03.03.2015 Views

Total Internal Reflection Fluorescence (TIRF ... - TeachLine

Total Internal Reflection Fluorescence (TIRF ... - TeachLine

Total Internal Reflection Fluorescence (TIRF ... - TeachLine

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Total</strong> <strong>Internal</strong> <strong>Reflection</strong> <strong>Fluorescence</strong><br />

(<strong>TIRF</strong>) microscopy in cell biology.<br />

QuickTime and a<br />

Animation decompressor<br />

are needed to see this picture.<br />

Uri Ashery<br />

Department of Neurobiochemistry, Wise Faculty of life Sciences,<br />

Tel Aviv University, Tel Aviv,<br />

Israel<br />

Ofer Yizhar, Irit Gottfried, Orly Raviv, Barak Rotblat


<strong>Total</strong> <strong>Internal</strong> <strong>Reflection</strong> <strong>Fluorescence</strong><br />

(<strong>TIRF</strong>) microscopy in cell biology.<br />

• Principles of the technique<br />

• Configuration of the microscope<br />

• Examples:<br />

• Vesicle trafficking and fusion<br />

•Analysis<br />

• Structure of receptors<br />

• Endocytosis<br />

•Intracellular signaling<br />

• Advantages disadvantages


<strong>Total</strong> <strong>Internal</strong> <strong>Reflection</strong> <strong>Fluorescence</strong><br />

(<strong>TIRF</strong>) microscopy in cell biology.<br />

Optical technique that restricts the excitation and detection<br />

of a fluorophores to a thin region of the specimen.<br />

• Allows direct visualization and detection of sub-membrane<br />

events:<br />

• movement and fusion of single vesicles<br />

• conformational dynamics of single ion channels and receptors<br />

• translocation of proteins to and from the plasma membrane<br />

• protein-protein interaction at the plasma membrane<br />

• cell adhesion processes


Synaptic transmission is carried out by fusion<br />

of neurotransmitter-containing vesicles<br />

Molecular mechanisms of vesicle exocytosis and endocytosis:<br />

<strong>TIRF</strong> allows direct visualization of single vesicles<br />

(movement, transport, fusion and recycling in an intact cell)<br />

NT-containing<br />

vesicles<br />

Pre-synaptic<br />

Post-synaptic


The synaptic vesicle cycle<br />

Docking<br />

Priming<br />

Fusion-competent<br />

Ca 2+<br />

Ca 2+<br />

Plasma membrane


The synaptic vesicle cycle<br />

Endocytosis<br />

Plasma membrane


The chromaffin cell - a model system for neuroexocytosis:<br />

Chromaffin cells secrete adrenaline into the<br />

blood stream<br />

What’s inside<br />

Chromaffin cell<br />

1µm


<strong>Total</strong> <strong>Internal</strong> <strong>Reflection</strong> <strong>Fluorescence</strong> (<strong>TIRF</strong>) or<br />

Evanescent-Wave <strong>Fluorescence</strong> Microscopy<br />

Refracted<br />

laser beams<br />

A cell (specimen):<br />

low refraction index<br />

Glass coverslip:<br />

high refraction index<br />

Evanescent<br />

field<br />

200-300 nm.<br />

Reflected<br />

laser beam<br />

Incident<br />

angle<br />

Incident<br />

angle<br />

Laser beams<br />

(various angles)<br />

- - -<br />

Objective


QuickTime and a<br />

TIFF (Uncompressed) decompressor<br />

are needed to see this picture.<br />

.


<strong>Total</strong> <strong>Internal</strong> <strong>Reflection</strong> <strong>Fluorescence</strong> (<strong>TIRF</strong>) or<br />

Evanescent-Wave <strong>Fluorescence</strong> Microscopy<br />

A cell filled with fluorescently labeled vesicles<br />

Glass coverslip<br />

Evanescent<br />

field<br />

200-400 nm.<br />

fluorescence


Chromaffin cell<br />

Epi-fluorescence<br />

<strong>TIRF</strong>


•Snell’s law: n1sinQ1=n2SinQ2<br />

•Critical angle Qc (Q1), Q2=90 o and (sin 90 o =1)<br />

•n1sinQc=n2<br />

•Qc=sin -1 (n2/n1)<br />

•Qc= sin -1 (1.5/1.36)<br />

•Qc=63.8 o<br />

•wide objectives<br />

n1 high refraction index<br />

n1=1.51 (Immersion Oil)<br />

Q2<br />

Q2=90<br />

n2 low refraction index; n2=1.36<br />

Q1 Qc<br />

n1>n2<br />

Evanescent<br />

field<br />

100-200 nm.<br />

Incident<br />

angle > Qc<br />

Immersion<br />

Oil<br />

Objective<br />

Qc: critical angle


Air n=1.00, water n=1.33, Cytosol n=1.36-1.38, Immersion oil<br />

n=1.51<br />

Thus Objective NA must be > 1.4; NA=1.45; one uses 10% of <strong>TIRF</strong><br />

The numerical aperture of a microscope objective is a measure<br />

of its ability to gather light and resolve fine specimen detail at a<br />

fixed object distance.<br />

Numerical Aperture (NA )= n(sin m)<br />

n is the refractive index of the imaging medium<br />

m=A/2<br />

http://www.micro.magnet.fsu.edu/primer/java/tirf/penetration/index.htmlhttp://www.micro.magnet.fsu.edu/primer/java/tirf/highnaobjective/index.htm


Decay of the evanescence field<br />

Evanescent<br />

field<br />

100-200 nm.<br />

1<br />

Excitation Relative Excitation energy Energy (relative)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

E = C×e − z τ<br />

C = Constant<br />

z = Distance from membrane<br />

τ = Extinction coefficient<br />

(penetration depth of the<br />

evanescence field<br />

0<br />

0 200 400 600 800 1000<br />

Distance from interface (nm)<br />

Chromaffin vesicle<br />

Distance from interface (nm)


Decay of the evanescence field<br />

1<br />

Excitation Relative Excitation energy Energy (relative)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

E = C × e − z τ<br />

C = Constant<br />

z = Distance from membrane<br />

τ = Extinction coefficient<br />

0<br />

0 200 400 600 800 1000<br />

Distance from interface (nm)<br />

Chromaffin vesicle<br />

Distance from interface (nm)<br />

http://www.micro.magnet.fsu.edu/primer/java/tirf/penetration/index.html


QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture.<br />

I(z) = I(o)e -z/d<br />

d = λ/4 p• (n(1) 2sin 2q(1) - n(2) 2)-1/2<br />

Have a look at this web address for more details<br />

http://www.micro.magnet.fsu.edu/primer


Types of <strong>TIRF</strong> microscopes


Objective type <strong>TIRF</strong>; Prism lesss (inverted microscope)<br />

Objectives:<br />

APO100XOHR<br />

(NA 1.65)<br />

PLAPO60XO<strong>TIRF</strong>M<br />

(NA1.45)


http://www.micro.magnet.fsu.edu/primer/java/tirf/tirfalign/index.html<br />

Laser<br />

CCD<br />

http://www.micro.magnet.fsu.edu/primer/java/tirf/tirfalign/index.html


Prism type <strong>TIRF</strong> (upright microscope)<br />

Benefit of the prism <strong>TIRF</strong>M<br />

By varying the angle of the laser beam, one can<br />

modulates the penetration depth.


•Examples:<br />

• Vesicle trafficking and fusion<br />

• Structure of receptors<br />

•Endocytosis<br />

•Cellular signaling


Evanescent-Wave <strong>Fluorescence</strong> Microscopy<br />

The synaptic vesicle cycle<br />

NT uptake<br />

Docking<br />

Priming<br />

Fusion-competent<br />

Ca 2+<br />

Ca 2+<br />

Plasma membrane<br />

Allows direct visualization of number of docked vesicles, fraction of<br />

fusion-competent vesicles and vesicles transport in an intact cell.


Staining chromaffin vesicles<br />

with fluorescent proteins<br />

• Acidic dyes (Acridine Orange, Lysotracker)<br />

• Vesicular proteins:<br />

– Membrane<br />

– Lumen<br />

Electroporation<br />

NPY-mRFP<br />

Endocytotic dyes


What’s it good for?<br />

Epi-fluorescence<br />

<strong>TIRF</strong><br />

QuickTime and a<br />

YUV420 codec decompressor<br />

are needed to see this picture.<br />

5Hz recording, 20Hz playback


Filtering images for better contrast<br />

C<br />

D<br />

3 steps filtering


Identification of individual vesicles<br />

Peak intensity<br />

Half-width


Identification of individual vesicles<br />

Y<br />

X<br />

Z


Information derived from image sequences:<br />

• X/Y position – By fitting the intensity distribution with a<br />

gaussian curve, finding the location of the peak<br />

• Z position – indicated by peak intensity


Tracking single vesicles:


Tracking vesicle motion<br />

Data from tracking single vesicle<br />

Peak intensity<br />

6<br />

4<br />

2<br />

0 5 10 15<br />

QuickTime and a<br />

YUV420 codec decompressor<br />

are needed to see this picture.<br />

X (µm)<br />

10.9<br />

10.7<br />

10.5<br />

0 5 10 15 20<br />

Y(µm)<br />

6.4<br />

6.2<br />

5Hz recording, 20Hz playback<br />

6<br />

0 5 10 15 20<br />

Time (s)


Tracking vesicle motion<br />

3-D trajectory of a single vesicle 3-D reconstruction of vesicle trajectories<br />

QuickTime and a<br />

YUV420 codec decompressor<br />

are needed to see this picture.


Synaptic transmission is carried out by fusion<br />

of neurotransmitter-containing vesicles<br />

Molecular mechanisms of vesicle exocytosis and endocytosis:<br />

NT-containing<br />

vesicles<br />

Pre-synaptic<br />

Post-synaptic


Tomosyn inhibits exocytosis<br />

Tomosyn doesn’t inhibit docking<br />

Control cell<br />

Tomosyn cell<br />

600<br />

exocytosis<br />

∆Cm (fF)<br />

400<br />

200<br />

Tomosyn inhibits vesicle priming<br />

control<br />

tomosyn<br />

0<br />

Control<br />

Tomosyn


EM Analysis of Vesicle Distribution With Tomosyn<br />

Overexpression<br />

Control cell<br />

Tomosyn cell<br />

Docked Primed Fusion-Competent<br />

Can we define physically primed vesicle?


Calculation of vesicle mobility<br />

MSD plot<br />

Diffusion constant<br />

-4 2<br />

D=1.65×10 (µm /sec)<br />

0.5<br />

-3 2<br />

D=1.39×10 (µm /sec)<br />

0.5<br />

Vesicle<br />

Diameter<br />

(~200nm)<br />

∆Y(µm)<br />

Y (µm)<br />

0<br />

∆Y(µm)<br />

Y (µm)<br />

0<br />

-0.5<br />

-0.5 0 0.5<br />

X (µm)<br />

∆X (µm)<br />

-0.5<br />

-0.5 0 0.5<br />

X (µm)<br />

∆X (µm)


In untreated cells, ~50% of membraneproximal<br />

vesicles are immobilized<br />

Distribution of vesicle diffusion coefficients in untreated cells:<br />

100<br />

% of Vesicles<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

Y (µm)<br />

0.5<br />

0<br />

Immobilized<br />

Pool<br />

-0.5<br />

-0.5 0 0.5<br />

X (µm)<br />

20<br />

10<br />

0<br />

5.0E-04<br />

1.0E-03<br />

1.5E-03<br />

2.0E-03<br />

2.5E-03<br />

3.0E-03<br />

3.5E-03<br />

4.0E-03<br />

4.5E-03<br />

5.0E-03<br />

5.5E-03<br />

6.0E-03<br />

2<br />

D (µm /sec)


Studying the roles of synaptic proteins<br />

through vesicle mobility<br />

Tomosyn reduces the population of immobilized vesicles<br />

Is this immobile pool represent ready-to-fuse vesicles?<br />

Yizhar et al.


Studying the roles of synaptic proteins<br />

through vesicle mobility; vesicle fusion<br />

QuickTime and a<br />

YUV420 codec decompressor<br />

are needed to see this picture.<br />

10Hz recording, 20Hz playback<br />

Do we measure fusion or undocking?


pH-sensitive green fluorescent protein<br />

(pHluorin) fused to Synatpobrevin<br />

(SynaptopHluorin)<br />

Exocytosis relieves the proton-dependent<br />

quenching of ecliptic-pHluorin<br />

fluorescence


Dual color <strong>TIRF</strong> imaging of NPY-mRFP and SynaptopHluorin


Diffusion constants of vesicles<br />

immediately before fusion<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

80% of pre-fusion vesicles are immobilized<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.5<br />

0<br />

-0.5<br />

-0.5 0 0.5<br />

X (µm)<br />

Immobilization<br />

Precede Vesicle Fusion<br />

and Might be Correlated with<br />

Priming<br />

0.2<br />

0.1<br />

0<br />

5.0E-04<br />

1.0E-03<br />

1.5E-03<br />

2.0E-03<br />

2.5E-03<br />

3.0E-03<br />

3.5E-03<br />

4.0E-03<br />

4.5E-03<br />

5.0E-03<br />

5.5E-03<br />

6.0E-03<br />

6.5E-03<br />

7.0E-03<br />

7.5E-03<br />

8.0E-03<br />

8.5E-03<br />

9.0E-03<br />

9.5E-03<br />

1.0E-02<br />

Y (µm)<br />

5.0E-04<br />

1.0E-03<br />

1.5E-03<br />

2.0E-03<br />

2.5E-03<br />

3.0E-03<br />

3.5E-03<br />

4.0E-03<br />

4.5E-03<br />

5.0E-03<br />

5.5E-03<br />

6.0E-03<br />

Vesicle D (µM 2 /s)<br />

Yizhar et al.


Exocytosis of single synaptic vesicles (diameter 50nm) in<br />

Retinal bipolar neurons<br />

QuickTime and a<br />

Animation decompressor<br />

are needed to see this picture.<br />

QuickTime and a<br />

Animation decompressor<br />

are needed to see this picture.<br />

Zenisek, Steyer, Almers 2000


Hot spots for exocytosis in Retinal bipolar neurons<br />

Zenisek, Steyer, Almers 2000


Exocytosis of different pools of vesicles in Retinal bipolar<br />

neurons<br />

Zenisek, Steyer, Almers 2000


Conformational rearrangements associated with the gating of G<br />

protein-coupled Potassium channel<br />

Spectroscopic Measurements of FRET under <strong>TIRF</strong><br />

Microscopy<br />

Inbal Riven , Eli Kalmanzon , Lior Segev , and Eitan Reuveny<br />

Neuron, Vol 38, 225-235, 24 April 2003


Spectroscopic Measurements of FRET under <strong>TIRF</strong> Microscopy<br />

FRET Efficiencies Change during Channel Gating<br />

Inbal Riven , Eli Kalmanzon , Lior Segev , and Eitan Reuveny<br />

Neuron, Vol 38, 225-235, 24 April 2003


A Model Representing the Possible Rearrangement of<br />

the N- and C-Terminal Cytosolic Domains during<br />

Channel Gating<br />

Since FRET efficiency depends heavily on the distance between<br />

the donor and the acceptor (R 6 th power dependence) one can<br />

estimate distances between subunits.<br />

fluorescence resonance energy transfer (FRET)<br />

Inbal Riven , Eli Kalmanzon , Lior Segev , and Eitan Reuven<br />

Neuron, Vol 38, 225-235, 24 April 2003


Clathrin mediated endocytosis<br />

Clathrin: coat assembly<br />

Dynamin: GTPase activity is needed for pinching off<br />

Slepnev and De Camilli 2000


Tracking endocytosis with <strong>TIRF</strong><br />

Merrifield et al, Almers 2002<br />

Santini and Keen 2002


Merrifield et al, Almers 2002<br />

Santini and Keen 2002


The role of Huntingtin interacting protein (HIP1) in<br />

clathrin mediated endocytosis<br />

PIP 2 Binding AP2 Binding Actin Binding<br />

218 604<br />

Slepnev and De Camilli 2000


The role of HIP1 in clathrin mediated endocytosis<br />

EpiFluorescense<br />

<strong>TIRF</strong>M<br />

Clathrin-EGFP<br />

HIP218-EGFP<br />

Gottfried et al.


Behavior of HIP1 and clathrin in live cos7 cells<br />

HIP218<br />

Clathrin<br />

QuickTime and a<br />

YUV420 codec decompressor<br />

are needed to see this picture.


Kinetic analysis of HIP and clathrin clusters<br />

60<br />

HIP(218-604)<br />

HIP 218-604<br />

60<br />

Clathrin<br />

clathrin<br />

Life Time<br />

No. of vesicle<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

N=160<br />

10 30 50 70 90 110 130 150 170 190 210 230 250<br />

No. of Vesicle<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

N=138<br />

10 30 50 70 90 110 130 150 170 190 210 230 250<br />

Life Tim e (se c)<br />

Life Time (sec)<br />

HIP1(218-604) Mobility<br />

Clathrin Mobility<br />

50<br />

50<br />

Mobility<br />

No. of Vesicles<br />

40<br />

30<br />

20<br />

10<br />

No. of Vesicles<br />

40<br />

30<br />

20<br />

10<br />

0<br />

10 20 30 40 50 60 70 80 90 100 110 120 130 More<br />

Averaged Point to Point Velocity (nm/sec)<br />

0<br />

10 20 30 40 50 60 70 80 90 100 110 120 130 More<br />

Averaged Point to Point Velocity (nm/sec)<br />

HIP avg 8-12 Sec.<br />

Clathrin avg 8-12 Sec.<br />

Intensity<br />

<strong>Fluorescence</strong> Intensity (A.U)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

N=32<br />

2 4 6 8 10 12<br />

<strong>Fluorescence</strong> Intensity (A.U)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

N=30<br />

2 4 6 8 10 12<br />

Time (sec)<br />

Time (sec)


Dual-View Imaging<br />

Clathrin-dsRed<br />

HIP218-EGFP<br />

Merge<br />

These quantitative and simultaneous measurements of<br />

clathrin and HIP1 will indicate if HIP1 precedes or<br />

follows clathrin recruitment to the CP or if it functions<br />

after the formation of coated vesicles.<br />

QuickTime and a<br />

decompressor<br />

are needed to see this picture.<br />

QuickTime and a<br />

decompressor<br />

are needed to see this picture.<br />

QuickTime and a<br />

decompressor<br />

are needed to see this picture.


Identification of a new cytoplasmic nanoparticle, the<br />

rasosome, as a carrier of multiple Ras molecules and its<br />

signals<br />

Rotblat et al. 2006


<strong>Total</strong> <strong>Internal</strong> <strong>Reflection</strong> <strong>Fluorescence</strong><br />

(<strong>TIRF</strong>) microscopy in cell biology.<br />

• Focus on an optical section at least 5 times thinner<br />

than confocal microscope, as fluorophores above<br />

100-200nm range will not be excited.<br />

• Z resolution on the nenometric scale by variation<br />

of the evanescent field depth.<br />

– Elimination of background fl. From outside of the focal<br />

plane--->improved signal to noise ratio<br />

– Improved spatial resolution


<strong>Total</strong> <strong>Internal</strong> <strong>Reflection</strong> <strong>Fluorescence</strong><br />

(<strong>TIRF</strong>) microscopy in cell biology.<br />

– Applications:<br />

– Imaging of minute structures or single molecules<br />

– Monitoring the interaction between intracellular protein<br />

and the substratum, focal adhesions<br />

– Vesicle translocation, docking, fusion and endocytosis<br />

– Monitoring protein-protein interaction by FRET<br />

– Characterization of force extracted on the substratum<br />

during cell motility<br />

•<strong>TIRF</strong> is fast non-invasive non destructive, sensitive and versatile technique<br />

•Can be added to conventional microscopes


<strong>Total</strong> <strong>Internal</strong> <strong>Reflection</strong> <strong>Fluorescence</strong><br />

(<strong>TIRF</strong>) microscopy in cell biology:<br />

• Restricted to one section<br />

• Problems:<br />

1. Variable vesicle fluorophore content<br />

2. Membrane adherence to glass<br />

Drawbacks<br />

3. Uncertainty of evanescent field within cytosol<br />

• Expression of fluorescent proteins or staining of<br />

vesicles in neurons/primary cultures (pSFV,<br />

elecroporation).<br />

• Analysis software/procedure for vesicle movements<br />

• CCD detectors: spatial and time resolution


Many thanks<br />

Orly Raviv<br />

Dragoslav Zikich<br />

Adam Grundland<br />

Ofer Yizhar<br />

Aviv Mezer<br />

Reut Frierdrich<br />

Irit Gottfried<br />

Rely Melamed<br />

Naama Zabari<br />

Uri Nili<br />

Noa Bilopolski<br />

Uri Ashery<br />

Keren Sirota

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!