26.02.2015 Views

force sensors for human/robot interaction - Colgate - Northwestern ...

force sensors for human/robot interaction - Colgate - Northwestern ...

force sensors for human/robot interaction - Colgate - Northwestern ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A<br />

V+<br />

Figure 3<br />

V+<br />

A<br />

A =<br />

<br />

<br />

<br />

r<br />

Dx<br />

¢<br />

3<br />

9<br />

2 - 0 0 0 -<br />

4<br />

4<br />

3 1<br />

3<br />

-<br />

0 0 0<br />

4 2<br />

4<br />

3 3 3 3<br />

0 0 p+ k p+ k - p 0<br />

8 4 8 4<br />

3 3 3 3<br />

0 0 p+ k p+<br />

k 0 0<br />

4 8 2 8<br />

3<br />

3 3<br />

0 0 - p 0 p+<br />

k 0<br />

4<br />

2 8<br />

9 3<br />

-<br />

0 0 0 3<br />

4 4<br />

<br />

<br />

Dx<br />

Dy<br />

Dz<br />

Dqx<br />

Dq<br />

y<br />

Dq<br />

z<br />

<br />

<br />

<br />

f<br />

f<br />

3<br />

L<br />

Et w A f<br />

=<br />

3<br />

t<br />

t<br />

t<br />

<br />

x<br />

y<br />

z<br />

x<br />

y<br />

z<br />

<br />

<br />

<br />

<br />

<br />

3<br />

L r<br />

¢<br />

Et w Af 3<br />

(1)<br />

(2)<br />

B<br />

V- V-<br />

Figure 4<br />

3.2 Compliance matrix<br />

V 0<br />

The shape of the flexure can be used to<br />

determine its compliance matrix. The flexure<br />

can be considered to be constructed of four<br />

identical L’s (See figure 2). The compliance<br />

matrix of these L’s is determined, assuming small<br />

deflections and simple stress distributions within<br />

the cross-section of the beam, as in [7]. The<br />

compliance matrix <strong>for</strong> one L is given below.<br />

B<br />

V<br />

where D r x is the displacement, L is the length of<br />

one side of the square sheet, E, t, and w are the<br />

modulus of elasticity, thickness, and width of the<br />

material, p=t 2 /h 2 is the aspect ratio squared,<br />

k<br />

E<br />

G<br />

= is the ratio of the modulus of elasticity<br />

and<br />

r<br />

the modulus of rigidity of the material, and<br />

f is the applied <strong><strong>for</strong>ce</strong>. These compliance<br />

matrices are translated and rotated so that they<br />

are positioned as in figure 2. Then the<br />

compliance matrix of the whole flexure<br />

assembly, C, is found by combining the<br />

compliances of the individual L’s<br />

C<br />

C<br />

=<br />

= A<br />

-1<br />

-<br />

i<br />

<br />

Í<br />

i <br />

1<br />

We find that<br />

<br />

<br />

(3)<br />

1<br />

20<br />

0 0 0 0 0<br />

0<br />

1<br />

20<br />

0 0 0 0<br />

0 0<br />

k + p<br />

p<br />

4( k + 4p)<br />

0 0 0<br />

0 0 0<br />

3( k + p)( k + 4p)<br />

p<br />

2<br />

12k + 80kp + 40p<br />

0 0<br />

2<br />

0 0 0 0<br />

3( k + p)( k + 4p)<br />

p<br />

2<br />

12k + 80kp + 40 p<br />

0<br />

2<br />

0 0 0 0 0<br />

3<br />

112<br />

(4)<br />

<br />

<br />

Dx<br />

r<br />

L r<br />

Et w Cf . (5)<br />

3<br />

= 3<br />

A number of insights can be gained from this<br />

compliance matrix. First, we notice that it is

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!