01.03.2015 Views

Useful Formulae in Riemannian Geometry - Perimeter Institute

Useful Formulae in Riemannian Geometry - Perimeter Institute

Useful Formulae in Riemannian Geometry - Perimeter Institute

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1. Curvature tensors<br />

Conventions, Def<strong>in</strong>itions, Identities, and Other <strong>Useful</strong> <strong>Formulae</strong><br />

Consider a d + 1 dimensional manifold M with metric g µν . The covariant derivative on M that is metriccompatible<br />

with g µν is ∇ µ .<br />

Christoffel<br />

Riemann Tensor<br />

Ricci Tensor<br />

Schouten Tensor<br />

Weyl Tensor<br />

Γ λ µν = 1 2 gλρ (∂ µ g ρν + ∂ ν g µρ − ∂ ρ g µν ) (1)<br />

R λ µσν = ∂ σ Γ λ µν − ∂ ν Γ λ µσ + Γ κ µνΓ λ κσ − Γ κ µσΓ λ κν (2)<br />

S µν = 1<br />

d − 1<br />

R µν = δ σ λ Rλ µσν (3)<br />

(<br />

R µν − 1 )<br />

2 d g µνR<br />

∇ ν S µν = ∇ µ S ν ν (5)<br />

C λ µσν = R λ µσν + g λ ν S µσ − g λ σ S µν + g µσ S λ ν − g µν S λ σ (6)<br />

(4)<br />

Commutators of Covariant Derivatives<br />

[∇ µ , ∇ ν ] A λ = R λσµν A σ (7)<br />

[∇ µ , ∇ ν ] A λ = R λ σµνA σ (8)<br />

Bianchi Identity<br />

∇ κ R λµσν − ∇ λ R κµσν + ∇ µ R κλσν = 0 (9)<br />

∇ ν R λµσν = ∇ µ R λσ − ∇ λ R µσ (10)<br />

∇ ν R µν = 1 2 ∇ µR (11)<br />

Bianchi Identity for Weyl<br />

∇ ν C λµσν = (d − 2)<br />

∇ λ ∇ σ C λµσν = d − 2<br />

d − 1<br />

(∇ µ S λσ − ∇ λ S µσ<br />

)<br />

(12)<br />

[<br />

∇ 2 R µν − 1<br />

2d g µν∇ 2 R − d − 1 ( ) d + 1<br />

2d<br />

∇ µ∇ ν R − Rµ λ R νλ (13)<br />

d − 1<br />

+ C λµσν R λσ (d + 1)<br />

+<br />

d(d − 1) R R µν + 1<br />

d − 1 g µν<br />

(R λσ R λσ − 1 )]<br />

d R2<br />

1


2. Euler Densities<br />

Let M be a manifold with dimension d + 1 = 2n an even number. Normalized so that χ(S 2n ) = 2.<br />

Euler Number<br />

Euler Density<br />

Curvature Two-Form<br />

Examples<br />

E 2n =<br />

∫<br />

χ(M) = d 2n x √ g E 2n (14)<br />

∫M<br />

= e 2n<br />

(15)<br />

M<br />

1<br />

(8π) n Γ(n + 1) ɛ µ 1 ...µ 2n<br />

ɛ ν1 ...ν 2n<br />

R µ 1 µ 2 ν 1 ν 2 . . . R<br />

µ 2n−1 µ 2n ν 2n−1 ν 2n (16)<br />

e 2n<br />

=<br />

1<br />

(4π) n Γ(n + 1) ɛ a 1 ...a 2n<br />

R a 1 a 2 ∧ . . . ∧ R<br />

a 2n−1 a 2n (17)<br />

R a b = 1 2 Ra b c d ec ∧ e d (18)<br />

E 2 = 1<br />

8π ɛ µνɛ λρ R µνλρ (19)<br />

= 1<br />

4π R<br />

E 4 = 1<br />

128π 2 ɛ µνλρ ɛ αβγδ R µναβ R λργδ (20)<br />

= 1<br />

32π 2 (<br />

R µνλρ R µνλρ − 4 R µν R µν + R 2)<br />

= 1<br />

32π 2 Cµνλρ C µνλρ − 1 ( d − 2<br />

8π 2 d − 1<br />

) (<br />

R µν R µν − d + 1<br />

4 d R2 )<br />

3. Hypersurfaces<br />

Let Σ ⊂ M be a d dimensional hypersurface whose embedd<strong>in</strong>g is described locally by an outward-po<strong>in</strong>t<strong>in</strong>g, unit<br />

normal vector n µ . Rather than keep<strong>in</strong>g track of the signs associated with n µ be<strong>in</strong>g either spacelike or timelike,<br />

we will just assume that n µ is spacelike. Indices are lowered and raised us<strong>in</strong>g g µν and g µν , and symmetrization<br />

of <strong>in</strong>dices is implied when appropriate.<br />

First Fundamental Form / Induced Metric on Σ<br />

h µν = g µν − n µ n ν (21)<br />

Projection onto Σ<br />

⊥ T µ ... ν ... = h µ λ . . . hσ ν . . . T λ ... σ ... (22)<br />

Second Fundamental Form / Extr<strong>in</strong>sic Curvature of Σ<br />

K µν = ⊥(∇ µ n ν ) = h λ<br />

µ h σ<br />

ν ∇ λ n σ = 1 2 £ nh µν (23)<br />

Trace of Extr<strong>in</strong>sic Curvature<br />

K = ∇ µ n µ (24)<br />

2


‘Acceleration’ Vector<br />

a µ = n ν ∇ ν n µ (25)<br />

Surface-Form<strong>in</strong>g Normal Vectors<br />

n µ =<br />

1<br />

√<br />

g νλ ∂ ν α∂ λ α ∂ µα ⇒ ⊥∇ [ µ n ν ] = 0 (26)<br />

Covariant Derivative on Σ compatible with h µν<br />

D µ T α ... β ... = ⊥ ∇ µT α ... β ... ∀ T = ⊥ T (27)<br />

Intr<strong>in</strong>sic Curvature of (Σ, h)<br />

[D µ , D ν ] A λ = R λ σµνA σ ∀ A λ = ⊥ A λ (28)<br />

Gauss-Codazzi<br />

Projections of the Ricci tensor<br />

Decomposition of the Ricci scalar<br />

⊥R λµσν = R λµσν − K λσ K µν + K µσ K νλ (29)<br />

(<br />

⊥ R λµσν n λ) = D ν K µσ − D σ K µν (30)<br />

(<br />

⊥ R λµσν n λ n σ) = − L n K µν + Kµ λ K λν + D µ a ν − a µ a ν (31)<br />

⊥ (R µν ) = R µν + D µ a ν − a µ a ν − L n K µν − K K µν + 2K λ<br />

µ K ν λ (32)<br />

⊥ (R µν n µ ) = D µ K µν − D ν K (33)<br />

R µν n µ n ν = − L n K − K µν K µν + D µ a µ − a µ a µ (34)<br />

R = R − K 2 − K µν K µν − 2 L n K + 2 D µ a µ − 2 a µ a µ (35)<br />

Lie Derivatives along n µ £ n K µν = n λ ∇ λ K µν + K λν ∇ µ n λ + K µλ ∇ ν n λ (36)<br />

4. Sign Conventions for the Action<br />

⊥ (£ n F µ ... ν ...) = £ n F µ ... ν ... ∀ ⊥F = F (37)<br />

These conventions follow We<strong>in</strong>berg, keep<strong>in</strong>g <strong>in</strong> m<strong>in</strong>d that he def<strong>in</strong>es the Riemann tensor with a m<strong>in</strong>us sign<br />

relative to our def<strong>in</strong>ition. They are appropriate when us<strong>in</strong>g signature (−, +, . . . , +). The d + 1-dimensional<br />

Newton’s constant is 2κ 2 = 16πG d+1 . The sign on the boundary term follows from our def<strong>in</strong>ition of the extr<strong>in</strong>sic<br />

curvature.<br />

Gravitational Action<br />

I G = 1<br />

2 κ<br />

∫M<br />

2 d d+1 x √ ( )<br />

g R − 2 Λ + 1 ∫<br />

κ 2<br />

= 1<br />

2 κ<br />

∫M<br />

2 d d+1 x √ g<br />

∂M<br />

(<br />

R + K 2 − K µν K µν − 2 Λ<br />

d d x √ γ K (38)<br />

)<br />

(39)<br />

3


Gauge Field Coupled to Particles<br />

I M = − 1 4<br />

M<br />

− ∑ n<br />

+ ∑ n<br />

∫<br />

M<br />

d d+1 x √ g F µν F µν (40)<br />

m n<br />

∫<br />

e n<br />

∫<br />

(<br />

dp<br />

dp dxµ n(p)<br />

dp<br />

−g µν (x n (p)) dxµ n(p)<br />

dp<br />

dx ν ) 1/2<br />

n(p)<br />

(41)<br />

dp<br />

A µ (x n (p)) (42)<br />

Gravity M<strong>in</strong>imally Coupled to a Gauge Field<br />

∫<br />

I = d d+1 x √ [ 1<br />

g<br />

2 κ 2 (R − 2 Λ) − 1 ]<br />

4 F µν F µν + 1 ∫<br />

κ 2 d d x √ γ K (43)<br />

5. Hamiltonian Formulation<br />

The canonical variables are the metric h µν on Σ and its conjugate momenta π µν . The momenta are def<strong>in</strong>ed<br />

with respect to evolution <strong>in</strong> the spacelike direction n µ , so this is not the usual notion of the Hamiltonian as the<br />

generator of time translations.<br />

∂M<br />

Bulk Lagrangian Density<br />

L M = 1 (<br />

)<br />

2 κ 2 K 2 − K µν K µν + R − 2 Λ<br />

(44)<br />

Momentum Conjugate to h µν<br />

π µν = ∂L M<br />

∂ (£ n h µν ) = 1<br />

2 κ 2 (<br />

h µν K − K µν) (45)<br />

Momentum Constra<strong>in</strong>t<br />

H µ = 1 κ 2 ⊥ (nν G µν ) = 2 D ν π µν = 0 (46)<br />

Hamiltonian Constra<strong>in</strong>t<br />

6. Conformal Transformations<br />

H = − 1 κ 2 nµ n ν G µν = 2 κ 2 (<br />

π µν π µν − 1<br />

d − 1 π2 )<br />

+ 1<br />

2 κ 2 (<br />

R − 2 Λ<br />

)<br />

= 0 (47)<br />

The dimension of spacetime is d + 1. Indices are raised and lowered us<strong>in</strong>g the metric g µν and its <strong>in</strong>verse g µν .<br />

Metric<br />

Christoffel<br />

ĝ µν = e 2 σ g µν (48)<br />

̂Γ λ µν = Γ λ µν + Θ λ µν (49)<br />

Θ λ µν = δ λ µ ∇ ν σ + δ λ ν ∇ µ σ − g µν ∇ λ σ (50)<br />

4


Riemann Tensor<br />

̂R λ µρν = R λ µρν + δ λ ν ∇ µ ∇ ρ σ − δ λ ρ ∇ µ ∇ ν σ + g µρ ∇ ν ∇ λ σ − g µν ∇ ρ ∇ λ σ (51)<br />

+ δ λ ρ ∇ µ σ ∇ ν σ − δ λ ν ∇ µ σ ∇ ρ σ + g µν ∇ ρ σ ∇ λ σ − g µρ ∇ ν σ ∇ λ σ (52)<br />

(<br />

)<br />

+ g µρ δ λ ν − g µν δ λ ρ ∇ α σ ∇ α σ (53)<br />

Ricci Tensor<br />

̂R µν = R µν − g µν ∇ 2 σ − (d − 1) ∇ µ ∇ ν σ + (d − 1) ∇ µ σ ∇ ν σ (54)<br />

− (d − 1) g µν ∇ λ σ ∇ λ σ (55)<br />

Ricci Scalar<br />

̂R ( )<br />

= e −2 σ R − 2 d ∇ 2 σ − d (d − 1) ∇ µ σ ∇ µ σ<br />

(56)<br />

Schouten Tensor<br />

Ŝ µν = S µν − ∇ µ ∇ ν σ + ∇ µ σ ∇ ν σ − 1 2 g µν∇ λ σ ∇ λ σ (57)<br />

Weyl Tensor<br />

Ĉ λ µρν = C λ µρν (58)<br />

Normal Vector<br />

̂n µ = e −σ n µ ̂n µ = e σ n µ (59)<br />

Extr<strong>in</strong>sic Curvature<br />

̂K ( )<br />

µν = e σ K µν + h µν n λ ∇ λ σ<br />

̂K ( )<br />

= e −σ K + d n λ ∇ λ σ<br />

(60)<br />

(61)<br />

7. Small Variations of the Metric<br />

Consider a small perturbation to the metric of the form g µν → g µν + δg µν . All <strong>in</strong>dices are raised and lowered<br />

us<strong>in</strong>g the unperturbed metric g µν and its <strong>in</strong>verse. All quantities are expressed <strong>in</strong> terms of the perturbation to<br />

the metric with lower <strong>in</strong>dices, and never <strong>in</strong> terms of the perturbation to the <strong>in</strong>verse metric. As <strong>in</strong> the previous<br />

sections, ∇ µ is the covariant derivative on M compatible with g µν and D µ is the covariant derivative on a<br />

hypersurface Σ compatible with h µν .<br />

Inverse Metric<br />

g µν → g µν − g µα g νβ δg αβ + g µα g νβ g λρ δg αλ δg βρ + . . . (62)<br />

Square Root of Determ<strong>in</strong>ant<br />

(<br />

√ √ g → g 1 + 1 )<br />

2 gµν δg µν + . . .<br />

(63)<br />

5


Variational Operator<br />

δ(g µν ) = δg µν δ 2 (g µν ) = δ(δg µν ) = 0 (64)<br />

)<br />

δ(g µν ) = −g µα g νβ δg αβ δ 2 (g µν ) = δ<br />

(−g µλ g νρ δg λρ = 2 g µα g νβ g λρ δg αλ δg βρ (65)<br />

F(g + δg) = F(g) + δF(g) + 1 2 δ 2 F(g) + . . . + 1 n! δ n F(g) + . . . (66)<br />

Christoffel (All Orders)<br />

δ Γ λ µν = 1 2 gλρ ( ∇ µ δg ρν + ∇ ν δg µρ − ∇ ρ δg µν<br />

)<br />

δ 2 Γ λ µν = −g λα g ρβ δg αβ<br />

(<br />

∇ µ δg ρν + ∇ ν δg µρ − ∇ ρ δg µν<br />

)<br />

δ n Γ λ µν = n 2 δ n−1 ( g λρ) ( ∇ µ δg ρν + ∇ ν δg µρ − ∇ ρ δg µν<br />

)<br />

(67)<br />

(68)<br />

(69)<br />

Riemann Tensor<br />

δ R λ µσν = ∇ σ δ Γ λ µν − ∇ ν δ Γ λ µσ (70)<br />

Ricci Tensor<br />

δ R µν = ∇ λ δ Γ λ µν − ∇ ν δ Γ λ µλ (71)<br />

= 1 )<br />

(∇ λ ∇ µ δg λν + ∇ λ ∇ ν δg µλ − g λρ ∇ µ ∇ ν δg λρ − ∇ 2 δg µν (72)<br />

2<br />

Ricci Scalar<br />

δ R = −R µν δg µν + ∇ µ ( ∇ ν δg µν − g λρ ∇ µ δg λρ<br />

)<br />

(73)<br />

Surface Form<strong>in</strong>g Normal Vector<br />

δ n µ = 1 2 n µ n ν n λ δg νλ = 1 2 δg µν n ν + c µ (74)<br />

c µ = 1 2 n µ n ν n λ δg νλ − 1 2 δg µν n ν = − 1 2 h λ<br />

µ δg λν n ν (75)<br />

Extr<strong>in</strong>sic Curvatures<br />

δ K µν = 1 2 nα n β δg αβ K µν − n µ c λ h λν − n ν c λ h µλ + 1 ( )<br />

2 δg λρ n ρ n µ K λ ν + n ν Kµ<br />

λ<br />

− 1 2 h µ λ hν ρ n α ( )<br />

∇ λ δg αρ + ∇ ρ δg λα − ∇ α δg λρ<br />

(76)<br />

δ K = − 1 2 Kµν δg µν − 1 2 nµ ( ∇ ν δg µν − g νλ ∇ µ δg νλ<br />

)<br />

+ D µ c µ (77)<br />

6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!