04.03.2015 Views

CTF Impacts on Soil Biology - Pauline Mele , Dept of ... - ACTFA

CTF Impacts on Soil Biology - Pauline Mele , Dept of ... - ACTFA

CTF Impacts on Soil Biology - Pauline Mele , Dept of ... - ACTFA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

C<strong>on</strong>trolled traffic farming - likely resp<strong>on</strong>ses & benefits<br />

for soil biota<br />

First Internati<strong>on</strong>al <str<strong>on</strong>g>CTF</str<strong>on</strong>g> C<strong>on</strong>ference<br />

<str<strong>on</strong>g>CTF</str<strong>on</strong>g>2013 25 - 27 February 2013<br />

Toowoomba Queensland


C<strong>on</strong>tent<br />

<strong>Soil</strong> Biota: much more than a numbers game<br />

The soil as a physical & chemical habitat<br />

C<strong>on</strong>trolled traffic farming: likely impacts <strong>on</strong> soil biota<br />

Opportunities for future work


Numbers<br />

………...in 1 gram <strong>of</strong> soil:<br />

• 10,000 - 50,000 species<br />

• 100-1000ug microbial biomass<br />

C; 4-45 t ha -1 !<br />

• 5-200 ug DNA; 1,598 km l<strong>on</strong>g!<br />

• > 1 milli<strong>on</strong> genes for N,C, P<br />

cycle, antibiotic producti<strong>on</strong> &<br />

pesticide degradati<strong>on</strong><br />

Nature Reviews Microbiology 9, 628 (September 2011) |


Numbers & size…..<br />

Group Comm<strong>on</strong> name Av Size Range Abundance (g soil)<br />

Micr<strong>of</strong>lora<br />

Viruses<br />

Bacteria<br />

50-100nm<br />

0.02-5µm<br />

10 10-20<br />

10 8-9<br />

Archaea<br />

0.5-3µm<br />

10 6-8<br />

Fungi<br />

2µm-1m<br />

10 4-6<br />

Micr<strong>of</strong>auna<br />

Protozoa<br />

5-200µm<br />

10 3-4<br />

Nematodes<br />

10µm-2mm<br />

10 2-3<br />

Mes<strong>of</strong>auna<br />

Collembola<br />

250µm-2mm<br />

10 2-3<br />

Mites<br />

100µm-2mm<br />

10 1-2<br />

Macr<strong>of</strong>auna<br />

Earthworms<br />

Beetles<br />

2mm-200mm<br />

(visible)<br />

.1-.5<br />

.1-.5<br />

Ants<br />

.2.-.4<br />

Termites<br />

.2-.5


=0.5mm


Microbial …in a teaspo<strong>on</strong> Community pr<strong>of</strong>iles<br />

(c<strong>on</strong>venti<strong>on</strong>ally tilled cropping soil)<br />

Unknown<br />

Other sequences<br />


Microbial life & side benefits <br />

Nutrient foraging <br />

Self preserva8<strong>on</strong>


nutrient foraging <br />

Extracellular enzyme producti<strong>on</strong><br />

P cycle: phosphatases & phytases<br />

C cycle: phenol oxidases (laccases),<br />

peroxidases & dehydrogenases,<br />

methane m<strong>on</strong>ooxygenase<br />

N cycle: amm<strong>on</strong>ia<br />

m<strong>on</strong>ooxygenases, nitrogenases<br />

Burns et al <strong>Soil</strong> Biol Biochem 2013


Community func8<strong>on</strong>s (bacteria) <br />

Archaea, 1%<br />

(57% MCR)<br />

own 27%<br />

1% MCR)<br />

Crenarchaeota<br />

Deinococcus-Thermus<br />

Spirochaetes<br />

Bacteria 71% Epsil<strong>on</strong>proteobacteria<br />

(51% MCM)<br />

Cyanobacteria<br />

C-cycle<br />

N-cycle<br />

P-cycle<br />

Bioremediati<strong>on</strong><br />

Methanogenesis<br />

Chlor<strong>of</strong>lexi<br />

Planctomycetes<br />

Betaproteobacteria<br />

Gammaproteobacteria<br />

Acidobacteria<br />

Firmicutes<br />

rhizobia <br />

Deltaproteobacteria<br />

Bacteroidetes/Chlorobi<br />

Alphaproteobacteria<br />

Actinobacteria<br />

0 20 40 60 80<br />

<strong>Mele</strong> et al (in preparati<strong>on</strong>)


Side benefits eg Biological N 2 Fixati<strong>on</strong> (BNF)<br />

N 2 Gas <br />

NH 4<br />

+ <br />

example benefit $ value<br />

Symbiotic N-<br />

fixing bacteria<br />

(eg rhizobia)<br />

2.7 Mt N annually;<br />

equivalent to 3.4 Mt<br />

fertiliser N*<br />

4.3B<br />

annually*<br />

N<strong>on</strong> symbiotic<br />

N-fixing<br />

bacteria<br />

Fix between 10–<br />

70kg/ha<br />

(At Av<strong>on</strong>,SA, under an<br />

intensive wheat rotati<strong>on</strong>,<br />

NSNF provided 30–50% <strong>of</strong><br />

the total l<strong>on</strong>g-term N<br />

requirement) Vadakattu pers<br />

comm<br />

20-100/ha<br />

*From: INOCULATING LEGUMES: A PRACTICAL GUIDE (DRAFT)<br />

Ross Ballard, Roz Deaker, Matt Dent<strong>on</strong>, Liz Drew, Greg Gemell, Elizabeth Hartley, David Herridge,<br />

John Howies<strong>on</strong>, Graham O’Hara, Lori Phillips, Nikki Seymour, R<strong>on</strong> Yates, Neil Ballard


Self preserva8<strong>on</strong> <br />

Glycoprotein (Glomalin) producti<strong>on</strong> (green fluorescence)<br />

fungus<br />

bacteria<br />

exopolysaccharides (EPS)<br />

Increases c<strong>on</strong>tact between microbe (fungus and bacterium) and envir<strong>on</strong>ment;<br />

provides a protective shield against predators & dessicati<strong>on</strong>


Side benefits <br />

EPS produc8<strong>on</strong> results in surface <br />

crus8ng reducing wind & water <br />

borne erosi<strong>on</strong> <br />

Hyphal enmeshment & Glomalin <br />

produc8<strong>on</strong> results in aggregate <br />

forma8<strong>on</strong> & beHer structure


Value: Ec<strong>on</strong>omics <strong>of</strong> soil organisms in key processes <br />

Ac-vity <br />

Waste recycling <br />

<strong>Soil</strong> forma8<strong>on</strong> <br />

Nitrogen fixa8<strong>on</strong> <br />

Bioremedia8<strong>on</strong> <strong>of</strong> <br />

chemicals <br />

Biotechnology <br />

Bioc<strong>on</strong>trol <strong>of</strong> pests <br />

Total <br />

World ec<strong>on</strong>omic benefits <strong>of</strong> <br />

biodiversity (x $10 9 / year) <br />

760 <br />

25 <br />

90 <br />

121 <br />

6 <br />

160 <br />

1,162 <br />

Zechmeister et al (pers com)


Basic soil requirements for growth & survival <br />

• Gas exchange (O 2 -­‐CO 2 ) <br />

• Water availability <br />

• Organic maHer (c<strong>on</strong>taining C,N,P) <br />

• Access to organic maHer <br />

• Habitable pore space


‘Habitable pore space’ <br />

• Suggests a relati<strong>on</strong>ship between the size <strong>of</strong> organisms and the<br />

z<strong>on</strong>es <strong>of</strong> soils they are physically able to inhabit (Young & Ritz<br />

2000).<br />

• It relates to size <strong>of</strong> the neck <strong>of</strong> pores enabling water exchange,<br />

providing refuge from predators, and accessibility to food (Elliot<br />

et al 1980)<br />

• Primarily a feature <strong>of</strong> soil texture & also physical disrupti<strong>on</strong> (eg<br />

tillage & wheel traffic)


<strong>Soil</strong> as a physical habitat: <br />

• 3 phases<br />

Solid <br />

Liquid <br />

Gaseous <br />

• Architecture <br />

0.5mm <br />

Network <strong>of</strong> pores <strong>of</strong> <br />

different shapes & sizes: <br />

Highly dependent <strong>on</strong> <br />

texture & compac-<strong>on</strong> <br />

Powerpoint Presenta-<strong>on</strong>: Life from <strong>Soil</strong>, text and images Thomas <br />

Fester, hNp://www.ufz.de


Larger par8cles give larger pores in an iden8cal volume <br />

pores<br />

.2-1.2µm<br />

6-30µm, 30-90µm<br />

Powerpoint Presenta-<strong>on</strong>: Life from <strong>Soil</strong>, text and images Thomas <br />

Fester, hNp://www.ufz.de


<strong>Soil</strong> as a physical habitat: <br />

Biota live in pores <br />

Nematodes >30µm<br />

Bacteria


Young & Ritz (2000) <strong>Soil</strong> & tillage research


Dry soils: <br />

Large pores drain first <br />

Plants wilt <br />

Nematode abundance <br />

declines markedly, <br />

protozoa less so <br />

0.5mm <br />

Bacteria survive in thin <br />

water films in larger pores <br />

>30µm and in water filled <br />

smaller pores (3µm) <br />

Powerpoint Presenta-<strong>on</strong>: Life from <strong>Soil</strong>, text and images Thomas <br />

Fester, hNp://www.ufz.de


Wet soils: <br />

Gas exchange <br />

blocked <br />

O 2 unavailable for <br />

bacterial & fungal <br />

respira8<strong>on</strong> & <br />

mineralisa8<strong>on</strong> <br />

0.5mm <br />

Predators increase: eg <br />

Nematodes & protozoa <br />

Powerpoint Presenta-<strong>on</strong>: Life from <strong>Soil</strong>, text and images Thomas <br />

Fester, hNp://www.ufz.de


Moyano et al <strong>Soil</strong> Biol Biochem 2013


Hassink et al 1993


<str<strong>on</strong>g>CTF</str<strong>on</strong>g>: likely impacts <strong>on</strong> soil biota


Spectrum <strong>of</strong> impacts <strong>on</strong> soil biota<br />

high<br />

low<br />

<strong>Soil</strong> type > climate > crop rotati<strong>on</strong> > tillage/compacti<strong>on</strong>, lime, fertilisers, manures, pesticides,<br />

inoculants<br />

C<strong>on</strong>trolled by<br />

envir<strong>on</strong>ment<br />

C<strong>on</strong>trolled by landholder


<str<strong>on</strong>g>CTF</str<strong>on</strong>g>: supporting evidence <strong>of</strong> impacts<br />

SCOPUS Literature search<br />

Search terms<br />

1986 1996 2002 2005 2007 2008 2009 2010 2011 2012<br />

Years


<str<strong>on</strong>g>CTF</str<strong>on</strong>g>: likely impacts<br />

• Level <strong>of</strong> impact <strong>on</strong> soil structure :<br />

higher<br />

lower<br />

Wheeled tillage >wheeled no-tillage> c<strong>on</strong>trolled traffic no-tillage<br />

• If <str<strong>on</strong>g>CTF</str<strong>on</strong>g> results in better structure (lower bulk density/less compacti<strong>on</strong>)<br />

compared to tillage then it can be assumed that this will also impact <strong>on</strong><br />

microbial properties


Management opti<strong>on</strong>s to increase food supply<br />

More SOC<br />

Organic matter & other <strong>of</strong>fsite additi<strong>on</strong>s (H)<br />

(No tillage & stubble retained & c<strong>on</strong>trolled traffic)<br />

Pasture cropping (M)<br />

(No tillage& stubble retained & c<strong>on</strong>trolled traffic)<br />

Rotati<strong>on</strong> with pasture (H)<br />

(No tillage & stubble retained & c<strong>on</strong>trolled traffic)<br />

C<strong>on</strong>trolled traffic (M)<br />

(No tillage & stubble retained)<br />

No tillage & stubble retained (M)<br />

Reduced tillage (M)<br />

(stubble removed)<br />

Tillage, stubble removed (M)<br />

L<strong>on</strong>g Fallow & Tillage &<br />

Stubble removed (M)<br />

(burnt, grazed/baled)<br />

Less SOC<br />

Figure 1. Cropping practice and relati<strong>on</strong>ship with expected <strong>Soil</strong> Organic Carb<strong>on</strong> levels. C<strong>on</strong>fidence in SOC benefit<br />

based <strong>on</strong> qualitative assessment <strong>of</strong> theoretical & evidentiary lines; L=Low, M=Medium, H=High (adapted from<br />

Sanderman et al 2010, Scott et al 2010 and Murphy et al 2011).


Evidence for organic matter improvements (wheeled no-till vs<br />

wheeled till)<br />

Factor no-­‐-ll vs -ll reference <br />

Substrate quality <br />

& quan8ty <br />

More organic C and Total N <br />

Murphy et al (2011) <br />

Hoyle & Murphy (2011) <br />

C<strong>on</strong>yers et al (2012) <br />

More carbohydrates, amino acids, <br />

alipha8c C & less aroma8c C <br />

Arshad et al (1990), Shulten et al <br />

(1990)


Evidence for structural change (influence <strong>on</strong> protecti<strong>on</strong> and nutrient accessibility)<br />

Factor no-­‐-ll vs -ll reference <br />

Pores <br />

More pores <strong>of</strong> biological origin (eg <br />

earthworms, root channels) <br />

Hendrix et al 1987; Shipitalo & <br />

Protz 1987; Drees et al 1994; <br />

Carter et al 1994; <strong>Mele</strong> & Carter <br />

1999 <br />

Aggregates <br />

More pores 200 µm <br />

Shape differences: round pores <br />

twice as abundant & el<strong>on</strong>gated <br />

pores half as abundant, more <br />

homogeneous (pore shape) <br />

Aggregate sizes have generally been <br />

found to be greater <br />

Bo<strong>on</strong>e et al 1976 <br />

Shipitalo & Protz (1987) <br />

Pagliai & De Nobili (1993) <br />

Drees et al., 1994; Lal et al., <br />

1994


Evidence for biological change<br />

Factor no-­‐-ll vs -ll reference <br />

Access to substrate more Foster 1994 <br />

Microbial biomass more Interna'<strong>on</strong>al: <br />

Doran, 1980, 1987; Lynch and Pan8ng, <br />

1980; McGill et al., 1986; Granastein et <br />

al., 1987; Buchanan and King, 1992 <br />

In Australia: <br />

Haines & Uren 1990 <br />

<strong>Mele</strong> & Carter 1999 <br />

Hoyle & Murphy 2011 <br />

Decomposer fungi more Coleman 1994 <br />

Fungal c<strong>on</strong>tribu8<strong>on</strong> to the <br />

forma8<strong>on</strong> & stabilisa8<strong>on</strong> <strong>of</strong> <br />

aggregates* <br />

more <br />

Beare et al., 1992 <br />

Decomposer bacteria less Coleman 1994 <br />

Earthworms more Atlanvinyte, 1964; Parmelee et al., 1990; <br />

Francis & Knight, 1993; Fraser, 1994, <br />

Baker et al 2006, <strong>Mele</strong> & Carter 1999 <br />

Nitrifiers more Murphy pers com


Microbial biomass carb<strong>on</strong> at six paired new land/old land <br />

sites in Queensland, Australia <br />

Site and loca8<strong>on</strong> <br />

Microbial biomass (ug C g-­‐1 soil) <br />

New land <br />

Old land <br />

Tully 591 (155)* 357 (45) <br />

Costanzo 590 (279) 519 (295) <br />

Harney 192 (20) 216 (11) <br />

For8ni 372 (57)*** 125 (14) <br />

Ingham 732 (73)*** 313 (65) <br />

Kalamia 336 (134)* 160 (70) <br />

Pankhurst et al 2003


New opportunities<br />

• <str<strong>on</strong>g>CTF</str<strong>on</strong>g> should support the ‘op8mal range <strong>of</strong> biological func8<strong>on</strong>s’ for a given <br />

soil type (texture class); this should be quan8fied: <br />

• design a 4-­‐D (8me is the 4 th ) framework that links the biological func8<strong>on</strong>s <br />

opera8ng in the pore space (µm) to the field space (m) <br />

-­‐eg underground maps linked to <br />

• ensure that the physical chemical and biological measures used for <br />

interpre8ng the impact <strong>of</strong> <str<strong>on</strong>g>CTF</str<strong>on</strong>g> are taken at the same scale; the scale <br />

dependency <strong>of</strong> measures o8en means we are comparing apples with oranges that <br />

d<strong>on</strong>’t progress mechanis'c understanding related to impacts <strong>of</strong> <str<strong>on</strong>g>CTF</str<strong>on</strong>g> <br />

-­‐ eg the scale at which moisture and physical proper8es measured is <br />

different to scales at which microbial ac8vity occurs


New opportunities<br />

• Tools are available for assessing soil biota and are already <br />

being applied across several industries (GRDC, SRDC, DA, <br />

-­‐ DNA extrac8<strong>on</strong>& sequencing technology is now cheaper than <br />

ever! <br />

• M<strong>on</strong>itoring frameworks are in place: <br />

www.soilquality.org.au <br />

www.bioplanorms.com.au/special-­‐ini8a8ves/envir<strong>on</strong>ment/soil-­biodiversity


BASE: Biome <strong>of</strong> Australian soils<br />

Agricultural sites <br />

Na8<strong>on</strong>al/state park sites <br />

http://www.bioplatforms.com.au/special-initiatives/envir<strong>on</strong>ment/soil-biodiversity


Further informati<strong>on</strong><br />

Know where to find further informa8<strong>on</strong>. <br />

• hHp://www.soilquality.org.au <br />

• hHp://www.bioplanorms.com.au/special-­‐ini8a8ves/envir<strong>on</strong>ment/soil-­biodiversity<br />

<br />

GRDC <strong>Soil</strong> <strong>Biology</strong> Ini8a8ve-­‐II (2009-­‐2014) <br />

• hHp://www.grdc.com.au/soilbiology

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!