br />

Then<br />

Proof:<br />

˜z(t) = ˜x(t)ỹ(t)<br />

Z k = X k ∗ Y k =<br />

∞∑<br />

q=−∞<br />

X k−q Y q<br />

⎧<br />

⎫<br />

∞∑<br />

∞∑ ⎨ ∞∑ ⎬<br />

˜z(t) = Z k e i 2π T kt =<br />

X<br />

⎩<br />

k−q Y q<br />

⎭ ei 2π T kt = {(p, q) = (k − q, q)}<br />

k=−∞<br />

k=−∞ q=−∞<br />

∞∑ ∞∑<br />

∞∑<br />

=<br />

X pY qe i 2π T (p+q)t = X pe i 2π ∑ ∞<br />

T pt Y qe i 2π T qt = ˜x(t)ỹ(t)<br />

p=−∞ q=−∞<br />

p=−∞<br />

q=−∞<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 18(28)


Transform theory<br />

Convolution theorem for the Discrete-Time Fourier transform (linear<br />

convolution in discrete time)<br />

Let<br />

Then<br />

z n = x n ∗ y n =<br />

˜Z(ν) =<br />

∞∑<br />

q=−∞<br />

˜X(ν)Ỹ (ν)<br />

x n−q y q<br />

Proof:<br />

⎧<br />

⎫<br />

∞∑<br />

∞∑ ⎨ ∞∑ ⎬<br />

˜Z(ν) = z ne −i2πνn =<br />

x n−q y q<br />

⎩<br />

⎭ e−i2πνn<br />

n=−∞<br />

n=−∞ q=−∞<br />

∞∑ ∞∑<br />

= {(p, q) = (n − q, q)} =<br />

x py qe −i2πν(p+q)<br />

=<br />

∞∑<br />

p=−∞<br />

p=−∞ q=−∞<br />

x pe −i2πνp<br />

∞ ∑<br />

q=−∞<br />

y qe −i2πνq =<br />

˜X(ν)Ỹ (ν)<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 19(28)


Transform theory<br />

Convolution theorem for the Discrete-Time Fourier transform (periodic<br />

convolution in continuous frequency)<br />

Let<br />

Then<br />

Proof:<br />

z n = x ny n<br />

˜Z(ν) = ˜X(ν) ⊗ Ỹ (ν) = ∫ 1/2<br />

−1/2<br />

˜X(ν − α)Ỹ (α) dα<br />

{ } ∫ { 1/2 ∫ } 1/2<br />

z n = F −1 ˜X(ν) ⊗ Ỹ (ν) =<br />

˜X(ν − α)Ỹ (α) dα e i2πνn dν<br />

−1/2 −1/2<br />

= {(β, α) = (ν − α, α), dβ dα = dν dα}<br />

∫ 1/2 ∫ 1/2−α<br />

=<br />

˜X(β)Ỹ (α)ei2π(β+α)n dβ dα<br />

α=−1/2 β=−1/2−α<br />

∫ 1/2<br />

∫ 1/2<br />

= ˜X(β)e i2πβn dβ Ỹ (α)e i2παn dα = x ny n<br />

−1/2<br />

−1/2<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 20(28)


Transform theory<br />

Convolution theorem for the Discrete Fourier Transform (periodic<br />

convolution in discrete time)<br />

Let<br />

Then<br />

Proof:<br />

N−1 ∑<br />

˜z n = ˜x n ⊗ ỹ n = ˜x n−q ỹ q<br />

q=0<br />

˜Z k = ˜X k Ỹ k<br />

⎧<br />

⎫<br />

N−1 ∑<br />

N−1<br />

˜Z k = ˜z ne −i 2π ∑ ⎨N−1<br />

∑ ⎬<br />

N kn =<br />

˜x n−q ỹ q<br />

⎩<br />

⎭ e−i 2π N kn<br />

n=0<br />

n=0 q=0<br />

= {(p, q) = (n − q, q)} =<br />

N−1 ∑<br />

q=0<br />

N−1−q ∑<br />

p=−q<br />

˜x pỹ qe −i 2π N k(p+q)<br />

N−1 ∑<br />

N−1<br />

= ˜x pe −i 2π ∑<br />

N kp ỹ qe −i 2π N kq = ˜X k Ỹ k<br />

p=0<br />

q=0<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 21(28)


Transform theory<br />

Convolution theorem for the Discrete Fourier Transform (periodic<br />

convolution in discrete frequency)<br />

Let<br />

Then<br />

Proof:<br />

{ 1<br />

˜z n = DFT −1 ˜X k ⊗<br />

N Ỹk<br />

˜z n = ˜x nỹ n<br />

˜Z k = 1 ˜X k ⊗<br />

N Ỹk = 1 N−1 ∑<br />

˜X k−q Ỹ q<br />

N<br />

q=0<br />

}<br />

= 1 N<br />

⎧<br />

⎫<br />

N−1 ∑ ⎨ N−1<br />

1 ∑ ⎬<br />

˜X<br />

⎩<br />

k−q Ỹ q<br />

N<br />

⎭ ei 2π N kn<br />

k=0 q=0<br />

= {(p, q) = (k − q, q)} = 1 N−1 ∑ N−1−q ∑<br />

N 2<br />

= 1 N<br />

q=0<br />

N−1 ∑<br />

p=0<br />

p=−q<br />

˜X pe i 2π N pn 1 N<br />

˜X p Ỹ qe i 2π N (p+q)n<br />

N−1 ∑<br />

q=0<br />

Ỹ qe i 2π N qn = ˜x nỹ n<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 22(28)


Time-shift in the Fourier transform<br />

Transform theory<br />

Proof:<br />

F{x(t − t 0 )} = e −iωt 0<br />

X(ω)<br />

∫ ∞<br />

F{x(t − t 0 )} = x(t − t 0 )e −iωt dt = {u = t − t 0 , du = dt}<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

= x(u)e −iω(u+t0) du = e −iωt 0<br />

x(u)e −iωu du = e −iωt 0<br />

X(ω)<br />

−∞<br />

−∞<br />

Frequency-shift in the Fourier transform<br />

F{x(t)e iω0t } = X(ω − ω 0 )<br />

Proof:<br />

∫ ∞<br />

∫ ∞<br />

F{x(t)e iω0t } = x(t)e iω0t e −iωt dt = x(t)e −i(ω−ω0)t dt = X(ω − ω 0 )<br />

−∞<br />

−∞<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 23(28)


Transform theory<br />

Time-shift in the Discrete-Time Fourier transform<br />

F{x n−n0 } = e −i2πνn 0 ˜X(ν)<br />

Proof:<br />

∞∑<br />

F{x n−n0 } = x n−n0 e −i2πνn = {p = n − n 0 }<br />

n=−∞<br />

∞∑<br />

=<br />

p=−∞<br />

x pe −i2πν(p+n0) = e −i2πνn 0<br />

∞∑<br />

p=−∞<br />

x pe −i2πνp = e −i2πνn 0 ˜X(ν)<br />

Frequency-shift in the Discrete-Time Fourier transform<br />

F{x ne i2πν0n } = ˜X(ν − ν 0 )<br />

Proof:<br />

F{x ne i2πν0n } =<br />

∞∑<br />

n=−∞<br />

x ne i2πν0n e −i2πνn =<br />

∞∑<br />

n=−∞<br />

x ne −i2π(ν−ν0)n = ˜X(ν−ν 0 )<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 24(28)


Transform theory<br />

Time-derivative in the Fourier transform<br />

F<br />

{ } ∂x<br />

= iωX(ω)<br />

∂t<br />

Proof:<br />

∂x<br />

∂t = ∂ ∫<br />

1 ∞<br />

X(ω)e iωt dω = 1 ∫ ∞ ∂<br />

∂t 2π −∞<br />

2π −∞ ∂t {X(ω)eiωt } dω<br />

= 1 ∫ ∞<br />

iωX(ω)e iωt dω = F −1 {iωX(ω)}<br />

2π −∞<br />

Frequency-derivative in the Fourier transform<br />

Proof:<br />

F{tx(t)} = i ∂X(ω)<br />

∂ω<br />

i ∂X(ω)<br />

∂ω<br />

= i ∂ ∫ ∞<br />

∫ ∞<br />

x(t)e −iωt ∂<br />

dt = i<br />

∂ω −∞<br />

−∞ ∂ω {x(t)e−iωt } dt<br />

∫ ∞<br />

∫ ∞<br />

= i (−it)x(t)e −iωt dt = tx(t)e −iωt dt = F{tx(t)}<br />

−∞<br />

−∞<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 25(28)


Transform theory<br />

Example: Fourier transform of the Gaussian pulse<br />

{ √<br />

F e −at2} π ω2<br />

= e− 4a<br />

a<br />

Proof: Notice that x(t) = e −at2 is a solution to<br />

∂x(t)<br />

∂t<br />

+ 2atx(t) = 0<br />

Take the Fourier transform and use F{ ∂x(t) } = iωX(ω) and F{tx(t)} = i ∂X(ω)<br />

∂t<br />

∂ω<br />

iωX(ω) + 2ai ∂X(ω)<br />

∂ω<br />

Parseval’s theorem<br />

= 0 ⇒ ∂X(ω) ( ) 1<br />

∂ω + 2 ωX(ω) = 0 ⇒ X(ω) = Ce − 4a 1 ω2<br />

4a<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

x 2 (t) dt = e −2at2 dt = 1<br />

−∞<br />

2π<br />

= {ω = 2at, dω = 2a dt} = C2<br />

2π<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

−∞<br />

∫<br />

X 2 (ω) dω = C2 ∞<br />

e − ω2<br />

2a dω<br />

2π −∞<br />

e −2at2 2a dt ⇒ 1 = C2<br />

2π 2a ⇒ C = √ π<br />

a<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 26(28)


Transform theory<br />

Important symmetry properties of the Fourier Transform<br />

{ |X(ω)| = |X(−ω)|<br />

x(t) real ⇔ X(ω) = X ∗ (−ω) ⇔<br />

arg X(ω) = − arg X(−ω)<br />

Proof:<br />

∫ ∞<br />

∫ ∞<br />

X(ω) = X ∗ (−ω) ⇔ x(t)e −iωt dt = x ∗ (t)e −iωt dt<br />

−∞<br />

−∞<br />

⇔ x(t) = x ∗ (t) ⇔ x(t) real<br />

Proof:<br />

X(ω) real ⇔ x(t) = x ∗ (−t)<br />

x(t) = x ∗ (−t) ⇔ 1 ∫ ∞<br />

X(ω)e iωt dω = 1 ∫ ∞<br />

X ∗ (ω)e iωt dω<br />

2π −∞<br />

2π −∞<br />

⇔ X(ω) = X ∗ (ω) ⇔ X(ω) real<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 27(28)


Transform theory<br />

Important symmetry properties of the Discrete Fourier Transform (DFT)<br />

˜x n real ⇔ ˜X k = ˜X ∗ −k = ˜X ∗ N−k ⇔ { | ˜Xk | = | ˜X −k | = | ˜X N−k |<br />

arg ˜X k = − arg ˜X −k = − arg ˜X N−k<br />

Proof: Similar as above.<br />

˜X k real ⇔ ˜x n = ˜x ∗ −n = ˜x∗ N−n<br />

Sven Nordebo, School of Computer Science, Physics and Mathematics, Linnæus University, Sweden. 28(28)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!