28.02.2015 Views

Assessing the Slaking Behavior of Clay-Bearing Rocks - Marshall ...

Assessing the Slaking Behavior of Clay-Bearing Rocks - Marshall ...

Assessing the Slaking Behavior of Clay-Bearing Rocks - Marshall ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Assessing</strong> <strong>the</strong> <strong>Slaking</strong> <strong>Behavior</strong> <strong>of</strong><br />

<strong>Clay</strong>-<strong>Bearing</strong> <strong>Rocks</strong><br />

Abdul Shakoor<br />

Tej P. Gautam<br />

Department <strong>of</strong> Geology, Kent State University<br />

10 th Annual Technical Forum<br />

GEOHAZARDS IMPACTING TRANSPORTATION IN<br />

THE APPALACHIAN REGION<br />

Columbus, OHIO


SHALES<br />

CLAYSTONES<br />

MUDSTONES<br />

SILTSTONES<br />

CLAY-BEARING ROCKS<br />

Comprise approximately two-thirds <strong>of</strong> <strong>the</strong> stratigraphic column<br />

Cover one-third <strong>of</strong> <strong>the</strong> total land area<br />

Deteriorate rapidly upon exposure to atmospheric processes (low<br />

durability)<br />

Because <strong>of</strong> <strong>the</strong>ir low durability, clay-bearing rocks result in<br />

numerous problems in engineering construction, especially slope<br />

stability


A slope failure in<br />

Pittsburgh caused by<br />

low-durability<br />

claystone


A slope failure in Ohio<br />

caused by low-durability<br />

claystone/mudstone


FIELD BEHAVIOR OF CLAY-BEARING ROCKS<br />

Newly excavated rock mass<br />

Because <strong>of</strong> extensive<br />

disintegration, it is hard<br />

to find an intact rock<br />

block<br />

One year after<br />

excavation


RESEARCH OBJECTIVES<br />

Assess <strong>the</strong> slaking<br />

behavior <strong>of</strong> clay-bearing<br />

rocks under natural<br />

atmospheric conditions<br />

and quantify <strong>the</strong> nature<br />

<strong>of</strong> slaked material in<br />

terms <strong>of</strong> grain size<br />

distribution.


Twenty different clay-bearing rocks<br />

were selected for <strong>the</strong> study including:<br />

5 shales<br />

5 claystones<br />

5 mudstones<br />

5 siltstones


SAMPLE LOCATION AND CLASSIFICATION<br />

Potter et al. (1980)<br />

classification was<br />

used to classify<br />

samples into<br />

shales, claystones,<br />

mudstones, and<br />

siltstones<br />

Laboratory Tests:<br />

Slake durability index (I d2 , I d3 , I d4 , I d5 )<br />

Grain size distribution <strong>of</strong> <strong>the</strong> slaked material<br />

retained in 2 mm-mesh drum after <strong>the</strong> test


Slake Durability Test Apparatus


GSD <strong>of</strong> Slaked Material (Lab)<br />

100<br />

Shale (2)<br />

100<br />

Mudstone (3)<br />

Percent retained by weight<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

Cycle 1<br />

Cycle 2<br />

Cycle 3<br />

Cycle 4<br />

Cycle 5<br />

10<br />

Particle size (mm)<br />

1<br />

Percent retained by weight<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

Cycle 1<br />

Cycle 2<br />

Cycle 3<br />

Cycle 4<br />

Cycle 5<br />

10<br />

Particle size (mm)<br />

1<br />

Shale<br />

Mudstone<br />

Percent retained by weight<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

Cycle 1<br />

Cycle 2<br />

Cycle 3<br />

Cycle 4<br />

Cycle 5<br />

<strong>Clay</strong>stone (1)<br />

10<br />

Particle size (mm)<br />

1<br />

Samples after 5 th cycle<br />

Percent retained by weight<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

Cycle 1<br />

Cycle 2<br />

Cycle 3<br />

Cycle 4<br />

Cycle 5<br />

Siltstone (3)<br />

10<br />

Particle size (mm)<br />

1<br />

<strong>Clay</strong>stone<br />

Siltstone


Simulation <strong>of</strong> Field <strong>Slaking</strong> <strong>Behavior</strong><br />

• Twelve replicate samples <strong>of</strong> each <strong>of</strong> twenty claybearing<br />

rocks were prepared. Each sample consisted<br />

<strong>of</strong> 10 pieces, weighing 40-60 g, with a total weight<br />

<strong>of</strong> 450 to 550 g. All sample pieces were retained on<br />

1-inch sieve.<br />

• Each replicate sample was placed in a 9-inch<br />

diameter pan and exposed to natural climatic<br />

conditions for 1 year period, from September 2009<br />

to September 2010.<br />

• After each month, one sample <strong>of</strong> each <strong>of</strong> four rock<br />

types was removed and its grain size distribution<br />

was determined.


Samples Being Exposed to Natural Climatic Conditions<br />

• Picture: All samples on ro<strong>of</strong>


Initial Samples<br />

Shale<br />

Mudstone<br />

<strong>Clay</strong>stone<br />

Siltstone


After 1 Month<br />

Shale<br />

Mudstone<br />

<strong>Clay</strong>stone<br />

Siltstone


After 3 Months<br />

Shale<br />

Mudstone<br />

<strong>Clay</strong>stone<br />

Siltstone


After 6 Months<br />

Shale<br />

Mudstone<br />

<strong>Clay</strong>stone<br />

Siltstone


After 9 Months<br />

Shale<br />

Mudstone<br />

<strong>Clay</strong>stone<br />

Siltstone


Observations <strong>of</strong> <strong>Slaking</strong> <strong>Behavior</strong><br />

Sample Month-1 Month-3 Month-6 Month-9<br />

Shale-3<br />

Highly<br />

fractured; very<br />

few pieces<br />

remained intact<br />

Most pieces<br />

crumbled into<br />

smaller<br />

particles<br />

All pieces crumbled<br />

into smaller<br />

particles<br />

All pieces crumbled<br />

into small particles<br />

(2-6.3 mm)<br />

<strong>Clay</strong>stone-<br />

1<br />

Highly<br />

fractured;<br />

hardly any<br />

intact pieces left<br />

Most pieces<br />

crumbled into<br />

smaller<br />

particles<br />

All pieces crumbled<br />

into smaller<br />

particles<br />

All pieces crumbled<br />

into approx. 2mmsize<br />

particles<br />

Mudstone-<br />

3<br />

Mostly intact<br />

pieces; some<br />

fractures<br />

developed<br />

Numerous<br />

fractures<br />

developed;<br />

slightly-highly<br />

fragmented<br />

Most pieces<br />

crumbled into<br />

smaller particles<br />

All pieces crumbled<br />

into smaller, nearly<br />

uniform particle size<br />

(2-6.3 mm)<br />

Siltstone-<br />

3<br />

All pieces<br />

remained intact<br />

All pieces<br />

remained intact<br />

All pieces remained<br />

intact; a few small<br />

fractures<br />

developed<br />

Some fractures<br />

appeared but all<br />

pieces remained<br />

intact


GSD <strong>of</strong> Slaked Material (Field)<br />

After 1, 3, 6, 9 Months<br />

100<br />

Shale (3)<br />

100<br />

Mudstone (3)<br />

Percent retained by weight<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

Cycle 2<br />

M1<br />

M3<br />

M6<br />

M9<br />

10<br />

Particle size (mm)<br />

1<br />

Percent retained by weight<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

Cycle 2<br />

M1<br />

M3<br />

M6<br />

M9<br />

10<br />

Particle size (mm)<br />

1<br />

100<br />

<strong>Clay</strong>stone (1)<br />

100<br />

Siltstone (3)<br />

Percent retained by weight<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

Cycle 2<br />

M1<br />

M3<br />

M6<br />

M9<br />

10<br />

Particle size (mm)<br />

1<br />

Percent retained by weight<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

Cycle 2<br />

M1<br />

M3<br />

M6<br />

M9<br />

10<br />

Particle size (mm)<br />

1


Second cycle slake durability test<br />

overestimates <strong>the</strong> durability for<br />

claystones and underestimates<br />

<strong>the</strong> durability for siltstones and<br />

shales. For mudstones, it<br />

appears to provide a more<br />

representative value.


ASTM Description <strong>of</strong> Retained Material<br />

Type I<br />

Type II<br />

Type III


100<br />

Grain Size Distribution<br />

Percent retained by weight<br />

80<br />

60<br />

40<br />

20<br />

Shale (3)<br />

<strong>Clay</strong>stone (5)<br />

Mudstone (3)<br />

Siltstone (3)<br />

0<br />

100<br />

10<br />

Particle size (mm)<br />

1<br />

In order to represent a wide range <strong>of</strong> disintegration behavior <strong>of</strong><br />

clay-bearing rocks, a new parameter called “disintegration<br />

ratio” was used (Erguler and Shakoor, 2009)


DISINTEGRATION RATIO<br />

Disintegration Ratio ( D<br />

R<br />

)<br />

<br />

A<br />

A<br />

C<br />

T<br />

AC = area under any grain size distribution curve<br />

AT = total area encompassing grain size<br />

distribution curves <strong>of</strong> all samples<br />

Area ( bci )<br />

D R<br />

( <strong>Clay</strong>stone 5) <br />

0.003<br />

Area ( abcd )<br />

Area ( bcg )<br />

D R<br />

( Mudstone 3) <br />

0. 315<br />

Area ( abcd )<br />

Area ( fbce )<br />

D R<br />

( Siltstone 3) <br />

0. 926<br />

Area ( abcd )<br />

DR = 1, Completely durable<br />

DR = 0, Completely non-durable


Disintegration Ratio vs. Slake Durability<br />

Index (2 nd cycle) - Lab Results<br />

1<br />

Disintegration ratio<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

y = 0.0001x 2 - 0.004x<br />

R 2 = 0.87<br />

0 20 40 60 80 100<br />

Slake durability index (I d2 )


Disintegration Ratio (Field Samples) vs. Slake<br />

Durability Index (2 nd cycle)<br />

Disintegration ratio (3 months)<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0 20 40 60 80 100<br />

Slake durability index (I d2 )


CONCLUSIONS<br />

• Slake durability test does not predict <strong>the</strong> field<br />

behavior <strong>of</strong> clay-bearing rocks.<br />

• During <strong>the</strong> 9-months period <strong>of</strong> exposure, claystone<br />

and mudshale completely disintegrated during <strong>the</strong><br />

first 3 months, whereas siltstone was found to be<br />

<strong>the</strong> most durable. Mudstone exhibited an average<br />

disintegration behavior.<br />

• A wide range <strong>of</strong> disintegration behavior, as indicated<br />

by <strong>the</strong> particle size distribution <strong>of</strong> slaked material,<br />

can be described using <strong>the</strong> disintegration ratio.


THANK YOU

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!