02.03.2015 Views

Robert Coskey, Rose Exploration - Tight Oil From Shale Plays World ...

Robert Coskey, Rose Exploration - Tight Oil From Shale Plays World ...

Robert Coskey, Rose Exploration - Tight Oil From Shale Plays World ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Amerada Petroleum<br />

H. O. Bakken No 1<br />

12-157N-95W<br />

1951<br />

Bakken and Niobrara<br />

<strong>Plays</strong><br />

A Geologic Comparison<br />

<strong>Robert</strong> J. <strong>Coskey</strong><br />

<strong>Rose</strong> <strong>Exploration</strong>, Inc.<br />

<strong>Tight</strong> <strong>Oil</strong> from <strong>Shale</strong> <strong>Plays</strong><br />

<strong>World</strong> Congress 2011<br />

January- 31 st - February 1 st 2011


QEP Energy<br />

Borie 16-4H<br />

04-13N-68W<br />

2010<br />

Bakken & Niobrara<br />

Compared<br />

Discussion Topics<br />

‘Paleo’ <strong>Plays</strong><br />

‘Neo’ <strong>Plays</strong><br />

Geochemical Comparison<br />

Why is the Bakken Different?<br />

Stratigraphic Comparison<br />

Will These <strong>Plays</strong> Work?


The Paleo-Bakken Play<br />

Pre-1990<br />

Antelope<br />

Bicentennial<br />

Elkhorn Ranch<br />

Mondak<br />

McGregor<br />

Hay Draw<br />

Four Eyes<br />

Buckhorn<br />

Devil’s Pass<br />

Rough Rider<br />

Pierre Creek<br />

Lost Bridge<br />

Stoneview


The Paleo-Niobrara Play<br />

Pre-1990<br />

Tow Creek<br />

Buck Peak<br />

Berthold<br />

Loveland<br />

Boulder(?)<br />

Teapot Dome<br />

Silo<br />

Rangely<br />

Puerto Chiquito


The Paleo-Bakken Play<br />

153N<br />

Antelope Field<br />

Disc: 1953<br />

152N<br />

95W<br />

‘Good’<br />

Sanish well<br />

Top Bakken Structure<br />

Modified from Murray, 1968<br />

94W


The Paleo-Niobrara Play<br />

Buck Peak Field<br />

Disc: 1956<br />

89W<br />

6N<br />

Top Niobrara Structure<br />

Modified from Vincelette and Foster, 1992


The Paleo-Niobrara Play<br />

Rangely Field<br />

Niobrara Disc: 1901<br />

‘Niobrara’ Prod ~14 MM BO<br />

Top Niobrara Structure<br />

Modified from Vincelette and Foster, 1992


The Paleo-Niobrara Play<br />

Silo Field<br />

Disc: 1981<br />

Hybrid Development Process<br />

~1990<br />

New Horizontal<br />

Drilling 2010<br />

St Mary Land 1-19H (2010)<br />

IP: 1,075 BOEPD<br />

Aug 2010: 500 BOPD<br />

>50,000 BO in 9 months Stone Energy B-3 (1983)<br />

IP: 37 BOPD<br />

Total Prod: 2,370 BO<br />

Abandoned<br />

Vertical<br />

Drilling<br />

Horizontal<br />

Drilling<br />

Modified from Sonnenberg and Weimer, 1993


The Paleo-Niobrara Play<br />

Rangely (CO)<br />

Vincelette & Foster, 1992<br />

Buck Peak (CO)<br />

Production is Isolated<br />

to areas of<br />

Structural Deformation<br />

Silo (WY)<br />

Vincelette & Foster, 1992


The Paleo <strong>Plays</strong><br />

Structural Styles<br />

• Folded anticlines<br />

• Plunging structural noses<br />

• Faulted anticlines<br />

• Monoclinal dip changes<br />

• Cross-folded monoclines<br />

• Homoclinal dip<br />

Murray, 1968<br />

The game was to look for curvature anomalies


The ‘Neo’ <strong>Plays</strong><br />

Incomplete Petroleum Systems?<br />

• High quality source rocks<br />

• Appropriate thermal history<br />

• Adjacent porous & brittle lithologies<br />

• Minimal tectonic fractures and faults<br />

• Abundant generative fractures<br />

• Absence of effective carrier beds


Niobrara Formation TOC<br />

Measured Total Organic Carbon (TOC)<br />

Adjust to Original TOC<br />

~5%<br />

3%<br />

Cornford, 1994


Bakken <strong>Shale</strong> TOC<br />

Measured Total Organic Carbon (TOC)<br />

Present-Day<br />

Upper <strong>Shale</strong> Only<br />

Shift to higher<br />

Initial TOC<br />

Maturity Increasing<br />

Upper Bakken <strong>Shale</strong><br />

TOC vs Tmax<br />

Classed by HI<br />

Immature<br />

15-22 wt% TOC<br />

Mature<br />

8-12 wt% TOC


Niobrara & Bakken <strong>Shale</strong>s Compared<br />

Niobrara<br />

TOCs<br />

All Maturities<br />

Bakken<br />

TOCs


Niobrara<br />

Rock-Eval Parameters<br />

Comparison<br />

Bakken<br />

TOC<br />

S2<br />

Rock-Eval S1 TOC Cross-over<br />

indicates ‘migrated oil’<br />

S1/TOC<br />

S2<br />

S1/TOC<br />

TOC


Niobrara vs Bakken HI/OI<br />

Niobrara<br />

DJ Basin<br />

HI = Hydrogen Index<br />

OI = Oxygen Index<br />

Upper Bakken<br />

Williston Basin<br />

Beecher Island<br />

Biogenic gas<br />

Parshall Field<br />

<strong>Oil</strong><br />

Silo Field<br />

<strong>Oil</strong><br />

Maturation<br />

Paths<br />

Wattenberg Field<br />

Gas-condensate


Niobrara Burial History & <strong>Oil</strong> Generation<br />

Davis <strong>Oil</strong> 1 Berry<br />

nw sw 13-16N-66W<br />

Depth (ft)<br />

Burial History<br />

Plot<br />

Tertiary<br />

Pierre Sh<br />

Niobrara<br />

Generation Potential<br />

210 BO/Ac-ft<br />

150+/- ft shale<br />

~20 MMBO/Sq Mile<br />

Time (BpMa)<br />

Time (BpMa)<br />

Landon, et al, 2001


Bakken Burial History & <strong>Oil</strong> Generation<br />

California Co. Arthur L Thorp 1<br />

nw ne 13-148N-98W<br />

Depth (ft)<br />

Bakken<br />

<strong>Oil</strong> Generated<br />

Hydrogen Index<br />

Generated <strong>Oil</strong><br />

Hydrogen index<br />

Central Basin<br />

Thermally Mature<br />

Bakken<br />

Time (BpMa)<br />

Time (BpMa)<br />

Generation Potential<br />

1,458 BO/Ac-ft<br />

48+/- ft shale<br />

~44 MMBO/Sq Mile


TOC Weight % vs Organic Material by Volume %<br />

Initial TOC wt%<br />

vs<br />

Organic Material Vol%<br />

40% OM<br />

Bakken <strong>Shale</strong><br />

Original OM<br />

24-40% by Volume<br />

24% OM<br />

Niobrara<br />

Original OM<br />

7-13+% by Volume<br />

12% TOC<br />

Immature TOC<br />

(wt%)<br />

22% TOC<br />

OM wt% = TOC wt% / 0.844<br />

OM Vol% = ((OM wt% / Kero RHOB) / ((OM wt% / Kero RHOB) +<br />

((100-OM wt%) / Mineral RHOB))))*Solidity


Organic Richness Vertical Distribution<br />

What makes the Bakken Different?<br />

Total Organic Material<br />

Vertical Variation in Core Plugs<br />

Clarion Res 1-24 Slater<br />

24-161N-91W<br />

50% by<br />

volume<br />

Immature Bakken <strong>Shale</strong>s<br />

are partially kerogen supported<br />

~1-2 mm<br />

laminations<br />

Organic Mat.<br />

vol %<br />

Ave ~40%<br />

Mineral matrix<br />

Organic matrix<br />

Depth<br />

TOC<br />

wt %<br />

Ave ~20%<br />

<strong>From</strong> Palciauskas, 1991<br />

Critical temperature<br />

kerogen becomes plastic<br />

and rock yields/deforms<br />

Immature<br />

Upper Bakken<br />

Toc Weight %<br />

Organic Matter Vol %


<strong>Shale</strong> Organic Richness & Mechanics<br />

Immature<br />

Collapse Vector<br />

Mature<br />

~50 OM by Vol<br />

Low RHOB Matrix Vol %<br />

OM Vol %<br />

Maturity induced shale compaction<br />

increases bulk density (RHOB)<br />

Supporting Kerogenous Lamination<br />

• Before conversion to oil<br />

source Matrix rock is in partial<br />

kerogen Kerogen support<br />

Low RHOB<br />

…and oil is expelled from kerogenites<br />

Kerogenous Lamination Collapes<br />

• Kerogen deforms and laminates<br />

• Most of kerogen is converted to oil<br />

• Residual oil in laminations<br />

• Rock is now in dead kerogen and/or<br />

matrix grain support High RHOB


Niobrara Stratigraphy<br />

Silo Area<br />

‘Chalk/Marl Reservoir<br />

This Niobrara system<br />

has the potential<br />

to generate<br />

10~20 Million Barrels<br />

of <strong>Oil</strong> / Square Mile<br />

Depending on<br />

Richness and<br />

Level of<br />

Maturation!!!<br />

Organic rich shales<br />

Organic <strong>Shale</strong><br />

Primary Target<br />

Chalk/Marl Reservoir<br />

Organic <strong>Shale</strong><br />

Chalk/Marl Reservoir<br />

Secondary Target<br />

“The Big Mac Model”<br />

<strong>Oil</strong> Movement


Bakken Stratigraphy<br />

Parshall Area<br />

“The Big Mac Model”<br />

Lodgepole<br />

This Bakken system<br />

has the potential to<br />

generate<br />

30~40 Million Barrels<br />

of <strong>Oil</strong> / Square Mile<br />

Bakken<br />

Depending on<br />

Richness and<br />

Level of<br />

Maturation!!!<br />

Three Forks<br />

False Bakken<br />

Upper <strong>Shale</strong><br />

Middle Member<br />

‘Target’<br />

Lower <strong>Shale</strong><br />

Dolomite ‘Target’<br />

Limestone Reservoir<br />

Organic <strong>Shale</strong><br />

Silty Dolo Reservoir<br />

Organic <strong>Shale</strong><br />

‘Dolomite Reservoir<br />

<strong>Oil</strong> Movement


Will the Neo-<strong>Plays</strong> Work?<br />

• First, it depends on… Geology<br />

– Original source richness (% beef fat)<br />

– Thermal maturity (Rare, medium well done)<br />

– Reservoir – quality & quantity (The buns)<br />

– Big Cracks or Little Cracks (or both)<br />

Big Cracks<br />

200X<br />

Little Cracks<br />

Tectonic induced<br />

fractures<br />

Hydrocarbon generation<br />

Induced fractures<br />

Epi-fluorescence<br />

White Light<br />

Courtesy Rob Sterling


The Neo-Bakken & Niobrara <strong>Plays</strong><br />

Where can they go from here?<br />

• WHAT WE HAVE…<br />

• ~10-40 MMBO Generative Capacity / mile<br />

• Large generative areas<br />

• Large oil-in-place potential<br />

• Horizontal Drilling<br />

The Real Game Changers<br />

• Staged Fracs<br />

• Ever Improving Technology<br />

• WHAT WE MAY HAVE…<br />

• Billion+ Barrel <strong>Plays</strong>?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!