A selection of answers to problems in F. M. White, Fluid Mechanics ...

A selection of answers to problems in F. M. White, Fluid Mechanics ... A selection of answers to problems in F. M. White, Fluid Mechanics ...

energy.lth.se
from energy.lth.se More from this publisher
05.03.2015 Views

P4.84 u = C (2σ 2 ln η − η 2 + 1), where C = g a 2 /(4ν), A selection of answers to problems in η = y/h, h = h(x), C = h2 dp 2µ dx . P6.110 P = 0.84 kW. F. M. White, Fluid Mechanics, 6th edition, McGraw-Hill, 2008 (Ch. 1 − 10) February 25, 2010 Chapter 1 P1.45 (a) V t = hW sin θ/(µA); W = mg, (b) V ≃ 15 m/s (µ = 0.29 Pa s). P1.50 (a) yes, (b) µ ≈ 0.40 Pa s. P1.54 M ϕ = πµΩR 4 /h. P1.56 µ = 3M sin θ/(2πΩR 3 ). P1.58 µ = 0.040 Pa s; the last two points indicate nonlaminar flow; laminar flow is guaranteed if Re = ρV 2r 0 /µ ≤ 2100). P1.88 (a) µ = 0.29 Pa s, (b) ±4.4%. P1.89 Ω = 600 rpm ⇒ µ = (0.29 ± 0.020) Pa s. P1.90 δC D /C D = ±5.6%. z η = r/a and σ = b/a; Q = C 2πa 2 (−3σ 4 − 1 + 4σ 2 + 4σ 4 ln σ)/4. P4.86 Q/b = V A = 31 cm 2 /s (h = 8 mm, Re = ρV 2h/µ = 51). P4.87 (a) Re = 1190 < 2100, (b) Q = 98.5 m 3 /h, (c) h = 99 mm. Chapter 5 P5.6 D ≃ 0.46 kN, linear interpolation using C D . D ≃ 0.45 kN, linear interpolation using D/(µV d). P5.24 F/(ρ V 2 L 2 ) = f(α, Re, L/D, Ma), Re = ρ V L/µ, Ma = V/a. P5.25 Ex. F ρ −1 Ω −2 D −4 = g(ΩD/V, ρΩD 2 /µ). P5.51 P ≈ 0.13 MW, f S = (5 ± 1) Hz (C D ≈ 0.39, St = 0.25 ± 0.05). P5.62 Q m = 0.102 m 3 /s; P p ≃ 117 kW FE1.6 (e) ρLV 2 (ρ /σ (= We, Weber number). m = 1.204 kg/m 3 , ρ p = 998 kg/m 3 ). P5.65 (a) u/u ∗ ≃ 8.9(u ∗ y/ν) 0.13 ; u ∗ = √ τ w /ρ, Chapter 2 (b) τ w = 2.6 Pa. FE2.2 (b) 129 m. FE2.3 (c) p = 107 kPa. FE2.8 (d) F B = 653 N. Chapter 3 P3.16 Q = 3 U o bδ/8. P3.21 (a) Q = U o b δ/8, (b) v w /U o = 3/1000. P3.51 (i) P max = 8 ρ A j Vj 3/27 j/3; (ii) P max = ρ A j Vj 3/2 j/2. P3.53 F = πR 2 [ p 1 − p 2 − ρ U 2 o (β 2 − 1) ], (a) lam. β 2 = 4/3, (b) turb. β 2 ≃ 1.02. P3.62 F bolts = 3.1 kN. P3.72 D = 4.3 kN; C D = 2/3. P3.77 F = 15 kN. P5.70 F p = 0.68 kN. For the last two points (Π 2 = Re m = 2.7 × 10 5 , 2.9 × 10 5 ), the dimensionless force (drag coefficient) is a constant, Π 1 = F/(ρ V 2 L 2 ) = 0.966. For a diamond-shaped body and high enough Re it is expected to have a constant drag coefficient (the form drag dominates and separation is fixed to the sharp corners). Extrapolation using Π 1 = const. for Re > 2.9 × 10 5 gives F p = 0.68 kN. P5.76 F tot = 0.48 MN. Chapter 6 P6.14 (a) Yes it might be, 0.98 m < H < L = 1.00 m ⇒ Re > 2100, (b) Q H=50 cm = 6.5 dm 3 /h (Re = 1.1 × 10 3 ). P6.32 (a) upwards, (b) Q = 1.9 m 3 /h (Re = 68). P6.36 (a) τ w,avg = 1.4 Pa (u ∗ avg = 1.1 m/s), (b) u ≃ 21.3 m/s. P3.130 Ẇ = 33.7 kW. P6.52 p 1 − p atm = 2.4 MPa (f ≃ 0.0136). P3.131 (a) V 2 = 28 m/s, (b) Q = 0.055 m 3 /s. P3.151 (a) V 1 = 0.90 m/s; V 2 = 10 m/s, (b) h = 0.40 m. P3.163 (a) Q = 5.6 dm 3 /s, (b) Q = 2.5 dm 3 /s. P3.173 (a) p 2 = 82 kPa, (b) p 3 = 164 kPa, (c) R x = −1.2 kN (to left); R y = 22 N (upwards). FE3.3 (b) F = 36 N. FE3.4 (c) V = 2.95 m/s (assuming negligible vertical distance P6.66 (a) ∆p = 56 kPa, (b) Q = 85 m 3 /h, (c) u = 3.5 m/s (C = 1.1). P6.76 Q = 15 m 3 /h (f 1 = 0.0214, f 2 = 0.0220). P6.80 Q = 0.86 m 3 /s (f ≃ 0.0191), assuming a free outlet, pumping from large reservoir and neglecting any height difference between reservoir level and outlet. (∆p f + ρV 2 /2 = ρgh P ); with ∆p f = ρgh P the answer is Q = 0.90 m 3 /s. between the level of manometer liquid against air and the cylinder center). P6.90 Q = 0.52 m 3 /s (V 1 ≪ V 2 = V ; V 1 = V 2 ⇒ Q = 0.56 m 3 /s). FE3.7 (a) Q = 188 gal/min = 11.9 dm 3 /s. Chapter 4 P4.83 Combined Couette-Poiseuille flow; u(0) = U, u(h) = 0 ⇒ u = U(1 − η) − C η (1 − η), P6.92 (a) Q = 0.43 m 3 /s (D eff = 337 mm), (b) p − p a = −6.3 Pa. P6.107 (a) Q ≈ 7.7 m 3 /h (K 2 ≈ 80); 0.3% more, (b) Q = 38 m 3 /h; about 5 times more. 1

P4.84 u = C (2σ 2 ln η − η 2 + 1), where C = g a 2 /(4ν),<br />

A <strong>selection</strong> <strong>of</strong> <strong>answers</strong> <strong>to</strong> <strong>problems</strong> <strong>in</strong><br />

η = y/h, h = h(x), C = h2 dp<br />

2µ dx . P6.110 P = 0.84 kW.<br />

F. M. <strong>White</strong>, <strong>Fluid</strong> <strong>Mechanics</strong>, 6th edition,<br />

McGraw-Hill, 2008 (Ch. 1 − 10)<br />

February 25, 2010<br />

Chapter 1<br />

P1.45 (a) V t = hW s<strong>in</strong> θ/(µA); W = mg,<br />

(b) V ≃ 15 m/s (µ = 0.29 Pa s).<br />

P1.50 (a) yes, (b) µ ≈ 0.40 Pa s.<br />

P1.54 M ϕ = πµΩR 4 /h.<br />

P1.56 µ = 3M s<strong>in</strong> θ/(2πΩR 3 ).<br />

P1.58 µ = 0.040 Pa s; the last two po<strong>in</strong>ts <strong>in</strong>dicate nonlam<strong>in</strong>ar<br />

flow; lam<strong>in</strong>ar flow is guaranteed if Re =<br />

ρV 2r 0 /µ ≤ 2100).<br />

P1.88 (a) µ = 0.29 Pa s, (b) ±4.4%.<br />

P1.89 Ω = 600 rpm ⇒ µ = (0.29 ± 0.020) Pa s.<br />

P1.90 δC D /C D = ±5.6%.<br />

z<br />

η = r/a and σ = b/a; Q = C 2πa 2 (−3σ 4 − 1 + 4σ 2 +<br />

4σ 4 ln σ)/4.<br />

P4.86 Q/b = V A = 31 cm 2 /s<br />

(h = 8 mm, Re = ρV 2h/µ = 51).<br />

P4.87 (a) Re = 1190 < 2100, (b) Q = 98.5 m 3 /h,<br />

(c) h = 99 mm.<br />

Chapter 5<br />

P5.6 D ≃ 0.46 kN, l<strong>in</strong>ear <strong>in</strong>terpolation us<strong>in</strong>g C D .<br />

D ≃ 0.45 kN, l<strong>in</strong>ear <strong>in</strong>terpolation us<strong>in</strong>g D/(µV d).<br />

P5.24 F/(ρ V 2 L 2 ) = f(α, Re, L/D, Ma),<br />

Re = ρ V L/µ, Ma = V/a.<br />

P5.25 Ex. F ρ −1 Ω −2 D −4 = g(ΩD/V, ρΩD 2 /µ).<br />

P5.51 P ≈ 0.13 MW, f S = (5 ± 1) Hz<br />

(C D ≈ 0.39, St = 0.25 ± 0.05).<br />

P5.62 Q m = 0.102 m 3 /s; P p ≃ 117 kW<br />

FE1.6 (e) ρLV 2 (ρ<br />

/σ (= We, Weber number).<br />

m = 1.204 kg/m 3 , ρ p = 998 kg/m 3 ).<br />

P5.65 (a) u/u ∗ ≃ 8.9(u ∗ y/ν) 0.13 ; u ∗ = √ τ w /ρ,<br />

Chapter 2<br />

(b) τ w = 2.6 Pa.<br />

FE2.2 (b) 129 m.<br />

FE2.3 (c) p = 107 kPa.<br />

FE2.8 (d) F B = 653 N.<br />

Chapter 3<br />

P3.16 Q = 3 U o bδ/8.<br />

P3.21 (a) Q = U o b δ/8, (b) v w /U o = 3/1000.<br />

P3.51 (i) P max = 8 ρ A j Vj 3/27<br />

j/3;<br />

(ii) P max = ρ A j Vj 3/2<br />

j/2.<br />

P3.53 F = πR 2 [ p 1 − p 2 − ρ U 2 o (β 2 − 1) ],<br />

(a) lam. β 2 = 4/3, (b) turb. β 2 ≃ 1.02.<br />

P3.62 F bolts = 3.1 kN.<br />

P3.72 D = 4.3 kN; C D = 2/3.<br />

P3.77 F = 15 kN.<br />

P5.70 F p = 0.68 kN. For the last two po<strong>in</strong>ts (Π 2 = Re m =<br />

2.7 × 10 5 , 2.9 × 10 5 ), the dimensionless force (drag<br />

coefficient) is a constant, Π 1 = F/(ρ V 2 L 2 ) = 0.966.<br />

For a diamond-shaped body and high enough Re it<br />

is expected <strong>to</strong> have a constant drag coefficient (the<br />

form drag dom<strong>in</strong>ates and separation is fixed <strong>to</strong> the<br />

sharp corners). Extrapolation us<strong>in</strong>g Π 1 = const. for<br />

Re > 2.9 × 10 5 gives F p = 0.68 kN.<br />

P5.76 F <strong>to</strong>t = 0.48 MN.<br />

Chapter 6<br />

P6.14 (a) Yes it might be, 0.98 m < H < L = 1.00 m ⇒<br />

Re > 2100,<br />

(b) Q H=50 cm = 6.5 dm 3 /h (Re = 1.1 × 10 3 ).<br />

P6.32 (a) upwards, (b) Q = 1.9 m 3 /h (Re = 68).<br />

P6.36 (a) τ w,avg = 1.4 Pa (u ∗ avg = 1.1 m/s),<br />

(b) u ≃ 21.3 m/s.<br />

P3.130 Ẇ = 33.7 kW.<br />

P6.52 p 1 − p atm = 2.4 MPa (f ≃ 0.0136).<br />

P3.131 (a) V 2 = 28 m/s, (b) Q = 0.055 m 3 /s.<br />

P3.151 (a) V 1 = 0.90 m/s; V 2 = 10 m/s, (b) h = 0.40 m.<br />

P3.163 (a) Q = 5.6 dm 3 /s, (b) Q = 2.5 dm 3 /s.<br />

P3.173 (a) p 2 = 82 kPa, (b) p 3 = 164 kPa,<br />

(c) R x = −1.2 kN (<strong>to</strong> left); R y = 22 N (upwards).<br />

FE3.3 (b) F = 36 N.<br />

FE3.4 (c) V = 2.95 m/s (assum<strong>in</strong>g negligible vertical distance<br />

P6.66 (a) ∆p = 56 kPa, (b) Q = 85 m 3 /h,<br />

(c) u = 3.5 m/s (C = 1.1).<br />

P6.76 Q = 15 m 3 /h (f 1 = 0.0214, f 2 = 0.0220).<br />

P6.80 Q = 0.86 m 3 /s (f ≃ 0.0191), assum<strong>in</strong>g a free outlet,<br />

pump<strong>in</strong>g from large reservoir and neglect<strong>in</strong>g any<br />

height difference between reservoir level and outlet.<br />

(∆p f + ρV 2 /2 = ρgh P ); with ∆p f = ρgh P the answer<br />

is Q = 0.90 m 3 /s.<br />

between the level <strong>of</strong> manometer liquid aga<strong>in</strong>st<br />

air and the cyl<strong>in</strong>der center).<br />

P6.90 Q = 0.52 m 3 /s<br />

(V 1 ≪ V 2 = V ; V 1 = V 2 ⇒ Q = 0.56 m 3 /s).<br />

FE3.7 (a) Q = 188 gal/m<strong>in</strong> = 11.9 dm 3 /s.<br />

Chapter 4<br />

P4.83 Comb<strong>in</strong>ed Couette-Poiseuille flow;<br />

u(0) = U, u(h) = 0 ⇒ u = U(1 − η) − C η (1 − η),<br />

P6.92 (a) Q = 0.43 m 3 /s (D eff = 337 mm),<br />

(b) p − p a = −6.3 Pa.<br />

P6.107 (a) Q ≈ 7.7 m 3 /h (K 2 ≈ 80); 0.3% more,<br />

(b) Q = 38 m 3 /h; about 5 times more.<br />

1


P6.116 Q = 97 m 3 /h (0.0269 m 3 /s); (V 100 = 3.3 m/s,<br />

V 250 = 2.1 m/s, V 150 = 5.4 m/s).<br />

P6.138 u CL ≃ 47 m/s (V/u CL ≃ 0.848, f ≃ 0.0162).<br />

P6.146 (a) ɛ = 0 ⇒ Q = 21 m 3 /h = 5.7×10 −3 m 3 /s, ( ∑ K =<br />

12.9), (b) D : 1 2 D ⇒ ∆p = 76 kPa (C d = 0.609).<br />

C6.5 (a) b = 20 mm, (b) (h f /L) round = 0.078;<br />

(h f /L) annul,Dh = 0.32; (h f /L) annul,Deff = 0.36,<br />

Chapter 7<br />

P7.26 F a = 2.83F 1 ; F b = 2.0F 1 .<br />

P7.43 (a) U ≈ 34 m/s, (b) δ ≈ 36 mm,<br />

(c) u ≈ 26 m/s.<br />

P7.47 x sep /L = 0.268; Note: (1 − η 2 ) 5 = 1 − 5η 2 + 10η 4 −<br />

10η 6 + 5η 8 − η 10 .<br />

P7.48 x sep /L = 0.158.<br />

P7.50 θ sep = 2.3 ◦ .<br />

P7.59 (a) V 3 + (2V w + V α )V 2 + V 2 wV − (V 3 nw + V α V 2 nw) = 0,<br />

V α = 2C RR /(ρC D A), (b) V ≈ 7.4 m/s, (c) D ∝ V 2<br />

rel .<br />

P7.80 θ ≃ 72 ◦ .<br />

P7.92 d ≈ 3.9 m.<br />

P7.93 Maximal cone angle: θ ≃ 60 ◦ (C D,rod ≃ 1.2).<br />

P7.121 (a) V stall = 15 m/s (z = 1200 m), (b) θ m<strong>in</strong> = 1.6 ◦<br />

(C D∞ = 0.007), (c) glid<strong>in</strong>g distance 44 km.<br />

P7.122 (a) V m<strong>in</strong> = 6.7 m/s, (b) V max = 15.0 m/s (130 hp =<br />

96.9 kW ⇒ V max = 13.5 m/s).<br />

FE7.3 (a) V f = 2.3 m/s.<br />

FE7.5 (c) τ w = 0.016 Pa (NOTE!).<br />

Chapter 8<br />

P8.10 a = 12.7 mm; cavitation appears if U ∞ > 20 m/s.<br />

P8.14 The outer flow is irrotational (l<strong>in</strong>e vortex): p = p ∞ −<br />

ρ ω 2 R 4 /(2r 2 ); <strong>in</strong>ner flow is rotational (rotation like a<br />

solid body): p = p ∞ − ρ ω 2 R 2 + ρ ω 2 r 2 /2; m<strong>in</strong>imum<br />

pressure ar vortex center, p(0) = p ∞ − ρ ω 2 R 2 .<br />

P8.15 (a) p m<strong>in</strong> = p ∞ − ρU 2 max = 97.2 kPa,<br />

(b) p(r = R) = p ∞ − ρU 2 max/2 = 99.3 kPa.<br />

P8.23 V = 11.3 m/s, θ = 44.2 ◦ .<br />

P8.50 h = 3a/2, U max = 5U ∞ /4.<br />

P8.74 Without walls: u = v = K/(2a);<br />

with walls: u = 8K/(15a), v = 4K/(15a).<br />

P8.81 (a) V = a12 1/4 /(C D∞ πAR) 1/4 ; a = √ W/(ρA),<br />

(b) V = 176 m/s.<br />

P8.82 (a) V = 4.5 m/s,<br />

(b) C L = 1.12,<br />

(c) P = 0.41 kW (C D = 0.022).<br />

P8.86 (a) b = 26 m, (b) AR = 8.7, (c) D i = 1.6 kN.<br />

P8.87 (a) C = 0.174 m, (b) P = 1.25 kW,<br />

(c) V = 31.3 m/s (α = −1.9 ◦ ).<br />

P8.88 Thrust per eng<strong>in</strong>e, F = 12.9 kN (α = 3.18 ◦ ).<br />

P8.100 U ∞ = 14.1 m/s ⇒ p(θ = 90 ◦ ) = p v = 2.34 kPa<br />

(cavitation); p A = 115 kPa.<br />

P8.101 (a) V f = 2.0 m/s, (b) t = 0.64 s (approx. +6%).<br />

Chapter 9<br />

P9.28 (a) ṁ = 0.17 kg/s, (b) Ma e = 0.90.<br />

P9.40 (a) Ma 1 = 2.5, (b) A ∗ = 7.6 cm 2 ,<br />

(c) ṁ = 1.3 kg/s, (d) Ma 2 = 1.5.<br />

P9.55 (a) p 2 = 261 kPa, (b) p 3 = 302 kPa,<br />

(c) A ∗ 2 = 16.5 cm 2 , (d) Ma 3 = 0.34.<br />

P9.60 Ma 1 = 1.92; V 1 = 585 m/s<br />

P9.63 (a) p 3 = 59 kPa, (b) ṁ = 0.024 kg/s.<br />

P9.82 V e ≃ 110 m/s; after shock: Ma 2 = 0.67.<br />

P9.89 (a) ∆p = 125 kPa, (b) ∆p = 88 kPa, (c) L ∗ 1 = 33 m.<br />

P9.90 (a) ṁ = 0.764 kg/s, (b) ṁ = 0.591 kg/s,<br />

(c) ṁ = 0.314 kg/s.<br />

P9.91 (a) Ma 1 = 0.30, (b) p = 1.03 MPa.<br />

P9.99 Adiabatic flow: ṁ = 0.26 kg/s (f = 0.0142).<br />

P9.107 (a) q = 0.58 MJ/kg, (b) Ma 2 = 0.71,<br />

(c) T 2 ≃ 733 K.<br />

P9.108 New Mach number, Ma 1 = 0.20; ṁ new /ṁ old = 0.68.<br />

P9.109 (a) D e = 0.74 m, (b) V e ≃ 508 m/s,<br />

(c) F ≃ 23 kN (V i ≪ V e , p i = p e ).<br />

P9.141 Exact: Ma 2 = 3.274; p 2 = 66.7 kPa;<br />

l<strong>in</strong>ear theory: p 2 = 61 kPa.<br />

P9.142 (a) Ma = 2.64, p = 60.3 kPa, (b) weak shock:<br />

Ma = 2.30, p = 32.5 kPa; strong: Ma = 0.522,<br />

p = 74.0 kPa.<br />

Chapter 10<br />

P10.17 Q = 5.2 m 3 /s (n = 0.015).<br />

P10.19 y < 1.025 m (n = 0.022).<br />

P10.22 S o = 0.38 m/km ↔ 0.022 ◦ (n = 0.014).<br />

P10.49 Subcritical flow <strong>in</strong> both cases (y c < y n );<br />

b = 4 ft ⇒ y c = 4.7 ft < y n = 9.3 ft;<br />

b = 8 ft ⇒ y c = 3.0 ft < y n = 4.1 ft.<br />

P10.59 (a) V 2 = 1.13 m/s,<br />

(b) q = 0.566 m 2 /s (Fr 1 = 0.37).<br />

P10.73 q = 0.46 m 2 /s; y 2 = 0.092 m (Fr 2 = 5.6).<br />

P10.84 y 2 = 0.25 m, y 3 = 1.56 m, h f /E 1 = 47%.<br />

P10.95 (a) V 4 = 2.6 m/s, (b) y 4 = 20 cm,<br />

(c) V 1 = 3.1 m/s, (d) y 1 = 16.5 cm.<br />

Christ<strong>of</strong>fer Norberg<br />

tel. +46-46-2228606<br />

Department <strong>of</strong> Energy Sciences<br />

Lund Institute <strong>of</strong> Technology, Sweden<br />

Christ<strong>of</strong>fer.Norberg@energy.lth.se<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!