01.03.2015 Views

0 - NMR Spectroscopy Research Group

0 - NMR Spectroscopy Research Group

0 - NMR Spectroscopy Research Group

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Biomolecular High Resolution <strong>NMR</strong> in<br />

Utrecht<br />

WWW.<strong>NMR</strong>.CHEM.UU.NL<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Contact Informatie Docenten<br />

Hoorcollege:<br />

Werkcolleges:<br />

Rainer Wechselberger<br />

rwechsel@its.jnj.com<br />

Hans Wienk<br />

tel. 030 253 9928<br />

hans@nmr.chem.uu.nl<br />

Marloes Schurink<br />

tel. 030 253 9928<br />

m.schurink@uu.nl<br />

www.nmr.chem.uu.nl<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Rooster Hoorcollege <strong>NMR</strong><br />

5 weken (07.10. t/m 02.11.)<br />

Locatie: Went Groen<br />

Tijden: Woensdag en Vrijdag 9:00 – 10:45<br />

www.chem.uu.nl:<br />

Onderwijs > Bachelor > Roosters2009-2010 > jaar2periode 1<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Tentamen S & A <strong>NMR</strong><br />

GEEN OPEN BOEK!!!<br />

ma 2 november, 9 – 10.30 uur, Went Blauw<br />

Herkansing: vr 8 januari 2010, 14.00-15.30 K-128<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Het beste...<br />

... lees thuis voor het college de<br />

hoofdstukken van het dictaat...<br />

... lees thuis na het college de<br />

hoofdstukken van het dictaat...<br />

... maak eigen aantekeningen...<br />

... vraag direct alsietsnietduidelijkis!<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


General Outline<br />

I Introduction (what is <strong>NMR</strong> and what is studied with it)<br />

II Basic Theory (how does it work)<br />

III Ensemble of spins (from single atom to real samples)<br />

IV Relaxation I (after the experiment: back to equilibrium)<br />

V FT <strong>NMR</strong> (with a single rf-pulse to a complete spectrum)<br />

VI Hardware (what kind of device do you need for <strong>NMR</strong>)<br />

VII <strong>NMR</strong> parameters (what you can see in an <strong>NMR</strong> spectrum)<br />

VIII NOE (How does the Nuclear Overhauser Effect work)<br />

IX Relaxation II (experiments to measure relaxation)<br />

X 2D <strong>NMR</strong> (how to add an extra dimension)<br />

XI Assignment (which signal comes from which atom)<br />

XII Biomolecular <strong>NMR</strong> (nucleic acids and proteins, spin systems<br />

and (structural) parameters, sequential assignment)<br />

XIII Structure Determination (which parameters to use, how to<br />

calculate a structure)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


<strong>NMR</strong> I<br />

Introduction<br />

N uclear M agnetic R esonance (<strong>Spectroscopy</strong>)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


10 6<br />

ν in Hz<br />

<strong>Spectroscopy</strong><br />

Interaction of matter with electromagnetic<br />

waves (absorption of electromagnetic radiation)<br />

electronic<br />

Mössbauer<br />

rotational<br />

vibrational<br />

10 22<br />

10 20<br />

10 18<br />

10 16<br />

10 14<br />

10 12<br />

10 10<br />

10 8<br />

γ-rays X-rays UV VIS IR Microwave RF<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


A Widely used Analytical Technique<br />

First observed in 1946, quickly commercially available<br />

and widely used.<br />

Covers the study of the composition, structure,<br />

dynamics and function of the complete range of<br />

chemical entities.<br />

Preferred technique for rapid structure elucidation<br />

of most organic compounds.<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Nobel Prices in <strong>NMR</strong><br />

Bloch and and Purcell<br />

(1952)<br />

Richard Ernst<br />

(1991)<br />

Kurt Kurt Wüthrich<br />

(2002)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Typical Applications of <strong>NMR</strong><br />

Structure elucidation (small molecules)<br />

Study of dynamic processes<br />

Structural studies on biomacromolecules<br />

Drug Design<br />

Magnetic Resonance Imaging (MRI)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Structure Elucidation I<br />

?<br />

Example: Synthesis control<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Structure Elucidation II<br />

Example: Identification of an<br />

unknown substance<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Structural Studies on Biomacromolecules<br />

GMRALEQFANEFKVRRIKLGYTQTNVGEALAAVHGSEFSQTTICRF<br />

ENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERKRKRRTT<br />

ISIAAKDALERHFGEHSKPSSQEIMRMAEELNLEKEVVRVWFCNRR<br />

QREKRVK<br />

PIT-1<br />

(Transcription<br />

Factor Pituitary-1)<br />

PDB entry: 1AU7a<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Volume 9, No. 1, 44-46, 49.<br />

Jennifer B. Miller<br />

Magnetic resonance spectroscopy plays a growing role in pharmaceuticals research.<br />

Todays Chemist at Work, Volume 2, No 1, 44-46, 49 (January 2000)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Drug Design<br />

Example: Identification of binding surface<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009<br />

<strong>NMR</strong> vs. MRI


Application of MRI<br />

Molecules<br />

Cells<br />

Atoms<br />

(chemical<br />

level)<br />

Tissue<br />

Bloodvessel<br />

Bodyparts<br />

(skin, organs, bloodvessels,<br />

nerves)<br />

Bodyfunctionss<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


MRI – Magnetic Resonance Imaging<br />

Structural Imaging<br />

Functional Imaging<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Targets of Biomolecular <strong>NMR</strong><br />

Molecules<br />

Cells<br />

Atoms<br />

(chemical<br />

level)<br />

Tissue<br />

Bloodvessel<br />

Bodyparts<br />

(skin, organs, bloodvessels,<br />

nerves)<br />

Bodyfunctionss<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


<strong>NMR</strong> II<br />

Basic <strong>NMR</strong> Theory<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


<strong>NMR</strong> =<br />

N uclear M agnetic R esonance<br />

Where is the magnetic property<br />

of the nuclei coming from...?!<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


From Physics...<br />

charge + movement = magnetic field<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Atomic Nuclei<br />

They have a<br />

positive charge<br />

They possess a spin angular<br />

momentum (which is a<br />

quantum mechanical<br />

property).<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Atomic Nuclei<br />

They have a<br />

positive charge<br />

They possess a spin angular<br />

momentum (which is a<br />

quantum mechanical<br />

property).<br />

μ<br />

'tiny rotating magnets'<br />

Spin angular momentum<br />

+ Positive nuclear charge<br />

_____________________<br />

= Magnetic moment, μ<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Spin: A Quantum Mechanical Property<br />

Spin angular momentum :<br />

|I | = h√I (I + 1)<br />

h = Planck's constant, h = h/2π<br />

I = spin quantum number (can be<br />

integer or half-integer: I = 0, ½, 1,<br />

1½, 2… depend on nucleus)<br />

The spin quantum number is is simply referred to to as as 'spin'<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Spin: A Property of a Particular Nuclide<br />

I<br />

Nuclides<br />

0<br />

12<br />

C, 16 O<br />

½ 1<br />

H, 13 C, 15 N, 19 F, 29 Si, 31 P<br />

1 2<br />

H, 14 N<br />

1½<br />

11<br />

B, 23 Na, 35 Cl, 37 Cl<br />

2½<br />

17<br />

O, 27 Al<br />

3<br />

10<br />

B<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Magnetic Quantum Number<br />

I is a vector and, due to quantum mechanic rules, for<br />

its z-component (direction of external field, B z ) we<br />

can only find a set of discrete values:<br />

I z = hm I<br />

m I , the magnetic quantum number = -I, -I+1, ..., I-1, I<br />

(selection rule in <strong>NMR</strong>: Δm I = ±1).<br />

This results in 2I + 1 values for I z .<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Magnetic Quantum Number<br />

A graphical representation for a spin ½ and a spin 1<br />

nucleus with their 2I + 1 values for I z :<br />

I z = +1/2 h<br />

z<br />

|I | = h√I (I + 1)<br />

I z = + h<br />

I z = 0<br />

|I | = h√I (I + 1)<br />

I z = -1/2 h<br />

I z = - h<br />

I=1/2<br />

I=1<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Most popular in <strong>NMR</strong>: Spin ½<br />

Some important nuclei have spin ½:<br />

1<br />

H: 99.989% natural abundance<br />

13<br />

C: 1.07% natural abundance<br />

15<br />

N: 0.368% natural abundance<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


From Spin to Magnetic Moment<br />

μ = γ I<br />

γ is the gyromagnetic ratio<br />

μ (like I) is a vector<br />

As I is quantized, accordingly also the<br />

magnetic moment μ is quantized:<br />

| μ | = γ h√I (I + 1) and μ z = γ hm I<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The External Magnetic Field<br />

Energy of a magnetic dipole in a magnetic field :<br />

E = - μ•B<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Energy of Spin States<br />

With E = - μ•B and μ z = m I γ h we get:<br />

m=-½: E β = + ½γ hB z<br />

m=+½:<br />

E α = - ½γ hB z<br />

B z : field of<br />

<strong>NMR</strong>-magnet<br />

With the difference between the energy states<br />

depending only on γ and the strength of the<br />

external field B z !<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Spin States...<br />

Generally in spectroscopy: 'Energy States'<br />

In <strong>NMR</strong>, energy states correspond to<br />

'spin-up' ( ↑ or β, m=-½) and<br />

'spin-down' ( ↓ or α, m=+½) and<br />

are often referred to as 'Spin States'<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Energy of Spin States<br />

E = - μ•B<br />

With μ z = m I γ h we got:<br />

B : field of<br />

m=-½: E β = + ½γ hB z<br />

m=+½: E α = - ½γ hB z<br />

z<br />

<strong>NMR</strong>-magnet<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The EnergyE<br />

between the Spin States<br />

Energy<br />

E = +½γ hB o (β-state, m=-½)<br />

0<br />

No B 0 -field, no difference in<br />

enery levels, the spin states<br />

are degenerated!<br />

E = -½γ hB o (α-state, m=+½)<br />

Fieldstrength<br />

[B o ]<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The EnergyE<br />

between the Spin States<br />

Energy<br />

E = +½γ hB o (β-state, m=-½)<br />

0<br />

B o<br />

E = -½γ hB o (α-state, m=+½)<br />

Fieldstrength<br />

[B o ]<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The EnergyE<br />

between the Spin States<br />

Energy<br />

E = +½γ hB o (β-state, m=-½)<br />

0<br />

ΔE<br />

B o<br />

Radiofrequency pulses<br />

create transitions between<br />

the energy states<br />

ΔE = h ν<br />

frequency of of<br />

radio waves<br />

E = -½γ hB o (α-state, m=+½)<br />

Fieldstrength<br />

[B o ]<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Larmor Frequency<br />

ΔE = h ν 0 = γ h B z<br />

with ν 0 = ω/2π we get:<br />

ω L = γ B z Larmor Frequency<br />

When the frequency of the RF radiation matches<br />

the Larmor frequency, this is called the 'Resonance<br />

Condition'.<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


CW vs. FT <strong>NMR</strong><br />

CW <strong>NMR</strong> (classical technique)<br />

Resonance condition sufficient for<br />

explanation (principle same as other spectroscopic<br />

techniques)<br />

FT <strong>NMR</strong> (modern techniques)<br />

Controlled manipulation of spin states with RF<br />

pulses<br />

We need a way to describe what happens to μ!<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Classical Derivation (spinning magnet)<br />

μ<br />

External field (B z )<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Precession of Magnetization<br />

Spin<br />

+ Orienting force<br />

+ Conservation of angular momentum<br />

___________________________<br />

= Precession<br />

A Spinning Gyroscope<br />

in a Gravity Field<br />

Compare: spinning gyroscope in the<br />

gravitational field of the earth<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Precession of Magnetization<br />

Stronger orientation force means faster precession<br />

Speed of the precession (rotation around the B z -<br />

field) is the Larmor frequency (circular frequency ω 0<br />

in rad/sec), which represents ΔE of the spin states:<br />

ω o = γB z<br />

Larmor frequency<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Torque Acting on Spinning Magnet<br />

z<br />

dμ<br />

dt<br />

= −γ<br />

B×<br />

μ<br />

= −γ<br />

e<br />

B<br />

μ<br />

x<br />

x<br />

x<br />

e<br />

B<br />

μ<br />

y<br />

y<br />

y<br />

e<br />

B<br />

μ<br />

z<br />

z<br />

z<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Classical Equation of Motion<br />

z<br />

dμ<br />

x<br />

dt<br />

dμ<br />

y<br />

dt<br />

dμ<br />

z<br />

dt<br />

= γ B<br />

= − γ B<br />

= 0<br />

z<br />

μ<br />

z<br />

y<br />

μ<br />

x<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Classical Equation of Motion<br />

(Solution)<br />

μ x x<br />

(t (t) = μ x x<br />

(0)cos(γB z t ) + μ y y<br />

(0)sin(γB z t )<br />

μ y y<br />

(t (t) = μ y y<br />

(0)cos(γB z t ) - μ x x<br />

(0)sin(γB z t )<br />

μ x x<br />

(t (t) = μ x x<br />

(0)cos(ω 00 t ) + μ y y<br />

(0)sin(ω 00 t )<br />

μ y y<br />

(t (t) = μ y y<br />

(0)cos(ω 00 t ) - μ x x<br />

(0)sin(ω 00 t )<br />

ω o = γB z<br />

Larmor frequency!<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Basics of <strong>NMR</strong> (Summary)<br />

Nuclear spin + charge = magnetic moment<br />

Spin and magnetic moment are quantized<br />

E = - μ•B<br />

=-γ hm I B o (individual states)<br />

Spin + external field = precession<br />

ΔE = γ h B o = h ν (resonance, transitions)<br />

Larmor Frequency<br />

CW vs. FT <strong>NMR</strong><br />

Classical equation of motion<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


<strong>NMR</strong> III<br />

An Ensemble of<br />

Nuclear Spins<br />

μ<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


From Single Atom to Real Sample<br />

A real <strong>NMR</strong> sample contains ~10 17 to ~10 20 atoms.<br />

Distributed over available spin states (α and β for spin ½)<br />

according to the law of Boltzmann:<br />

n β /n α = e (-ΔE/kT) k = Boltzmann's constant<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Population of Spin States<br />

At a field of 14T (600MHz proton freq.), the<br />

relative excess of α-spins is only 1 per 10 4 !<br />

(10000 β-spins and 10001 α-spins)<br />

This is the reason why <strong>NMR</strong> is such an<br />

insensitive technique!<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Ensemble of Spins<br />

μ<br />

10001 α-spins (m= + ½)<br />

'parallel' orientation, lower<br />

energy<br />

10000 β-spins (m= - ½)<br />

'anti-parallel' orientation,<br />

higher energy<br />

Note that the phases are ramdomly distributed!<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Sum of all Spins: Net Magnetization<br />

M z<br />

μ<br />

Equilibrium magnetization<br />

has net component along z-<br />

axis (B 0 ): M z .<br />

There is no net transversal (x- or y-) magnetization!<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Vector<br />

Model<br />

A complex drawing...<br />

M z<br />

B 0<br />

M z<br />

μ<br />

...is<br />

simplyfied to:<br />

y<br />

x<br />

'Ensemble of Spins'<br />

net magnetization vector<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Vector<br />

Model<br />

Pictorial representation of the effects of pulses<br />

and of movement of magnetization.<br />

Instead of explicitly considering every single<br />

spin of an ensemble, only the sum of all vectors<br />

(net-magnetization vector) is taken into account.<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Longitudinal Magnetization, M z<br />

B 0<br />

M z<br />

x<br />

y<br />

Magnetization along<br />

z-axis (equilibrium state)<br />

So-called<br />

longitudinal magnetization<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Transversal Magnetization, M x,y<br />

x,y<br />

Transversal magnetization = Observable magnetization!<br />

A changing magnetic<br />

field induces a current<br />

in a coil<br />

The rotating<br />

magnetization vector<br />

induces a harmonic<br />

oscillation in the<br />

receiver coil<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


RF-Pulses<br />

RF-pulse: electric and magnetic component<br />

perpendicular to each other.<br />

Magnetic component interacts with magnetic spins<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


RF-Pulses<br />

If the rf-frequency matches the Larmor<br />

frequency of the spins, the spins experience<br />

an additional (static) magnetic field (B 1 -<br />

field).<br />

The magnetization starts to rotate around<br />

the B 1 -field (the axis on which the pulse is<br />

given).<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


An RF-Pulse<br />

Simply Rotates<br />

(Net) Magnetization Vectors<br />

M z<br />

y<br />

RF-pulse x<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


An RF-Pulse<br />

Simply Rotates<br />

(Net) Magnetization Vectors<br />

M z<br />

z<br />

M<br />

y<br />

M y<br />

x<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Classical Equation of Motion also<br />

describes the Effect of an RF pulse<br />

dM<br />

dt<br />

= − γ<br />

B<br />

1<br />

×<br />

M<br />

x-pulse on<br />

equilibrium<br />

magnetization:<br />

M y y<br />

(t (t) = M 0 sin(γB 1 t )<br />

M z (t (t) = M 0 cos(γB 11 t )<br />

B 1 = magnetic field strength of RF-pulse<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Transversal Magnetization, M x,y<br />

x,y<br />

B 0<br />

M z<br />

M y<br />

So-called<br />

β<br />

y<br />

The effect of an rf-pulse:<br />

x-y components can be<br />

created<br />

x<br />

transversal magnetization<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Effect of RF-Pulses s (quantitative)<br />

β = γ B 1 t p<br />

B 1 :strength of RF-pulse<br />

t p : duration of RF-pulse<br />

flip angle<br />

angular frequency ω 1 = γ B 1 :<br />

'speed' of flipping of magnetization<br />

vector due to RF-pulse<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Effect of RF-Pulses s (quantitative)<br />

M z<br />

z<br />

M<br />

β<br />

M y = M z sin β<br />

x<br />

M y<br />

y<br />

The flip angle β defines<br />

the amount of observable<br />

transversal magnetization<br />

created by an rf-pulse<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Effect of RF-Pulses s (quantitative)<br />

M y<br />

β =<br />

90o<br />

180 o 270o<br />

360o<br />

t p<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


90º-Pulses: s: Maximum Intensity<br />

B 0<br />

β = 90º<br />

x<br />

M y<br />

y<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


90º-Pulses: s: Maximum Intensity<br />

M y<br />

β =<br />

90<br />

o 180 o 270o<br />

360o<br />

90 o : M y = max.<br />

t p<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


180º-Pulses: s: Inversion of Magnetization<br />

β = 180º<br />

x<br />

B 0<br />

-M z<br />

y<br />

Magnetization along -z-axis<br />

(no equilibrium state!)<br />

But: still<br />

longitudinal magnetization<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


180º-Pulses: s: Inversion of Magnetization<br />

β =<br />

90o<br />

180<br />

o 270o<br />

360o<br />

M 180 o : M y y = 0<br />

t p<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


About those 90º and 180º Pulses...<br />

90º and 180º pulses are by far the most<br />

common pulses in <strong>NMR</strong> experiments!<br />

Complex 2D pulse sequences can be<br />

programmed with 90º and 180º pulses<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Direction of Pulses, the Pulse Phase<br />

z<br />

z<br />

z<br />

z<br />

M -x<br />

x<br />

M y<br />

y<br />

x<br />

y<br />

M -y<br />

x<br />

y<br />

x<br />

M x<br />

y<br />

90º x-pulse 90º y-pulse 90º (-x)-pulse 90º (-y)-pulse<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


RF Pulses (Summary)<br />

Additional B-field (B 1 )<br />

Rotation around additional field<br />

Flip angle (β = γ B 1 t p )<br />

Pulse phases (axis of rotation)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Rotating Frame<br />

In the laboratory frame (the 'real' world), all<br />

the vectors are precessing with their Larmor<br />

frequencies ω L (for protons approximately the<br />

frequency of the spectrometer ω 0 ).<br />

To get rid of this complication, we simply<br />

assume, that we are rotating with the<br />

coordinate system with the frequency ω 0 .<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Rotating Frame<br />

z'<br />

z'<br />

x'<br />

M y<br />

y'<br />

x'<br />

M y<br />

y'<br />

A complicated motion in<br />

the laboratory frame...<br />

...becomes a simple flip of the<br />

vector in the rotating frame.<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Free Precession in the Rotating Frame<br />

Vectors rotate faster<br />

than ω 0<br />

Vectors rotate slower<br />

than ω 0<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Free Precession<br />

Spectrum: More than one frequency<br />

Individual Larmor Frequencies<br />

Rotating frame: Only ONE speed (frequency)<br />

Only a vector with exactly the same speed doesn't<br />

move anymore! (center of the spectrum)<br />

The others move (slow) in both directions<br />

μ x x<br />

(t (t) = μ x x<br />

(0)cos(ω ii t ) + μ y y<br />

(0)sin(ω ii t )<br />

μ y y<br />

(t (t) = μ y y<br />

(0)cos(ω ii t ) - μ x x<br />

(0)sin(ω ii t )<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


<strong>NMR</strong> IV<br />

Relaxation of Nuclear Spins<br />

z'<br />

x'<br />

y'<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Without Relaxation...<br />

Continuous rotation induces continuous<br />

harmonic oscillation in receiver coil<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Relaxation of Spins<br />

In reality, fortunately, this is not the case:<br />

1<br />

0<br />

-1<br />

Free Induction Decay<br />

t<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Two Mechanisms of Relaxation<br />

M y<br />

1<br />

FID<br />

0<br />

t<br />

-1<br />

Our free induction decays…<br />

…and z-magnetization is<br />

being restored<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Longitudinal Relaxation<br />

Restoring the equilibrium magnetization M z<br />

Transitions between the α- and β-states<br />

The time constant connected with this is T 1<br />

Longitudinal or spin-lattice relaxation<br />

T 1 defines the maximum repetition rate of<br />

an <strong>NMR</strong> experiment<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Transverse Relaxation<br />

Does not involve transitions between α- and<br />

β-states (no restoring of the equilibrium<br />

state)<br />

Instead loss of phase coherence, vanishing<br />

of observable magnetization M x,y<br />

The time constant connected with this is T 2<br />

Transverse or spin-spin relaxation<br />

Time after which FID does contain no signal<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Practical Aspects of Relaxation<br />

T 1 : The time we have to wait before we can<br />

repeat our experiment (repetition rate).<br />

Before we can repeat the experiment, the<br />

equilibrium-distribution has to be restored!<br />

T 2 : The time we have to record an FID. After<br />

that time no observable signal does exist<br />

anymore. The FI has Decayed!<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Relaxation of Spins<br />

A mathematical description is given by the following<br />

set of differential equations:<br />

dM z (M z – M eq )<br />

= M z<br />

dt T z<br />

(t)-M eq eq<br />

= [M [M z z<br />

(0)-M eq eq<br />

] e –t/T –t/T 1<br />

1<br />

1<br />

dM x<br />

=<br />

dt T 2<br />

M x<br />

M x x<br />

(t) (t) = [M [M x x<br />

(0)-M eq eq<br />

] e –t/T –t/T 2<br />

2<br />

dM y M<br />

= y<br />

dt T 2<br />

M y y<br />

(t) (t) = [M [M y y<br />

(0)-M eq eq<br />

] e –t/T –t/T 2<br />

2<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Random Fluctuating Fields<br />

Both T 1 and T 2 relaxation is caused by randomly<br />

fluctuating magnetic fields (dipole-dipole<br />

interaction):<br />

Random tumbling of molecules (reorientation<br />

relativ to B o - and dipolar fields from<br />

neighboring nuclei)<br />

Movement of parts of the molecule relative to<br />

each other.<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Moving Dipoles<br />

The additional field (B dip ),<br />

that is felt by μ 2 depends<br />

on the orientation of μ 2<br />

relative to μ 1 (the angle Θ):<br />

B<br />

dip<br />

z<br />

μ<br />

=<br />

r<br />

1<br />

3<br />

(3 cos<br />

2<br />

Θ<br />

−<br />

1)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Tumbling of Molecules<br />

Molecules are moving constantly (Brown's<br />

molecular motion)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Tumbling of Molecules<br />

A measure for the speed of the tumbling of a<br />

molecule is τ c , the rotational correlation time:<br />

t < τ c t ≈τ c t >> τ c<br />

For t >> τ c orientation is is random<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Rotational Correlation Time τ c<br />

τ c is dependent from the size of the molecule V, the<br />

viscosity of the solvent η and the temperature T :<br />

τ c = η V<br />

kT<br />

For biomacromolecules in water at room temperature:<br />

M r<br />

τ c ≈ 10 -12 M r : molecular mass<br />

2.4<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Spectral Density Function<br />

J(ω)<br />

J(ω) =<br />

2τ c<br />

1+ω 2 τ c<br />

2<br />

1/τ c<br />

ω<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Inhomogeneity of B z<br />

Distribution of (static) B z fields:<br />

Different Larmor frequencies on<br />

different locations in the sample<br />

Dephasing of magnetization<br />

Net magnetization vanishes<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


T 1 and τ c<br />

Longitudinal relaxation is fastest, when the<br />

spectral density has a maximum at the<br />

frequency ω ο . This is the case for 1/ τ c = ω ο :<br />

T 1<br />

1<br />

= 2γ 2 〈B 2 〉 J (ω o )<br />

T 1<br />

τ<br />

1/ τ c<br />

c = ω ο<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


T 2 and τ c<br />

For large molecules the speed of transverse<br />

relaxation is simply proportional to τ c :<br />

T 2<br />

1<br />

T 2<br />

≈γ 2 〈B 2 〉 τ c<br />

τ c<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Mechanisms of Relaxation (Summary)<br />

T 1 :<br />

Energy transfer with environment (spin-lattice)<br />

α−β transitions<br />

Motions with Larmor Frequencies<br />

Fluctuating fields<br />

T 2 :<br />

No energy transfer with environment (instead<br />

spin-spin interaction)<br />

No α−β transitions<br />

Dephasing of transversal magnetization<br />

Fluctuating and static fields<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


<strong>NMR</strong> V<br />

Fourier Transform <strong>NMR</strong><br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


FT versus CW<br />

Example: Tuning a bell<br />

CW (continuous wave)<br />

• frequency generator<br />

• microphone<br />

• recording the response<br />

to a frequency sweep<br />

FT (fourier transform)<br />

•hammer<br />

• microphone (or ear)<br />

• analyzing response of<br />

one hard bang<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The 'Bang' in FT <strong>NMR</strong>: RF-Pulses<br />

rf-pulse<br />

Excitation profile<br />

Δν rf<br />

ν rf<br />

τ p<br />

ν rf -1/2τ p<br />

ν rf<br />

ν rf +1/2τ p<br />

The frequency range covered by an rf pulse of duration<br />

τ p is approximately defined by:<br />

1/ τ p = Δν rf<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Advantage of Fourier Transform <strong>NMR</strong><br />

Much faster then the old CW method<br />

More sensitive (signal averaging)<br />

Possibility to record special 1D and<br />

various 2D or 3D spectra<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Fourier Transformation<br />

FT<br />

time domain f(t)<br />

t<br />

ω<br />

frequency domain g(ω)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


From FID to Spectrum<br />

FT<br />

single frequency<br />

single line<br />

FT<br />

multiple frequencies<br />

multi-line spectrum<br />

FT<br />

many frequencies<br />

many lines in spectrum<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Principle of Fourier Transformation<br />

ation<br />

1<br />

0<br />

-1<br />

Ω<br />

t<br />

.<br />

cos ωt<br />

1<br />

0<br />

-1<br />

1<br />

0<br />

-1<br />

t<br />

t<br />

ω = Ω<br />

ω = Ω<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


From FID to Spectrum<br />

∞<br />

g(ω) =<br />

∫f(t) cos ωt dt<br />

0<br />

Signal intensity at a particular<br />

frequency in the spectrum<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Some Important Fourier Pairs<br />

f(t)<br />

g(ω)<br />

I<br />

1<br />

0<br />

-1<br />

t<br />

FT<br />

M y<br />

1<br />

0<br />

-1<br />

t<br />

FT<br />

I<br />

FT<br />

t<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Width of an <strong>NMR</strong> Line<br />

The width of the signals (Lorentzian lines), is<br />

dependent from the relaxation time T 2 :<br />

The width of the<br />

signal is correlated<br />

with T 2 according to:<br />

Δν 1/2 = 1/πT 2<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Linebroadening (T 2 ), ), τ c and MW<br />

Examples of spectra of proteins with increasing MW:<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Impact of Pulses on the FID<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Signal Intensity and Pulse Duration τ p<br />

The signal intensity is a direct<br />

function of the flip angle β and<br />

thus of τ p :<br />

These are real signals after FT (compare with<br />

M y -profiles in lecture III).<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Fourier Transformation (Summary)<br />

CW FT<br />

Short rf pulse broad excitation<br />

f(t) ---> g(ω)<br />

Lorentzian lineshape<br />

Line width T 2<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


<strong>NMR</strong> VI<br />

The Technique behind:<br />

Spectrometer Hardware<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


What you see of it<br />

Magnet (probe, sample)<br />

Console (transmitter,<br />

receiver, interface)<br />

Probe<br />

Computer (pulseprogramming,<br />

data processing)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


What you (usually) don't see of it<br />

1 Bore tube<br />

2 Filling port (N 2<br />

)<br />

3 Filling port (He)<br />

4 Outer housing<br />

5 Vacuum chambers/<br />

radiation shields<br />

6 Nitrogen reservoir<br />

7 Vacuum valve<br />

8 Helium reservoir<br />

9 Magnet coil<br />

Inside a Magnet<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Tesla and MegaHertz<br />

The strength of a magnetic field is meassured in<br />

Tesla (for strong fields) or Gauss (for weaker<br />

fields). 1 Tesla corresponds to 10000 Gauss. The<br />

earth magnetic field is about 0.5 Gauss.<br />

The strength of an <strong>NMR</strong> magnet is usually given in<br />

terms of its 1 H resonance frequency in MHz:<br />

Tesla 2.3 8.4 11.7 14.1 16.5 17.6 21.1<br />

MHz 100 360 500 600 700 750 900<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Why go for stronger fields?<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Signal-To-Noise Ratio S/N<br />

S/N or the signal-to-noise ratio is a measure for the<br />

sensitivity of the <strong>NMR</strong> experiment:<br />

S/N ~ n γ 5/2 B 0 3/2 (NS) 1/2 T 2 T -1<br />

MHz 500 600 700 750 900<br />

S/N 1.0 1.3 1.7 1.8 2.4<br />

resolution<br />

1.0 1.2 1.4 1.5 1.8<br />

Relative sensitivity and resolution of our spectrometer<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Sensitivity Comes at a Price!<br />

~ €750.000 ~ €1.500.000 ~ €4.500.000<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Hardware (Summary)<br />

Magnet (Dewar, coil, shims)<br />

Probe<br />

Transmitter, receiver, amplifiers<br />

Acquisition computer (ADC)<br />

Sensitivity<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


<strong>NMR</strong> VII<br />

<strong>NMR</strong> Parameters<br />

3 JHNHα (Hz)<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

-150 -100 -50 0 50 100 150<br />

Φ(deg.)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Parameters accessible by <strong>NMR</strong><br />

Chemical shifts (resonance frequencies)<br />

Scalar coupling constants (Karplus, dihedral<br />

angles)<br />

Relaxation parameters (mobility, flexibility)<br />

Nuclear Overhauser Effect (interatomic<br />

distances)<br />

Chemical exchange (dynamic equilibria)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Origin of Chemical Shifts<br />

B z<br />

The Larmor frequency (resonance<br />

frequency) is defined by the<br />

strength of the field B z and the<br />

gyromagnetic ratio of the nucleus:<br />

ω o = γ B z<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Origin of Chemical Shifts<br />

B z<br />

electrons<br />

(shielding)<br />

Shielding is<br />

proportional<br />

to external field:<br />

B loc<br />

B eff = B z + B loc<br />

nucleus<br />

= B z (1 – σ)<br />

B loc = -σ B z<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Local Fields - Local Frequencies<br />

With this new 'local' effective field<br />

B eff = B z + B loc = B z (1 – σ)<br />

we get a new 'local' Larmour frequency:<br />

ω i = γ B eff = γ ( 1 – σ i ) B z<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Chemical Shift Parameter δ<br />

δ (ppm) = 10 6 (ν – ν ref ) / ν ref<br />

Difference in Hz divided by transmitter frequency<br />

The Chemical shift is a dimensionless parameter.<br />

Its values are given in parts per million, or ppm.<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Chemical Shift δ Frequency<br />

1 ppm ^=<br />

ν 0 / 10 6 Hz<br />

Example: At 600.13 MHz resonance frequency, 1 ppm<br />

corresponds to 600.13 Hz.<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Chemical Shift References<br />

References can be special substances which are<br />

added to the <strong>NMR</strong> sample, e.g.<br />

TMS (Tetramethylsilane) or<br />

TSP (Trimethylsilylpropionic acid)<br />

or the signal of the solvent (e.g. water) :<br />

δ H2O = 7.83 – (T[Kelvin]/96.9)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Typical Chemical Shifts<br />

The range of chemical shifts observed depends on<br />

the sort of nuclei and the sort of molecules. In<br />

peptides and nucleic acids we typically find:<br />

1<br />

H: ~ 0 - 15 ppm<br />

13<br />

C: ~ 0 - 200 ppm<br />

15<br />

N: ~ 105 - 135 ppm<br />

Much smaller and bigger shifts can be observed in<br />

special cases!<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Chemical Shifts<br />

Usually: Classification of signals<br />

(identification of functional groups or local<br />

environment, aromatic, hydroxyl, amid<br />

protons)<br />

Peptides: In addition information about<br />

secondary structural elements<br />

(hydrogenbonds in loops, sheets and<br />

helices)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


A 1D-Spectrum of a Protein<br />

amide and aromatic<br />

protons<br />

H α –<br />

protons<br />

H β , H γ ,H δ ...<br />

(aliphatic)<br />

protons<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Chemical Shifts<br />

Usually: Classification of signals<br />

(identification of functional groups or local<br />

environment, aromatic, hydroxyl, amid<br />

protons)<br />

Peptides: In addition information about<br />

secondary structural elements (hydrogen<br />

bonds in loops, sheets and helices)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


A 1D-Spectrum of a Protein<br />

Dispersion<br />

amide and aromatic<br />

protons<br />

H α –<br />

protons<br />

H β , H γ ,H δ ...<br />

(aliphatic)<br />

protons<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Typical 1 H Chemical Shifts<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Typical 13 13 C Chemical Shifts<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Less Signal than Nuclei: Chemical<br />

Equivalence<br />

Same chemical<br />

environment<br />

<br />

Same chemical<br />

shift value<br />

Nuclei in a symmetric situation or nuclei<br />

which 'feel' the same environment due to<br />

dynamical averaging (e.g. the protons of a<br />

methyl group)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Chemical Equivalence<br />

H<br />

H<br />

C<br />

X<br />

X<br />

H<br />

H<br />

C<br />

C<br />

X<br />

X<br />

H 3 C<br />

X<br />

C<br />

X<br />

X<br />

All of of them are chemically equivalent,<br />

but for different reasons...<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Chemical Equivalence<br />

H<br />

H<br />

C<br />

X<br />

X<br />

H<br />

H<br />

C<br />

C<br />

X<br />

X<br />

H 3 C<br />

X<br />

C<br />

X<br />

X<br />

Symmetry<br />

Dynamical<br />

averaging<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Chemical Equivalence<br />

If we are able to see which nuclei in a<br />

molecule are equivalent, then we can tell<br />

how many different signals we expect in<br />

the spectrum of that molecule!<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Chemical Shift (Summary)<br />

Shielding of electron shell<br />

Local fields – local Larmor Frequencies<br />

Neighbours (bonds, H-bonds)<br />

References, ppm scale<br />

Dispersion<br />

Chemically equivalent nuclei<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Scalar Coupling<br />

(J-coupling, spin-spin coupling)<br />

Splitting of lines in <strong>NMR</strong> spectra (multiplets).<br />

Spin states of neighboring nuclei (mainly 1-3<br />

bonds away).<br />

Size : Number of bonds, kind of bonds, kind<br />

of neighbors and bond angles involved.<br />

Multiplicity : Depends on number of equivalent<br />

neighbors (n+1).<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Scalar Coupling (J-coupling)<br />

A<br />

B<br />

ν A<br />

ν B<br />

Two signals of nuclei with no J-coupling between them<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Scalar Coupling (J-coupling)<br />

J AB =<br />

AB coupling in in Hz Hz<br />

(is (is independent of of B 0 )<br />

0 )<br />

J AB<br />

J AB<br />

Bβ<br />

Bα<br />

Aβ<br />

Aα<br />

ν A<br />

ν B<br />

Two signals of nuclei with J-coupling between them<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Scalar Coupling<br />

(J-coupling)<br />

Scalar coupling only occurs between nonequivalent<br />

nuclei:<br />

If they are not chemically equivalent<br />

If they are chemically equivalent but not<br />

magnetically equivalent.<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Magnetic Equivalence<br />

If a set of chemically equivalent nuclei, a<br />

and b share the same coupling constant<br />

with every other nucleus in the molecule<br />

(e.g. x) they are magnetically equivalent :<br />

J ax = J bx and J ax' = J bx'<br />

H a<br />

H b<br />

X<br />

J ax = J bx<br />

J<br />

C<br />

C C<br />

ax ≠ J bx<br />

J ab = 0 J ab ≠ 0<br />

X'<br />

H a<br />

H b<br />

X<br />

X'<br />

magnetically equivalent magnetically not equivalent<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Common Coupling Multiplets<br />

singlet doublet triplet quartet pentet<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Multiplicity of Scalar Couplings<br />

The number of equivalent nuclei<br />

defines the number of possible<br />

spin-state combinations for a<br />

neighboring group :<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Multiplicity of Scalar Couplings<br />

The number of equivalent nuclei<br />

defines the number of possible<br />

spin-state combinations for a<br />

neighboring group :<br />

OH-group<br />

1 proton:<br />

α or β<br />

β<br />

α<br />

Energy level diagram<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Multiplicity of Scalar Couplings<br />

The number of equivalent nuclei<br />

defines the number of possible<br />

spin-state combinations for a<br />

neighboring group :<br />

CH 2 -group<br />

2 protons:<br />

ββ,<br />

αβ, βα,<br />

αα<br />

Energy level diagram<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Multiplicity of Scalar Couplings<br />

CH 3 -group<br />

3 protons:<br />

βββ,<br />

αββ, βαβ, ββα,<br />

ααβ, αβα, βαα,<br />

ααα<br />

The number of equivalent nuclei<br />

defines the number of possible<br />

spin-state combinations for a<br />

neighboring group :<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009<br />

Energy level diagram


Multiplicity of Scalar Couplings<br />

The number of multiplet-components depends<br />

on the number of different energy levels. The<br />

intensities of the multiplet-components can be<br />

derived from the number of equivalent spinstates:<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Multiplicity of Scalar Couplings<br />

The number of multiplet-components depends<br />

on the number of different energy levels. The<br />

intensities of the multiplet-components can be<br />

derived from the number of equivalent spinstates:<br />

2 3 4<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Multiplicity of Scalar Couplings<br />

The number of multiplet-components depends<br />

on the number of different energy levels. The<br />

intensities of the multiplet-components can be<br />

derived from the number of equivalent spinstates:<br />

1<br />

1<br />

1<br />

2<br />

1<br />

1<br />

3<br />

3<br />

1<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Common Coupling Multiplets<br />

β α<br />

αβ<br />

ββ αα<br />

βα<br />

ββα ααβ<br />

βαβ αβα<br />

αββ βαα<br />

Multiplet:<br />

βββ<br />

ααα<br />

Multiplicity:<br />

Intensities:<br />

Neighbors:<br />

singlet doublet triplet quartet pentet<br />

1:1 1:2:1 1:3:3:1 1:4:6:4:1<br />

non 1 2 3 4<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Multiplicity of Scalar Couplings<br />

1<br />

1 1<br />

1 2 1<br />

1 3 3 1<br />

1 4 6 4 1<br />

1 5 10 10 5 1<br />

1 6 15 20 15 6 1<br />

. . . . . . . . . . . .<br />

The Pascal triangle<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Schematic Spectrum of CH 3 CH 2 OH<br />

(shifts only)<br />

OH CH 2 CH 3<br />

The integrals of the signals are proportional<br />

to the number of protons they represent<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Schematic Spectrum of CH 3 CH 2 OH<br />

with coupling<br />

OH CH 2 CH 3<br />

The integrals of the signals are still proportional<br />

to the number of protons they represent<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Real Spectrum of CH 3 CH 2 OH<br />

'with coupling'<br />

1<br />

H <strong>NMR</strong> spectrum of ethanol<br />

(Arnold et al., 1951)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Real Spectrum of CH 3 CH 2 OH<br />

with coupling<br />

OH CH 2 CH 3<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Use of Scalar Couplings<br />

The scalar coupling between neighboring<br />

atoms can not only be used to identify<br />

neighbors in the molecule, they also, as we<br />

will see later, contain valuable structural<br />

information!<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Scalar Coupling (Summary)<br />

Effect via bonds to neighboring nuclei.<br />

Results in splitting of <strong>NMR</strong> lines.<br />

Origin: Different spin state combinations of<br />

neighboring nuclei.<br />

Depends on: Number of bonds, kind of bonds,<br />

kind of neighbors and on bond angles involved.<br />

Multiplicity depends on the number of<br />

equivalent neighbors (n+1).<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Relaxationrates<br />

Information about the association state of<br />

a molecule (monomeric, dimeric, …)<br />

Information about the shape of a molecule<br />

(anisotropic relaxation behaviour)<br />

Information about local dynamic/flexibility<br />

(e.g. binding sites in complexes, linkers of<br />

domains)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


<strong>NMR</strong> VIII<br />

The Nuclear Overhauser Effect<br />

A<br />

B<br />

RF<br />

RF<br />

RF<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Nuclear Overhauser Effect<br />

Dipolar cross-relaxation<br />

Intensity of one nucleus has influence on<br />

intensity of another<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Nuclear Overhauser Effect<br />

A<br />

B<br />

regular spectrum<br />

RF<br />

NOE, small molecule<br />

RF<br />

RF<br />

NOE, large molecule<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Nuclear Overhauser Effect<br />

(M − M<br />

η =<br />

M<br />

eq<br />

eq<br />

)<br />

η describes the change in intensity of<br />

a signal due to the NOE<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Energy Level Diagram<br />

W 1A<br />

ββ<br />

W 2<br />

W 1B<br />

With population differences<br />

for the A and B transitions<br />

in the undisturbed system:<br />

αβ<br />

βα<br />

A 0 = B 0 = Δ<br />

W 0<br />

W 1B<br />

W 1A<br />

W 0 and W 2 involve simultaneous<br />

transitions of spins A<br />

and B.<br />

αα<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Nuclear Overhauser Effect<br />

A = 1.5 Δ<br />

A<br />

W 2 > W 0<br />

W 1A<br />

A<br />

W 2<br />

small molecules<br />

A<br />

W 1B<br />

W 1B<br />

W 1A<br />

W 0<br />

A<br />

W 0 > W 2<br />

large molecules<br />

A<br />

A 0 = B 0 = Δ<br />

A = A 0 = Δ<br />

B = 0<br />

A<br />

A = 0.5 Δ<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Nuclear Overhauser Effect<br />

In practice we find the NOE ranging from +0.5 for<br />

small up to -1.0 for large molecules:<br />

η<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

0.01 0.1 1.0 10 100<br />

fast<br />

tumbling<br />

ω o τ c<br />

slow<br />

tumbling<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Distances from NOEs<br />

η ~<br />

τ c<br />

r 6<br />

τ c = rotational correlation time (size of molecule)<br />

r = distance between the two corresponding atoms<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Distances from NOEs<br />

η<br />

η ref<br />

τ c<br />

r 6<br />

=<br />

τc<br />

ref . r6 ref<br />

⇒<br />

r = r ref<br />

6<br />

η ref<br />

η<br />

τ c ≈τ c<br />

ref<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Application for NOEs<br />

Information about short 1 H- 1 H-distances in<br />

molecules (< 5Å)<br />

Translated into distance-constraints<br />

applied in Molecular Simulations<br />

Main source of structural information in<br />

<strong>NMR</strong><br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Short 1 H- 1 H Distances in Proteins<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Nuclear Overhauser Effect (Summary)<br />

Dipolar Cross Relaxation<br />

Through space (< 5Å)<br />

Depends on size/mobility of molecule<br />

#1 source of structural information<br />

Reference distance necessary for<br />

translation into distances<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


<strong>NMR</strong> IX<br />

Relaxation Measurements<br />

+1<br />

M z<br />

τ<br />

-1<br />

τ = ln(2)T 1<br />

τ >> T 1<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Relaxation (Reminder)<br />

T 1 : Longitudinal or spin-lattice relaxation. M z is<br />

restored, the system goes back to equilibrium.<br />

T 2 : Transverse or spin-spin relaxation.<br />

Transversal magnetization M x,y vanishes, the<br />

observable signal disappears.<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


T 1 -Measurement<br />

180 o 90 o τ = 0<br />

τ<br />

Inversion recorvery<br />

τ = ln(2)T 1<br />

M z z<br />

(τ)=M o o<br />

[1-2exp(-τ/T 11 )] )]<br />

τ >> T 1<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Inversion Recovery<br />

τ<br />

M z z<br />

(τ)=M o o<br />

[1-2exp(-τ/T 11 )] )]<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Inversion Recovery<br />

M z<br />

+1<br />

0<br />

τ<br />

-1<br />

τ = ln(2)T 1<br />

τ >> T 1<br />

M z z<br />

(τ)=M o o<br />

[1-2exp(-τ/T 11 )] )]<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Fast T 1 -Measurement<br />

180 o 90 o<br />

τ<br />

τ = ln(2)T 1<br />

Inversion recorvery<br />

zero observable signal<br />

For a quick estimation of T 1 : directly search for the<br />

time τ, which gives us zero intensity (τ zero ) and<br />

calculate T 1 from this:<br />

T 11 = τ zero zero<br />

/ln(2)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


T 2 -Measurement<br />

In principle we could calculate T 2 according to<br />

Δν 1/2 = 1/πT 2<br />

from the width of the Lorentzian lineshape of<br />

the signals in our spectrum. But...<br />

This value is strongly dependend from the<br />

inhomogeneity of our B 0 -field.<br />

We are rather interested in the 'pure' spinspin<br />

relaxation component (which, in contrast to<br />

the B 0 -field, is a molecular property)!<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


T 2 -Measurement<br />

90 o τ/2<br />

180 o<br />

τ/2<br />

T 2<br />

Spin-echo sequence<br />

I(τ)=I(0)exp(-τ/T 2 )] )]<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


T 2 -Measurement<br />

90 o 180 o<br />

τ/2 τ/2 T 2<br />

Spin-echo sequence<br />

Before<br />

acquisition<br />

Before 90 o<br />

After 90 o<br />

Before 180 o<br />

After 180 o<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


T 2 -Measurement<br />

The spin-echo experiment:<br />

Compensates for the component of T 2 that<br />

origins from field inhomogeneity<br />

The relaxation induced by dipolar spin-spin<br />

interaction can be measured selectively<br />

Important dynamic properties of the<br />

molecule can be extracted that way<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


T 2 -Measurement<br />

The experiment is repeated a number of<br />

times with increasing delays τ.<br />

T 2 is obtained from a plot of ln[ I (τ) ]<br />

against τ:<br />

ln[I (τ) ]<br />

I (0)<br />

I I (τ)=I (τ)=I(0)exp(-τ/T 2 )]<br />

2 )]<br />

τ<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Relaxation Measurements (Summary)<br />

Inversion recovery (T 1 )<br />

Fast T 1 determination<br />

Spin echo experiment (T 2 )<br />

Separation of contributions to T 2 from<br />

static field inhomogeneities and<br />

molecular properties (dynamic)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


<strong>NMR</strong> X<br />

Two-Dimensional <strong>NMR</strong><br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


1-Dimensional<br />

<strong>NMR</strong><br />

1D FT-<strong>NMR</strong><br />

(simplest case)<br />

preparation - detection<br />

S(t)<br />

FT<br />

S(ω)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


A 1D-Spectrum of a Protein<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


2-dimensional <strong>NMR</strong><br />

2D FT-<strong>NMR</strong><br />

S(t 1 ,t 2 )<br />

FT 1 , FT 2<br />

S(ω 1 ,ω 2 )<br />

t 1<br />

t m<br />

t 2<br />

Preparation - evolution - mixing - detection<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


A 2D-Spectrum of a Protein<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


A Signal of a 2D Spectrum<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Contour plot of the same Signal<br />

Compare: Topographical map (lines of equal height)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Second Time Domain<br />

FT (t 2 )<br />

The size of the<br />

signal depends on<br />

the evolution in t 1 :<br />

the signal is said to<br />

be 'modulated'<br />

with ω 1<br />

t 2 =0<br />

t 2<br />

t 1<br />

For simplicity we look at a single frequency ω<br />

which is the same in t 1 and in t 2 (no mixing)!<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Second Time Domain<br />

FT (t 2 )<br />

ω 2<br />

ω 1<br />

t 2 =0<br />

t 2 t 1<br />

FT (t 1 )<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Raw Data of a Real Spectrum<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009<br />

Real Data after FT of t 2


Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009<br />

Real Data after FT of t 1


...and after FT of t 1 and t 2<br />

Diagonal peaks<br />

Cross peaks<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Mixingperiod<br />

t 1<br />

t m<br />

t 2<br />

Preparation - evolution - mixing - detection<br />

In the mixing period the frequency modulation<br />

of one nucleus is transferred to another one!<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Mixingperiod<br />

No mixing (τ m = 0): Only diagonal peaks!<br />

Mixing (τ m > 0): We get cross correlated<br />

peaks (cross peaks)!<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Mixingprocess<br />

Partial transfer<br />

Complete transfer<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Some 2D Experiments<br />

Depending on the experiment (pulse sequence) the cross<br />

peaks in a 2D spectrum show correlations based on<br />

different effects:<br />

• SCOTCH: light induced chemical exchange.<br />

• NOESY: cross-relaxation (spatial proximity) or exchange.<br />

• COSY: J-coupling (through bond connectivities of<br />

neighboring atoms, max. ~3 bonds).<br />

• TOCSY: J-coupling (through bond connectivities of<br />

neighboring atoms, >3 bonds in multiple steps).<br />

• HETCOR: 1 J-coupling, correlation of a proton and the<br />

heteronucleus (e.g. 15 N or 13 C) it is bound to.<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The SCOTCH Experiment<br />

Spin COherence Transfer in (photo) CHemical reactions<br />

hν<br />

Reaction A B with a proton at ω A in A which<br />

resonates at ω B in B.<br />

t 1 l<br />

i<br />

g<br />

h<br />

t<br />

t 2<br />

The corresponding pulse sequence<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The SCOTCH Experiment<br />

t 1 l<br />

i<br />

g<br />

h<br />

t<br />

t 2<br />

The proton's magnetization is in t 1<br />

modulated with the frequency ω A .<br />

After the light pulse, the same<br />

proton evolves with ω B .<br />

Subsequent FT of the both<br />

time domains results in a<br />

2D spectrum with a peak at<br />

ω A in F 1 and ω B in F 2 :<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The SCOTCH Experiment<br />

t 1 l<br />

i<br />

g<br />

h<br />

t<br />

t 2<br />

The proton's magnetization is in t 1<br />

modulated with the frequency ω A .<br />

After the light pulse, the same<br />

proton evolves with ω B .<br />

If A would not completely be<br />

converted to B by the light<br />

pulse, we would be able to<br />

observe a diagonal peak of<br />

A as well:<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


2D NOE <strong>Spectroscopy</strong> (NOESY)<br />

t 1<br />

t m<br />

t 2<br />

C<br />

H B<br />

C<br />

C<br />

C<br />

B<br />

A<br />

H A<br />

H C<br />

A<br />

B<br />

C<br />

d HA-HB<br />

= d HC-HB<br />

> 5Å<br />

d HA-HC<br />

< 5Å<br />

NOESY: spatial proximity of<br />

nulei (distance < 5Å)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


J-correlated <strong>Spectroscopy</strong><br />

(COSY and TOCSY)<br />

C<br />

C<br />

B<br />

Spinsystem<br />

B<br />

A<br />

B<br />

A<br />

COSY: J-coupling (through<br />

bond connectivities of neighboring<br />

atoms, max. ~3 bonds)<br />

C<br />

A<br />

B<br />

C<br />

A<br />

TOCSY: J-coupling (through<br />

bond connectivities of neighboring<br />

atoms, >3 bonds)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


COSY and TOCSY<br />

t 1<br />

t 2<br />

t 1 mixing t 2<br />

COSY: J-coupling (through<br />

bond connectivities of neighboring<br />

atoms, max. ~3 bonds)<br />

TOCSY: J-coupling (through<br />

bond connectivities of neighboring<br />

atoms, >3 bonds)<br />

Multi-step transfer: each single<br />

step limited to max. ~3 bonds<br />

(like in COSY)!<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Two Examples: Alanine and Valine<br />

O: COSY X: TOCSY +: NOESY<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


2D <strong>Spectroscopy</strong> (Summary)<br />

‘Indirect’ evolution time, t 1<br />

Mixing (dependent on experiment)<br />

SCOTCH (light induced)<br />

Complete/incomplete transfer<br />

NOESY (dipolar cross relaxation)<br />

COSY, TOCSY (J-coupling)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


<strong>NMR</strong> XI<br />

Spectral Assignment<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


2D 1 H- 1 H NOESY of a Protein<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Assignment Problem<br />

In order to be able to interpret <strong>NMR</strong> data,<br />

we have to know which signal (peak) in the<br />

<strong>NMR</strong> spectrum corresponds to which atom in<br />

the molecule. The process of determining<br />

this correlation is called 'assignment'.<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Information useful for Assignment<br />

Chemical shift: What is the surrounding of a<br />

nucleus (functional group, aromatic)?<br />

J-coupling: Which peaks (multiplets) belong<br />

together (neighbouring nuclei)? Familiar patterns<br />

(ethyl- or ethoxy group).<br />

Signal intensities: Integrals give information<br />

about number of equivalent nuclei.<br />

NOE data: Where are corresponding distances<br />

in the molecule? Connection of spin-systems.<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


An Example: Ethylbenzene<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


1 H Spectrum of Ethylbenzene<br />

3<br />

5 2<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


13 13 C Spectrum of Ethylbenzene<br />

2<br />

2<br />

CDCl 3<br />

1<br />

1<br />

1<br />

1<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


APT Spectrum of Ethylbenzene<br />

Attached Proton Test:<br />

CH 0 and CH 2 : negative<br />

C H and CH 3 : positive<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


COSY Spectrum of Ethylbenzene<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


HETCOR Spectrum of Ethylbenzene<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009<br />

From the QM practical


From the QM practical (zoomed in)<br />

ortho (1,2) meta (1,3) para (1,4)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Identification of Amino Acids<br />

O: COSY X: TOCSY +: NOESY<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Assignment (Summary)<br />

Finding pairs: signals atoms<br />

Shifts<br />

J-coupling<br />

Integrals<br />

NOEs<br />

Compare with known structure<br />

Identify spin system ‘patterns’ (e.g.<br />

amino acids)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Weet je het nog...?<br />

B z<br />

B loc<br />

I z = hm I<br />

μ z = γ hm I<br />

E = - μ•B<br />

B eff = B z + B loc<br />

= B z (1 – σ)<br />

δ (ppm) = 10 6 (ν – ν ref ) / ν ref<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Weet je het nog...?<br />

NOE<br />

M y<br />

1<br />

FID<br />

0<br />

-1<br />

t<br />

Spin-echo<br />

sequence (T2)<br />

Inversion<br />

Recovery (T1)<br />

2x FT<br />

S(t 1 ,t 2 ) S(ω 1 ,ω 2 )<br />

2D<br />

t 1<br />

t m<br />

t 2<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009<br />

r = r ref<br />

6<br />

COSY/TOCSY<br />

NOESY<br />

η ref<br />

η


<strong>NMR</strong> XII<br />

Biomolecular <strong>NMR</strong><br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009<br />

Bio(macro)molecules


Peptides and Proteins<br />

Peptides and proteins are<br />

mainly build from 20<br />

different naturally<br />

occuring amino acids. They<br />

all share the same basic<br />

structure and only differ<br />

in their side chain R.<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Amino Acids (general structure)<br />

Amino group<br />

H α<br />

| O<br />

H 2 N C α C<br />

Carboxyl group<br />

| OH<br />

R<br />

Side chain<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Peptide Bond<br />

In peptides, amino acids are linked via a so-called<br />

peptide bond. The amino group of one residue is<br />

connected with the carboxyl group of another:<br />

H<br />

|<br />

H 2 N C a<br />

|<br />

R<br />

C<br />

O<br />

OH +<br />

-H 2 O<br />

H<br />

|<br />

H 2 N C a<br />

|<br />

R<br />

C<br />

O<br />

OH<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Peptide Bond<br />

In peptides, amino acids are linked via a so-called<br />

peptide bond. The amino group of one residue is<br />

connected with the carboxyl group of another:<br />

H<br />

|<br />

H 2 N C a<br />

|<br />

R<br />

C<br />

O<br />

H<br />

|<br />

N C a<br />

| |<br />

H R<br />

C<br />

O<br />

OH<br />

Note: The peptide bond is planar due<br />

to its partial double bond character!<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Amino Acids<br />

Amino acids are usually referred to with either a oneletter<br />

or a three-letter code:<br />

Glycine Gly G Histidine His H<br />

Alanine Ala A Proline Pro P<br />

Valine Val V Aspartate Asp D<br />

Leucine Leu L Glutamate Glu E<br />

Isoleucine Ile I Asparagine Asn N<br />

Serine Ser S Glutamine Gln Q<br />

Threonine Thr T Lysine Lys K<br />

Phenylalanine Phe F Arginine Arg R<br />

Tyrosine Tyr Y Cysteine Cys C<br />

Tryptophane Trp W Methionine Met M<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Properties of Amino Acids<br />

+ - p h c a<br />

G * *<br />

A * *<br />

V * *<br />

L * * *<br />

I * *<br />

S *<br />

T * *<br />

F * *<br />

Y * * *<br />

W * * *<br />

+ - p h c a<br />

H * * *<br />

P<br />

D *<br />

E *<br />

N *<br />

Q *<br />

K *<br />

R * *<br />

C *<br />

M *<br />

+: positive, -: negative, p: polar, h: hydrophobic, c: aliphatic, a: aromatic<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Random Coil 1H 1H Chemical Shifts of of Amino Acids<br />

NH Hα Hβ<br />

G 8.39 3.97<br />

A 8.25 4.35 1.39<br />

V 8.44 4.18 2.13 CH 3 0.97 0.94<br />

L 8.42 4.38 1.65 Hγ 1.64<br />

CH 3 0.94 0.90<br />

1.19<br />

I 8.19 4.23 1.90 CH 2 1.48<br />

CH 3 0.89<br />

CH 3 0.95<br />

T 8.24 4.35 4.22 CH 3<br />

F 8.23 4.66 3.22<br />

2.99<br />

Y 8.18 4.60 3.13<br />

2.92<br />

P 4.44 2.28<br />

2.02<br />

C 8.31 4.69 3.28<br />

2.96<br />

S 8.38 4.50 3.88<br />

M 8.42 4.52 2.15<br />

2.01<br />

H2,6<br />

H3,5<br />

H4<br />

H2,6<br />

H3,5<br />

1.23<br />

7.30<br />

7.39<br />

7.34<br />

7.15<br />

6.86<br />

γCH 2 2.03<br />

δCH 2 3.68<br />

3.65<br />

γCH 2 2.64<br />

εCH 3 2.13<br />

NH Hα Hβ<br />

H 8.41 4.63 3.26<br />

3.20<br />

W 8.09 4.70 3.32<br />

2.99<br />

D 8.41 4.76 2.84<br />

2.75<br />

E 8.37 4.29 2.09<br />

1.97<br />

N 8.75 4.75 2.83<br />

2.75<br />

Q 8.41 4.37 2.13<br />

2.01<br />

K 8.41 4.36 1.85<br />

1.76<br />

R 8.27 4.38 1.89<br />

1.79<br />

H2<br />

H4<br />

H2<br />

H4<br />

H5<br />

H6<br />

H7<br />

NH<br />

γCH 2<br />

NH 2<br />

8.12<br />

7.14<br />

7.24<br />

7.65<br />

7.17<br />

7.24<br />

7.50<br />

10.2<br />

2.31<br />

2.28<br />

7.59<br />

6.91<br />

2.38<br />

6.87<br />

1.45<br />

1.70<br />

3.02<br />

7.52<br />

1.70<br />

3.32<br />

7.17<br />

CH 2<br />

NH 2 7.59<br />

γCH 2<br />

δCH 2<br />

εCH 2<br />

+<br />

NH 3<br />

γCH 2<br />

δCH 2<br />

NH 6.62<br />

For X in GGXA, pH 7, 35ºC (Bundi and Wüthrich 1979)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Assignment of Biomacromolecules<br />

Repetition of the same sort of spin systems<br />

Restricted set of monomers<br />

Simplifies the assignment of building blocks<br />

Complicates sequential assignment<br />

Isolated spin systems --> no J between aa’s<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Assignment, , Step by Step<br />

1. Spin-system Identification<br />

Characteristic shifts and patterns in COSY and<br />

TOCSY --> types of nucleotides or amino acids.<br />

2. Sequential Assignment<br />

Connection of spin-systems with sequential NOEs.<br />

3. Matching the Sequence<br />

Matching stretches with the known sequence.<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Classical Sequential Assignment<br />

J-coupling<br />

NOE<br />

J-coupling<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Classical Sequential Assignment<br />

Method<br />

Combination of homo-nuclear 2D experiments<br />

which give correlations via bonds (COSY-type<br />

experiments) and others which give<br />

correlations through space (NOESY-type<br />

experiments).<br />

(Method of Wüthrich)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Two Examples: Alanine and Valine<br />

O: COSY X: TOCSY +: NOESY<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


AA Spin Systems<br />

Gly: Two H α s<br />

Pro: No amide proton (NH)<br />

Trp: NH at ~10ppm<br />

Ser, Thr: H α and H β very close together<br />

Aromatic sc: additional signal next to NHs<br />

NH sc: additional signal next to NHs<br />

NH 2 sc: additional signal between NHs and H 2 O<br />

Aliphatic sc: right half of spectrum (usually right<br />

of H α s)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


NOEs and NOE Combinations<br />

Distance (Å) (j - i = 1) (%)<br />

d αN<br />

(i,j) ≤ 2.4<br />

≤ 3.0<br />

≤ 3.6<br />

d NN<br />

(i,j) ≤ 2.4<br />

≤ 3.0<br />

≤ 3.6<br />

d βN<br />

(i,j) ≤ 2.4<br />

≤ 3.0<br />

≤ 3.6<br />

98<br />

88<br />

72<br />

94<br />

88<br />

76<br />

79<br />

76<br />

66<br />

d αN<br />

(i,j) ≤ 3.6 && d NN<br />

(i,j) ≤ 3.0 99<br />

d aN<br />

(i,j) ≤ 3.6 && d βN<br />

(i,j) ≤ 3.4 95<br />

d NN<br />

(i,j) ≤ 3.0 && d βN<br />

(i,j) ≤ 3.0 90<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Peptides (Summary)<br />

20 amino acids<br />

Peptide bonds<br />

Classification of side chains<br />

No J-coupling over peptide bond (H,H)<br />

Assignment (Wüthrich):<br />

COSY/TOCSY for aa identification<br />

NOESY for sequential assignment<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


<strong>NMR</strong> XIII<br />

Structure Determination<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Structural Elements in Peptides<br />

GMRALEQFANEFKVRRIKLGYTQTNVGEALAAVHGSEFSQTTICRF<br />

ENLQLSFKNACKLKAILSKWLEEAEQVGALYNEKVGANERKRKRRTT<br />

ISIAAKDALERHFGEHSKPSSQEIMRMAEELNLEKEVVRVWFCNRR<br />

QREKRVK<br />

PIT-1<br />

(Transcription Factor<br />

Pituitary-1)<br />

PDB entry: 1AU7a<br />

Primary structure<br />

(a.a. sequence)<br />

Secondary structure<br />

(helix, loop, sheet)<br />

x N<br />

Tertiary structure<br />

(overall fold)<br />

Quaternary structure<br />

(aggregation state)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


After the Assignment<br />

Collect structural information:<br />

NOE data (2D, 3D)<br />

J-couplings for dihedral angles<br />

H/D exchange data<br />

Conduct computer simulations<br />

Present a nice structure…<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Inter-atomic Distances<br />

Inter-atomic distances<br />

can be bonded or non-bonded<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


NOE Data<br />

Non-bonded distances<br />

define secondary and<br />

tertiary structure<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


NOE constraints<br />

Typically some thousand NOE peaks in 2D<br />

NOESY spectra from a protein of<br />

moderate size.<br />

Each peak can be converted into an interatomic<br />

distance.<br />

These distances are used as constraints in<br />

computer simulations.<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


NOE constraints<br />

Inter-proton distances<br />

non-bonded,


Accuracy of NOE distances<br />

In principle very accurate distances can be<br />

calculated from NOEs.<br />

In practice relatively low precision:<br />

••variation in in τ c due to local motion<br />

• dynamical averaging<br />

• spin diffusion<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Spin Diffusion<br />

NOE<br />

NOE<br />

NOE<br />

H A H B H C H D<br />

NOEs can be be 'propagated' between<br />

protons relatively far from each other<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Ranges for NOE constraints<br />

Rather than using precise distances, NOEs are<br />

classified into distance ranges:<br />

strong NOE (1.8 – 2.7 Å)<br />

medium NOE (1.8 – 3.5 Å)<br />

weak NOE (1.8 – 5.0 Å)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Sequential and Medium Range NOEs<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Anti-Parallel<br />

β-sheet<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Parallel β-sheet<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Short Distances in α - Helix<br />

The shortest distance in in a<br />

regular α-helix is is found<br />

between HN(i) and HN(i+1)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


NOEs and Secondary Structure<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


NOEs (Summary)<br />

Most important structural data<br />

Averaging due to dynamics<br />

β-sheets: short HN – Hα distances<br />

α-helix: short HN – HN distances<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Scalar Coupling<br />

(J-coupling, spin-spin coupling)<br />

Splitting of lines in <strong>NMR</strong> spectra (multiplets).<br />

Spin states of neighboring nuclei (1-3 bonds<br />

away).<br />

Size : Number of bonds, kind of bonds, kind<br />

of neighbors and bond angles involved.<br />

Multiplicity : Depends on number of equivalent<br />

neighbors (n+1).<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Scalar Coupling<br />

(J-coupling, spin-spin coupling)<br />

Splitting of lines in <strong>NMR</strong> spectra (multiplets).<br />

Spin states of neighboring nuclei (1-3 bonds<br />

away).<br />

Size : Number of bonds, kind of bonds, kind<br />

of neighbors and bond angles involved.<br />

Multiplicity : Depends on number of equivalent<br />

neighbors (n+1).<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


J-coupling constraints<br />

10<br />

9<br />

R<br />

CO<br />

N<br />

H<br />

θ<br />

H α<br />

3 JHNHα (Hz)<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

-150 -100 -50 0 50 100 150<br />

Φ (deg.)<br />

Karplus: J = A cos cos 2 2 (θ) (θ) + B cos(θ) + C<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


J-coupling constraints<br />

Most important backbone angle can be calculated<br />

from the J-coupling between H α and amide proton:<br />

Karplus: J HNHα HNHα<br />

= 6.51 cos 22 (θ-60) + 1.76 cos(θ-60) + 1.60<br />

Also this angle (like the distance constraints derived<br />

from NOE data) can be used as constraints in molecular<br />

simulations.<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


J-coupling constraints<br />

Like with NOEs, also J-couplings may be only an<br />

average of different dynamic situations (conformational<br />

exchange).<br />

In addition the Karplus equation gives ambiguous<br />

results for different values of J.<br />

Most reliable are values of J HNHα of:<br />

9 – 10 Hz (for extented β-sheet structures)<br />

3 – 4 Hz (for α-helical structures)<br />

Values between 6 and 7 may reflect averaging!<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


J-coupling (Summary)<br />

Karplus equation<br />

Averaging due to dynamics<br />

Extented β-sheet: 9 – 10 Hz<br />

α-helix: 3 – 4 Hz<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Structure Calculation<br />

The general steps:<br />

Create a (set of) starting structure(s)<br />

Optimization of the structure(s)<br />

(molecular dynamics simulation)<br />

Evaluation of resulting structures<br />

Selection of 'final' structure(s)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Starting Structure<br />

'Builder' user interface of the modelling<br />

program.<br />

In most cases the input of the sequence<br />

is sufficient to generate an 'extended'<br />

structure (basic geometry).<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Optimization of the Structure<br />

For the optimization of the structure the<br />

most common approach is:<br />

Restraint Molecular Dynamics (RMD)<br />

using Simulated Annealing (SA)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Restrained Molecular Simulation<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Restrained Molecular Simulation<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Molecular Dynamics Simulation<br />

A Molecular Dynamics Simulation is a<br />

computer simulation (= calculation) of<br />

the movement of the atoms in a<br />

molecule.<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Force Field<br />

The force F i is calculated from tabulated potentials<br />

(the force field) and the current position r i :<br />

F<br />

i<br />

= −<br />

∂V<br />

∂r<br />

i<br />

The empirical potential energy function V contains<br />

terms like:<br />

V<br />

= Vbondlength<br />

+ Vbondangle<br />

+ Vdihedral<br />

+ VvanderWaals<br />

+ Velectrostatic<br />

+⋅⋅⋅⋅<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Potential Energy Function<br />

l<br />

E<br />

Potential Energy<br />

Function for<br />

Bond Length<br />

Bondstretching<br />

(vibrational motion)<br />

l 0<br />

l<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Newton's Equation of Motion<br />

Given initial coordinates and velocities,<br />

Newtons's equation of motion can be solved<br />

for all atoms i with the mass m i , position r i<br />

(a vector) and the Force F i (a vector, too),<br />

currently acting on the atom:<br />

m<br />

i<br />

d<br />

dt<br />

2<br />

r i<br />

2 =<br />

F<br />

i<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


The Constraints<br />

In addition to potentials of force field:<br />

'Home-made' constraints for distances<br />

and/or bond angles (from our <strong>NMR</strong> data)<br />

Special additional potentials of various (user<br />

defined) shapes.<br />

Additional terms to the initial function V.<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


NOE Constraints<br />

With the following terms we can add<br />

constraints for an upper (u ij ) and lower (l ij )<br />

limit for the distance r ij :<br />

V<br />

NOE<br />

= k(<br />

r<br />

= 0<br />

ij<br />

− u<br />

ij<br />

)<br />

2<br />

if<br />

if<br />

r<br />

l<br />

ij<br />

ij<br />

> u<br />

≤<br />

r<br />

ij<br />

ij<br />

<<br />

u<br />

ij<br />

=<br />

k(<br />

l<br />

ij<br />

−<br />

r<br />

ij<br />

)<br />

2<br />

if<br />

r<br />

ij<br />

< l<br />

ij<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


NOE Constraints<br />

The actual shape of the potential may look<br />

like this:<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Molecular Dynamics<br />

Typical time scales for molecular motions are given<br />

in the following table:<br />

Time scale Amplitude Description<br />

short femto to pico<br />

10 -15 -10 -12 s<br />

medium pico to nano<br />

10 -12 -10 -9 s<br />

long nano to micro<br />

10 -9 -10 -6 s<br />

very long micro to second<br />

10 -6 -10 -1 s<br />

0.001 - 0.1 Å - bond stretching, angle bending<br />

- constraint dihedral motion<br />

0.1 - 10 Å - unhindered surface side chain motion<br />

- loop motion, collective motion<br />

1 - 100 Å - folding in small peptides<br />

- helix coil transition<br />

10 - 100 Å - protein folding<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Time Steps of the Simulation<br />

Fastest motions femto seconds<br />

Limitation of single steps of simulation to<br />

shortest 'events'<br />

Prevention of unproportional increase of<br />

forces (molecules could 'explode'!)<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Local or Global Energy minimum ?<br />

Structural landscape is filled<br />

with peaks and valleys.<br />

Minimization protocol always<br />

moves “down hill”.<br />

No means to “see” the overall<br />

structural landscape<br />

No means to pass through<br />

higher intermediate<br />

structures to get to a lower<br />

minima.<br />

The The initial initial structure determines the the results of of the the minimization!<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Simulated Annealing<br />

Often used with RMD<br />

Potentials are 'down-scaled' in the beginning<br />

Higher degree of freedom ('sampling a bigger<br />

conformational space')<br />

In later steps the potentials are slowly brought to<br />

their final values.<br />

This is like first heating up the molecule and then<br />

cooling it down in small steps.<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Family of Structures<br />

Usually a big number of calculations is done in parallel:<br />

Starting from a set of structures and ending in a family<br />

of structures, from which an average structure may be<br />

created or the one with the minimum energy may be<br />

selected.<br />

Family of structures<br />

of the protein crambin<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Final Published 3D Structures<br />

of<br />

Molecules<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Restrained Molecular Dynamics<br />

(Summary)<br />

Choosing a force-field.<br />

Add constraints from <strong>NMR</strong> data<br />

Starting coordinates of all atoms (starting structure).<br />

Starting velocities of all atoms ('random seed<br />

numbers', Maxwell Boltzmann distribution).<br />

Solving Newton's classical equation of motion for very<br />

small steps.<br />

Calculation of new coordinates, forces and<br />

velocities.<br />

Repeat steps 5 and 6 and find structure with<br />

minimum energy.<br />

Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009


Rainer Wechselberger, <strong>NMR</strong> <strong>Spectroscopy</strong>, Utrecht, 2009<br />

The End

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!