25.02.2015 Views

Calculus Chapter 4 Solutions

Calculus Chapter 4 Solutions

Calculus Chapter 4 Solutions

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Calculus</strong> <strong>Chapter</strong> 4 <strong>Solutions</strong><br />

1. a. The derivative or rate of the distance function is the velocity function. The area under<br />

the velocity function is the reverse of the derivative: it gives the position function.<br />

b. By taking the limit of slopes of smaller and smaller secants.<br />

c. As we use more rectangles with smaller widths, we can try to take a limit of the area<br />

approximations, which they give us.<br />

2. a. We could take the limit of the approximations of area as the number of rectangles<br />

goes to infinity.<br />

b. As Δx gets smaller, potentially approaching 0.<br />

3. lim<br />

n!"<br />

n#1<br />

b#a<br />

( )<br />

$ f a + b#a<br />

n n<br />

i (using left rectangles)<br />

i=0<br />

a. No, we cannot have rectangles with a width of 0.<br />

b. Each individual rectangle’s area would approach 0.<br />

c. This is because the number of rectangles is increasing toward infinity, so the total<br />

area need not approach 0.<br />

4. a. The numbers b and a represent the right and left boundaries for x, respectively.<br />

b. Instead of Δx, we now have dx in the integral.<br />

c. f (x) represents the heights of all rectangles and dx represents the bases.<br />

5. a. The region covers two cycles of the sine curve<br />

(compressed by a factor of two), and it has equal<br />

area above and below the x-axis:<br />

2!<br />

" sin(2t)dt = 0<br />

0<br />

b. See graph below left. The region is a trapezoid with area 2+4.5 ! 5 = 16.25<br />

2<br />

c. See graph below center. The region is a 4 X 6 rectangle with area 24.<br />

Solution continues on next page. →<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


5. Solution continued from previous page.<br />

d. See graph below right. The region has width 0 and has area 0.<br />

b. c. d.<br />

6. These are areas of trapezoids:<br />

10+25<br />

a. !1 = 17.5 miles<br />

10+70<br />

b. ! 4 = 160 miles<br />

2 2<br />

10+17.5<br />

c. ! 1 2 2 = 6.875 miles d. 10+10+15t<br />

! t = (10 + 7.5t)t = 10t + 7.5t<br />

2 2 miles<br />

7. a. Even<br />

2<br />

2<br />

b. " f (x)dx will be twice f (x)dx<br />

!2<br />

! , i.e., it is 20, because the area from x = !2 to 0<br />

0<br />

must equal the area from 0 to 2 due to symmetry.<br />

c. This area must be the difference of the other two: !2 ! 10 = !12 .<br />

2<br />

d. We can halve " f (x)dx to get ! f (x)dx , and then we have:<br />

3<br />

!2<br />

3<br />

! f (x)dx = ! f (x)dx " 1 f (x)dx<br />

2 !<br />

2<br />

0<br />

2<br />

"2<br />

2<br />

0<br />

8. a. ! 4 5 x!3 ! 4 b. !x !1/2<br />

c. !6 sin x d. f (x) = 4(x2 +1)<br />

x 2 +1<br />

= 4,! f !(x) = 0<br />

15<br />

9. a. # 1! f ("8 + i) = # 2("8 + i) 1/3 + 1 = 12<br />

i=0<br />

63<br />

)<br />

b.<br />

1<br />

4 ! f "8 + i 4<br />

i=0<br />

15<br />

i=0<br />

63<br />

( ) =<br />

1<br />

)<br />

i=0<br />

( ) 1/3 + 1<br />

#<br />

2 "8 + i 4<br />

$% 4<br />

&<br />

'( = 15<br />

10. f (x) = x 2 + x ! 12,! f "(x) = 2x + 1 , f (3) = 0, f !(3) = 7 , tangent line: y = 7(x ! 3)<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


n!1<br />

11.<br />

3<br />

" 2 + 3 n i 3<br />

= "<br />

n f<br />

i=0<br />

( )<br />

n!1<br />

n<br />

i=0<br />

( 3 ( 2 + 3 n i ) + 5)<br />

Larger n-values give better estimates, e.g., n = 30 yields 46.05. Using midpoint rectangles<br />

would give the exact area of 46.5 for any n.<br />

12. He is wrong because the triangle farthest from the pole sweeps out more volume when it is<br />

rotated.<br />

19<br />

( )<br />

3!<br />

3!<br />

13. a. 3 and ( sin # 2 "! +<br />

40 $ 40 i %<br />

& ' 2.94 , fairly close<br />

i=0<br />

19<br />

( ) 2 ! 3<br />

b. 53 1 3 and 1 "<br />

' !5 + i 2 # 2<br />

i=0<br />

$<br />

% & 53.75 , fairly close<br />

14. See graph at right. Note: y-axis is scaled by 10’s.<br />

They are next to each other and form (9x ! 2)dx = 250<br />

"<br />

8<br />

!2<br />

15. See graph at right. Note: y-axis is scaled by 5’s.<br />

a. Geometrically it looks like it would have area 50,<br />

but the calculator gives the (correct) answer of –50.<br />

b. The bounds have been switched.<br />

16. They will not be equal (unless they are both zero): they are opposites, as seen in the<br />

limiting Riemann sum, in which b!a becomes !<br />

b!a<br />

= a!b if we were to switch a and b.<br />

n n n<br />

b<br />

So " f (x)dx = !"<br />

f (x)dx .<br />

a<br />

a<br />

b<br />

3<br />

17. a. ! f (x)dx<br />

b. ! f (x)dx<br />

1<br />

d<br />

10<br />

9<br />

x+h<br />

c. ! f (x)dx<br />

d. ! f (t)dt<br />

e<br />

b<br />

c<br />

Sample conjecture: ! f (x)dx + ! f (x)dx = ! f (x)dx (which is basically part (c)).<br />

a<br />

b<br />

c<br />

a<br />

x<br />

18. All equal –4.5.<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


19. a. F(x) = !2x + C b. F(x) = 3x 1/2 + C<br />

c. F(x) = !x 3 + 3x 2 + C d. F(x) = (x + 3) 2 + C<br />

20. a. f !(x) = 18(x " 2) 3<br />

b. f !(x) = 2 cos x<br />

c. f (x) = 2x 2 + 9x ! 5!"! f #(x) = 4x + 9<br />

d. f (x) = x 2 ! 6x + 2!"! f #(x) = 2x ! 6 for x $ 0<br />

21. A slope function returns the slope of the tangent to f(x) for any value of x, i.e., the exact<br />

slope of f(x).<br />

!<br />

!<br />

22. a. " x sin x dx = ! , 2 x sin x dx = 2!<br />

0 " , x sin x = 2!<br />

0 #"!<br />

(because x sin x is an even function)<br />

!<br />

23. a. b.<br />

24. a.<br />

x<br />

lim<br />

2 "4<br />

x!2<br />

x"2 = lim (x+2)(x"2)<br />

= lim (x + 2) = 4<br />

x!2<br />

x"2 x!2<br />

(1+h)<br />

b. lim<br />

2 "1<br />

= lim<br />

1+2h+h 2 "1<br />

= lim (2 + h) = 2<br />

h!0<br />

h h!0<br />

h h!0<br />

25. Similar triangles help us get the radius: r = 10!h<br />

10 " 4 = 2 (10 ! h)<br />

5<br />

A = !r 2 = ! # $<br />

2 (10 " h) %<br />

5 &<br />

2<br />

=<br />

4!<br />

25<br />

(10 " h)2<br />

26. The rectangles still provide a good estimate of area.<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


27. a. A = 0 because the width is zero.<br />

b. The regions may be combined: ! f (x)dx + ! f (x)dx = ! f (x)dx<br />

c. We are subtracting this area from itself: ! f (x)dx + f (x)dx<br />

b ! = 0<br />

a<br />

d. We are amplifying the function by k, which multiplies the area<br />

by k:<br />

b<br />

! kf (x)dx = k " ! f (x)dx<br />

a<br />

b<br />

a<br />

b<br />

a<br />

a<br />

c<br />

b<br />

b<br />

c<br />

a<br />

2<br />

28. a. ! xdx + ! 3xdx = 1 2 x2 2 + 3 0 2 x2 2 (2 " 0) + (6 " 0) = 8<br />

0<br />

0<br />

2<br />

2<br />

0<br />

b. ! (4x)dx = 2x 2 2 = 8 " 0 = 0<br />

0<br />

!<br />

0<br />

b<br />

c. ( f (x) + g(x))dx<br />

a<br />

29. a. No, adding k to f(x) shifts the whole region up, so the total area will be<br />

b<br />

! f (x)dx + (b " a)k .<br />

a<br />

b. No, these are different parts of the curve.<br />

b<br />

b+c<br />

c. ! f (x)dx = f (x " c)dx<br />

a ! is true because it shifts the curve and shifts the integral<br />

a+c<br />

so as to take the same area.<br />

d. No, the second integral shifts the curve, so it takes a different area.<br />

30. • ! f (x)dx = 0<br />

a<br />

a<br />

b<br />

• ! f (x)dx + ! f (x)dx = ! f (x)dx<br />

a<br />

b<br />

c<br />

b<br />

b<br />

• ! f (x)dx + ! g(x)dx = ! ( f (x) + g(x))dx<br />

a<br />

b<br />

• ! f (x) dx = " ! f (x) dx<br />

a<br />

a<br />

a<br />

a<br />

b<br />

c<br />

a<br />

b<br />

• " k ! f (x) dx = k ! " f (x) dx<br />

b<br />

b<br />

• ! f (x)dx = ! f (x " h)dx<br />

a<br />

b+h<br />

a+h<br />

a<br />

b<br />

a<br />

31. a. y = 1+ x !1 , y ! = "x "2 b. y ! = " sin x + cos x<br />

c. y = x 5/3 , ! y ! = 5 3 x2/3 d. y = 6 ! 17x + 10x 2 , y " = !17 + 20x<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


32. a. A trapezoid, A = 16+72 ! 7 = 308<br />

2<br />

b. The curve is translated up by 5, A = 308 + 5 ! 7 = 343<br />

c. A rectangle, A = 5 ! 7 = 35<br />

The area in (b) is the sum of those in (a) and (c), because its function is the sum of the<br />

function in (a) and (c).<br />

3+7<br />

33. a. ! 2 = 10 b. 10<br />

2<br />

c. They are equivalent expressions; they just use different dummy variables.<br />

34. a. f !(x) = 3x 2 " 2x + 1 = 2, 3x 2 " 2x " 1 = 0 , (3x + 1)(x ! 1) = 0 , x = ! 1 3 , 1;<br />

( ) = ! 1 27 ! 1 9 ! 1 3 + 1 = 14<br />

27<br />

( ) or y = 2x + 32<br />

29<br />

( ) + 14<br />

f ! 1 3<br />

The lines are y ! 14<br />

27 = 2 x + 1 3<br />

b. y = ! 1 2 x + 1 3<br />

, f (1) = 1 ! 1+ 1 + 1 = 2 ,<br />

27 and y = ! 1 2 (x ! 1) + 2 = ! 1 2 x + 5 2<br />

, and y ! 2 = 2(x ! 1) or y = 2x<br />

35. a. f (g(x)) b. g( f (x))<br />

c. h( f (x)) d. g(h( f (h(x))))<br />

36. a. Negative b. Zero c. Positive<br />

d. Zero e. Negative<br />

37. The secant line goes through (0, 0) and (2, 0) and has slope 0, so we<br />

set f !(x) = 0!" 3x 2 ! 4x = 0<br />

x(3x ! 4) = 0!"!x = 0,! 4 3<br />

f (0) = 0 , so at (0, 0) and<br />

( ) = ( 4 3 ) 3 ! 2 ( 4 3 ) 2 = 64<br />

f<br />

4<br />

3<br />

27 ! 32<br />

9 " 3 3 = ! 32<br />

27 , so at 4<br />

( 3 , ! 32<br />

27 ).<br />

38. See graph at right. y-axis is scaled by 30’s, x-axis is scaled by 2’s.<br />

a. f !(x) = 3x 2 + 6x " 45<br />

f !("2) = 3("2) 2 + 6("2) " 45 = 12 " 12 " 45 = "45<br />

b. This is where !! f (x) = 6x + 6 = 0 , x = !1, f (x) = 55 ;<br />

The inflection point is (–1, 55).<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


39. a. !2(3) ! 5 = !11 b. 2(3) 2 ! 4 = 14<br />

c. f(x) is discontinuous and non-differentiable at x = 3 and lim f (x) does not exist.<br />

x!3<br />

40. a. 0 b. 5 c. 10<br />

d. 5x e. cx<br />

41. a. (trapezoid) 5+13 ! 2 = 18<br />

5+41<br />

b. ! 2 = 207<br />

2 2<br />

5+(4 x+5)<br />

c.<br />

! x = (2x + 5)x = 2x<br />

2 2 + 5x<br />

d. The area under the curve for 0 ! t ! x .<br />

e. A(x) = m 2 x2 + bx ; mt + b is the equation of a line of slope m through (0, b) .<br />

42. b. B(x) = 13+4x+5 !(x " 2) = (2x + 9)(x " 2) = 2x<br />

2 2 + 9x " 4x " 18 = 2x 2 + 5x " 18 , and it<br />

differs from A(x) by a constant.<br />

c. B(x) = (2x 2 + 5x) ! 18 = A(x) ! A(2) .<br />

x<br />

These two coincide to the areas ! (4t + 5)dt = (4t + 5)dt " (4t + 5)dt<br />

2 ! 0 ! .<br />

0<br />

d. Yes, they grow at the same rate because any incremental change in x (Δx) adds and<br />

equal amount of area to each.<br />

e. G(x) = A(x) ! A(c) is the area under f(x) from c to x.<br />

x<br />

2<br />

43. We can get distance from velocity by taking the area function (for area under the velocity<br />

curve), and we can get velocity from distance by taking the slope function of the distance.<br />

44. a. sin x + C b. !2 " x!1 +C<br />

!1<br />

= 2x !1 + C<br />

c. !9 " x4/5<br />

4/3 + C = ! 27 4 x4/3 + C<br />

19<br />

( ) 3/2<br />

45. a.<br />

1 "<br />

2 ! 4 i $<br />

' 5 # 5 % & !40. 04 , integral is –43.2<br />

i=0<br />

19<br />

b.<br />

7i<br />

( ) + 3<br />

! 4 1 + 7i " 30.85 , integral is 31.42<br />

20 20<br />

i=0<br />

46. Any constant has a derivative of zero, so any constant can be added to one antiderivative<br />

without changing its derivative, yielding infinite possibilities for the antiderivative.<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


47. f (x) = x 3 ! 4x 2 + x ! 4 , f !(x) = 3x 2 " 8x + 1, f (!3) = !27 ! 36 ! 3 ! 4 = !70 ,<br />

f !(3) = 27 + 24 + 1 = 52 , tangent line is y + 70 = 52(x + 3) or y = 52x + 86 .<br />

48. No, for example for problem 4-47, d dx (x2 + 1) = 2x and d (x ! 4) = 1 and 2x !1 = 2x is<br />

dx<br />

not the derivative.<br />

49. a. f (x) = x and g(x) = sin(x 2 ) + 1<br />

b. f (x) = x 2 + 2 and g(x) = 3x 3 ! 12<br />

50. Sample answer:<br />

1<br />

x dx<br />

!<br />

1<br />

0<br />

6<br />

51. ! 5dx = 5x 6 = 30 15 = 5dx<br />

0<br />

0 0<br />

15 = 5x<br />

3 = x<br />

No, this is not the same line that will divide<br />

!<br />

x<br />

6<br />

! 5xdx = 5 2 (6)2 = 90 in half.<br />

0<br />

3<br />

52. ! f (t)dt = ! f (t)dt " ! f (t)dt = 9(3) 2 " 2 " [9(2) 2 " 2] = 79 " 34 = 45<br />

2<br />

3<br />

0<br />

2<br />

0<br />

53. a. Definite b. Indefinite c. Definite<br />

d. Indefinite e. Indefinite<br />

54. a. A(x) = 2(x ! c) = 2x ! 2c = 2x + C<br />

b. A(x) = (5c+2)+(5x+2)<br />

2<br />

!(x " c)<br />

= 1 2<br />

c. A(x) = 3 2!c<br />

(5x + 5c + 4)(x " c)<br />

= 5 2 x2 + 2x " 5 2 c2 " 2c<br />

= 5 2 x2 + 2x + C<br />

( )+ 3 2!x<br />

( ) "(x ! c) = 1 (3 ! c ! x)(x ! c)<br />

2 2<br />

= ! 1 2 x2 + 3 2 x ! 3 2 c + 1 2 c2 = ! 1 2 x2 + 3 2 x + C<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


55. a. 2 ! 8 " 2 ! 3 = 10<br />

b. 5 ! 8 " ("2) ! 8 = 56<br />

( ) = 3!(102 " 14) = 264<br />

c. 3 5 2 ! 62 + 2 ! 6 " ( 5 2 ! 22 + 2 ! 2)<br />

#<br />

d. (5x + 2)dx = 5 2 ! 32 + 2 ! 3 "<br />

1<br />

3<br />

10<br />

( ) dk<br />

3<br />

e. " 2 ! k = 3 2 k ! 1 2 k2 10 = 30<br />

4<br />

4<br />

!2<br />

( ) dk<br />

3<br />

f. " 2 ! k = 3 2 k ! 1 2<br />

0<br />

( ) = 28.5 " 4.5 = 24<br />

5<br />

2 !12 + 2 !1<br />

( 2 ! 100<br />

2 ) ! 12 2 ! 16 2<br />

!2<br />

k2 = !6<br />

0 2 ! 4 2<br />

( ) ! (0) = !5<br />

( ) = !35 ! (!2) = !33<br />

3<br />

56. a. ! g(m)dm = 4(3)+1<br />

0<br />

0<br />

3+2<br />

= 13 5<br />

b. " g(m)dm = !" g(m)dm = 4(!1)+1 = ! !3<br />

!1+2 1 = 3<br />

!1<br />

5<br />

!1<br />

c. " g(m)dm = 4(5)+1<br />

!1<br />

0<br />

5+2 ! 4(!1)+1 = 21<br />

!1+2 7 ! !3<br />

1 = 6<br />

57. Ignacio is correct.<br />

58. a. d !(t) = sin t , d !(1) = sin1 " 0.84 , d !(" ) = 0 , d !(50) = sin 5 " #0.96<br />

This uses the derivative as the velocity, particularly the derivative of<br />

cos t , and also the derivative of a multiple (in this case of –1) of a<br />

function and the derivative of a sum of two functions.<br />

b. See graph at right. Area = 1 2<br />

! 5 !15 =<br />

75<br />

2<br />

= 37.5 ft<br />

c. Velocity is the derivative of distance and distance is the area under the velocity curve.<br />

59. a. f (1) = 50 miles<br />

b.<br />

50 miles<br />

1 hour<br />

= 50 mph<br />

c. 75 mph, at 0.5 hours (30 minutes)<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


#<br />

1<br />

60. (x 1/3 ! 4)dx " !13.14<br />

!2<br />

61. Yes, f must be continuous at x = c to be differentiable there, so f (c) must exist.<br />

!<br />

62. f !(x) = cos x , f<br />

tangent line is y ! 3<br />

2 = 1 2 x ! " 3<br />

( 3 ) = sin 3<br />

2 , f ! "<br />

( 3 ) = cos " 3 = 1 2 ,<br />

( ) or y = 1 2 x + 3<br />

2 ! " 6<br />

63. a.<br />

7<br />

3 x2/3 b. !21m !8 ! 21m 2<br />

c. 0 d.<br />

d<br />

dt (6t 2 + 15t) = 12t + 15<br />

64. a. 3x 5 + 2x 2 ! 3x + C b. !2 sin x + C<br />

c. !x 4 + 10x + C<br />

65. i. F(x) = 2x + C , A(x) = 2x<br />

ii. F(x) = x 2 + C , A(x) = x 2<br />

A(x) + C = F(x)<br />

"<br />

! /3<br />

66. a. cos x dx<br />

! /6<br />

b. Answers vary, you may suggest Tommy use the antiderivative F(x) = ! sin x + C .<br />

c. F(x) = ! sin x + C<br />

( ) + C) ! (! sin ( " 6 ) + C) , ! 3<br />

d. (! sin " 3<br />

2 + 1 2 = 1! 3 un<br />

2 2<br />

e. The +C is added and subtracted when evaluating, therefore it is eliminated.<br />

67. a. ! (2x + 5)dx = x 2 + 5x<br />

b. A !(x) = f (x) ; Geometrically, f (x) is the slope function of area, A(x) .<br />

c. A(x) = 1 2 mx2 + bx + C and A !(x) = mx + b<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


68. a. As x increases, there is more area under the curve.<br />

! f (x)dx = A(x)!!"!! d f (x)dx<br />

dx ! = d A(x)!!"!! f (x) = #<br />

dx A (x)<br />

b. Since F(c) is a constant, this expression becomes f (x) + 0 = f (x) .<br />

c. (1) Since f (x) is continuous, the anti derivative exists, or F(x) = ! f (t)dt .<br />

a<br />

(2) F(x) means geometrically, the area under the curve from a to x.<br />

(3) Using (1), take the derivative of both sides: d dx F(x) = d f (t)dt<br />

dx ! .<br />

(4)<br />

F(x+h)"F(x)<br />

Rewrite the left side using the definition of the derivative: lim<br />

h!0<br />

h<br />

(5) The definition of the derivative for F(x): F(x + h) ! F(x) " hf (x) .<br />

(6) Divide by h and apply the limit as h ! 0 . The derivative becomes f(x).<br />

(7) Simplify your results: f (x) = d f (t)dt<br />

dx ! .<br />

a<br />

d. " f !(x)dx<br />

=<br />

d<br />

" dx f (x)dx = f (x) + C<br />

x<br />

x<br />

a<br />

x<br />

69. A(x) = F(x) + C<br />

"<br />

70. F(x) = 2x 3 + 7x + C , (6x 2 + 7)dx = F(2) ! F(1) = (16 + 14 + C) ! (2 + 7 + C) = 21<br />

1<br />

2<br />

#<br />

x<br />

71. a. F(x) = x 2 + 5 + C , (2x + 5)dx = x 2 ! 5x + C ! (0 2 + 5 " 0 + C) = x 2 + 5x<br />

#<br />

9<br />

0<br />

b. (2x + 5)dx = F(9) ! F(4) = (9 2 + 5 " 9) ! (4 2 + 5 " 4) = 81 + 45 ! 36 = 90<br />

4<br />

72. F(x) = x 2 + 5x + C ,<br />

9<br />

! (2x + 5)dx = (9 2 + 5(9) + C) " (4 2 + 5(4) + C) = (81+ 45) " (16 + 20) = 90<br />

4<br />

"<br />

2<br />

73. a. (6x 3 + 9x)dx<br />

!5<br />

9<br />

b. ! h(x) dx " ! h(x) dx = "! h(x)dx!!or!! ! h(x)dx<br />

#<br />

5<br />

9<br />

3<br />

c. ![(2x) 2 + ( x ) 2 ]dx = ! "(4x 2 + x)dx<br />

!<br />

7<br />

2<br />

#<br />

7<br />

2<br />

d. (x + 5) 2 dx + xdx = x 2 + xdx = (x 2 + x )dx<br />

1<br />

4<br />

(by translating the first integral)<br />

!<br />

9<br />

6<br />

!<br />

9<br />

6<br />

5<br />

3<br />

!<br />

9<br />

6<br />

3<br />

5<br />

!<br />

9<br />

6<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


74. ! f (t)dt represents total weight loss, in pounds, between day a and day b.<br />

a<br />

75. a. ∞ or does not exist b. does not exist<br />

c. 2 d. –2<br />

e. 2 f. 0<br />

g. At x = –2, –1, and 2 (and below –2)<br />

76. a. 17 1 3<br />

b. The area under v(t) from t = 0 to 4, and this is the distance at t = 4 , i.e. s(4) .<br />

c. acceleration<br />

d. feet<br />

2<br />

77. a. " ! f (x)dx = " f (x)dx = 10<br />

4<br />

12<br />

4<br />

2<br />

b. " ( f (x ! 8) + 4) dx = " f (x)dx + " 4dx = 10 + 4x 12 = 10 + (48 ! 40) = 18<br />

10<br />

12<br />

c. ! f (x + 8)dx = ! f (x); not enough info<br />

10<br />

20<br />

18<br />

4<br />

2<br />

10<br />

10<br />

78. ! 2xdx = x 2 10 = 100 Solve: 0 x2 x = 0 50!!!!!x2 = 50!!!!!x = 50 = 5 2<br />

0<br />

79. a. s !(t) = 4 " 1 2 t #1/2 = 2t #1/2 , s !(1) = 2 , s !(4) = 2 = 1, s !(16)<br />

= 2 = 1 4 16 2<br />

This uses derivative to obtain velocity, the Power Rule for this particular derivative,<br />

and the rule d dx (c ! f (x)) = c ! d dx ( f (x)) .<br />

1<br />

1<br />

b. s(1) = ! v(t)dt = ! (9t + 32)dt , ! v(t)dt = 9 2 t 2 + 32t + C ,<br />

&<br />

1<br />

0<br />

0<br />

(9t + 32)dt = 9 2 (1)2 + 32(1) ! "<br />

#<br />

9 2 (0)2 + 32(0) $<br />

% = 36.5 miles<br />

0<br />

This uses a definite integral and the fundamental theorem to use the antiderivative to<br />

calculate this integral.<br />

c. Distance is an antiderivative or area function of velocity, and velocity is the<br />

derivative or slope function of area.<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


4-80. a. See graph at right.<br />

!3<br />

i. g(!3) = " f (t)dt = !"<br />

f (t)dt = ! 1 2 # !3# 3<br />

0<br />

!7<br />

0<br />

!3<br />

0<br />

( ) = 4.5<br />

( )<br />

ii. 2g(!7) = 2" f (t)dt = !2 f (t)dt<br />

0 " = !2 1 (!4)(4) + (!4)(3)<br />

!7<br />

2<br />

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! = !2(!20) = !40<br />

9<br />

iii. g(9) + g(!9) = " f (t)dt ! f (t)dt<br />

0 "!9<br />

= ( 1 (4)(4) + 4(5)<br />

2 ) ! 1 (4)(!4) + (!4)(5)<br />

2<br />

b. See graph at right.<br />

!3<br />

0<br />

( ) = 28 ! (!28) = 56<br />

i. g(!3) = " f (t)dt = !"<br />

f (t)dt = ! 1 2 # 3# 3<br />

0<br />

!7<br />

0<br />

!3<br />

( ) = !4.5<br />

ii. 2g(!7) = 2" f (t)dt = !2 f (t)dt<br />

0 " = !2 1 (4)(4) + (4)(3)<br />

!7<br />

2<br />

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! = !2(20) = !40<br />

iii. g(9) + g(!9) = " f (t)dt ! f (t)dt<br />

0 "!9<br />

= ( 1 (4)(4) + 4(5)<br />

2 ) ! 1 (4)(4) + (4)(5)<br />

2<br />

9<br />

0<br />

0<br />

( )<br />

( ) = 28 ! 28 = 0<br />

y<br />

y<br />

x<br />

x<br />

82. a. The areas under the curve from 0 to a and from 0 to b, respectively.<br />

b<br />

b. ! f (x)dx = ! f (x)dx "!<br />

f (x)dx = F(b) " F(a)<br />

a<br />

t<br />

b<br />

0<br />

c. F !(t) = d (2t + 3)<br />

dt " dt = d dt (t 2 + 3t # 0) = 2t + 3<br />

0<br />

a<br />

0<br />

2<br />

83. a. 2 hours: s(2) = ! (2t + 5)dt = t 2 + 5t 2 = 0 22 + 5(2) " (0 + 0) = 14 miles<br />

0<br />

5<br />

5 hours: s(5) = ! (2t + 5)dt = t 2 + 5t 5 = 0 52 + 5(5) " (0 + 0) = 50 miles<br />

0<br />

x<br />

x hours: s(x) = ! (2t + 5)dt = t 2 + 5t x = 0 x2 + 5x<br />

4<br />

0<br />

b. s(4) ! s(2) = " (2t + 5)dt = t 2 + 5t 4 = 2 42 + 5(4) ! (2 2 + 5(2)) = 22 miles<br />

2<br />

c. The derivative is the slope of the tangent line and slope is the rate of change. The rate<br />

of change involving distance is velocity.<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


84. a. 3x ! 5<br />

x<br />

d<br />

b. " (3x ! 5)dx = 3dx<br />

dx " = 3x x = 3x ! 9<br />

3<br />

3<br />

x<br />

3<br />

c. 0; The integration will yield a constant. The derivative of a constant is 0.<br />

d.<br />

d<br />

" (3x ! 5)dx = 3<br />

dx " dx = 3x + C<br />

e. cos(x 2 )<br />

d<br />

f. ! dx (cos x2 )dx = cos x 2 4 = cos(16) " cos(1)<br />

1<br />

1<br />

4<br />

85. Note: The FTC gives exact results, whereas calculators give very close estimates.<br />

a. 2 !<br />

x "2<br />

"2<br />

8<br />

1<br />

8<br />

= "x "2 1<br />

= " 1<br />

63<br />

" ("1) =<br />

64 64<br />

" /2<br />

b. ! cos x " /4 = ! cos<br />

"<br />

2 ! (! cos " 4 ) = 0 + 2<br />

2 = 2<br />

2<br />

c. 3 x3/2<br />

9 9<br />

3/2 = 2x<br />

3/2 = 2 ! 27 " 2 ! 8 = 54 " 16 = 38<br />

4 4<br />

d. x 3 ! 3x 2 + 2x 0<br />

2<br />

= 8 ! 3" 4 + 2 " 2 ! 0 = 8 ! 12 + 4 = 0<br />

#<br />

e. 2 ! 3! x"1<br />

$<br />

%<br />

"1 1<br />

3<br />

&<br />

'<br />

( = "6x"1 3<br />

= "<br />

6<br />

1 3 " ("6) = 4<br />

x<br />

f. 4/3 8<br />

4/3 =<br />

3<br />

4 x4/3 8<br />

=<br />

3<br />

!1<br />

!1 4 "16 ! 3 (1) =<br />

45<br />

4 4<br />

9<br />

g. Combine: (2x ! 20)dx = x 2 9<br />

! 20x = (81! 180) ! (4 + 40) = !99 ! 44 = !143<br />

"!2<br />

!2<br />

( )<br />

h. 9 m1/3<br />

1/3 ! 2 m!2<br />

27<br />

!2 = 27m 1/3 + m !2 27<br />

= 81 +<br />

1<br />

1 1<br />

27 2<br />

! (27 + 1) " 53.001<br />

86. He did not distribute the negative. So it should have ended in line 2, with –2 – C. Then the<br />

C’s would subtract out giving 68.<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


87. a.<br />

3<br />

2 x4 ! x 2 + 5x + C<br />

b.<br />

3<br />

2 x4 ! x 2 4<br />

+ 5x =<br />

3<br />

" 256 ! 16 + 20<br />

2 2<br />

c. 3t 3 ! t + C<br />

d. 3t 3 ! t !2<br />

e. ! cos m + 1 9 m3 + C<br />

( ) ! ( 3 "16 ! 4 + 10<br />

2 ) = 384 + 4 ! 30 = 358<br />

2<br />

= (3" 8 ! 2) ! (3(!8) ! (!2)) = 22 ! (!22) = 44<br />

f. ! cos m + 1 9 m3 = ! cos " + 1 !"<br />

9 " 3<br />

"<br />

( ) ! (! cos(!" ) + 1 (!" )3<br />

9 ) = 1+ " 3<br />

9 + (!1) + " 3<br />

9 = 2" 3<br />

9<br />

!3<br />

88. a. " ! f (x)dx + " g(x)dx = " (g(x) ! f (x))dx<br />

!<br />

!5<br />

!3<br />

!5<br />

b. (3 f (x) + 5g(x))dx<br />

1<br />

6<br />

11<br />

c. ! f (x)dx or ! f (x)dx or just zero.<br />

!<br />

11<br />

10<br />

d. f (t)dt<br />

9<br />

6<br />

6<br />

!3<br />

!5<br />

f (x+h)# f (x#h) 4(x+h)<br />

89. f !(x) = lim<br />

= lim<br />

2 #9(x+h)#1#[4(x#h) 2 #9(x#h)#1]<br />

=<br />

h"0<br />

2h h"0<br />

2h<br />

4 x<br />

lim<br />

2 +8xh+4h 2 "9x"9h"1"4 x 2 +8xh"4h 2 +9x"9h+1 16xh"18h<br />

= lim = lim 8x " 9 = 8x " 9<br />

h!0<br />

2h<br />

h!0<br />

2h h!0<br />

90. a. cos(x ! 5) b. 82x 81<br />

c. !2 3 2<br />

( ) m 1/2 = !3m 1/2 d. 3(x + 6) 2<br />

91. f !(x) = 3x 2 + 24x + 36 = 3(x + 2)(x + 6), and f !!(x) = 6x + 24 . From f !(x) , we know that<br />

f (x) is increasing in (–∞, –6] and [–2, ∞) (where f !(x) " 0 ), and f (x) is decreasing in<br />

[–6, –2] ( f !(x) " 0 ). From f !!(x) , the point of inflection is at x = !4 and is (!4, !22),<br />

and f is concave down in (–∞, –4] and concave up in [–4, ∞).<br />

92. Its inflection point (from #78) was (–4, –22), where the slope is<br />

f !("4) = 3("4) 2 + 24("4) + 36 = "12 .<br />

The tangent line is y + 22 = !12(x + 4) or y = !12x ! 70 .<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


93. a. The tangent is vertical; the slope goes to infinity and no actual numerical derivative<br />

exists.<br />

b. No, the tangent is still vertical (and in this case there is a cusp).<br />

c. This is just f (x) = x and it is differentiable everywhere.<br />

d. Because the graph changes from concave up to concave down.<br />

2<br />

94. ! (g(x) + 3)dx = 0 (because of the bounds)<br />

2<br />

2<br />

" (3 ! 5g(x))dx = !3x 4 + 5 g(x)<br />

2 " = !3(4) + 3(2) + 5(6) = 24<br />

4<br />

4<br />

2<br />

96. The defendant traveled 12 + 15 + 21+ 26 + 10 + 16 = 100 miles in 2 ! 18 = 2.3 hours, at an<br />

60<br />

average velocity of 43.48 mph, so the officer is incorrect, the teacher may be innocent. But<br />

this does not prove innocence.<br />

97. This is at the inflection point s !(t) = "93.75 # 3t 2 + 93.75 # 2t + 45 ,<br />

s !!(t) = "93.75 # 6t + 93.75 # 2 = 0 , t = 93.75!2<br />

93.75!6 = 1 3<br />

1<br />

s!<br />

3<br />

hour , and this velocity is<br />

( ) = "93.75 # 3( 1 3 ) 2 + 93.75 # 2 ( 1 3 ) + 45 = 76.25 mph, which confirms the prosecution’s<br />

claim.<br />

$<br />

98. a. cos x is even, so cos xdx = 2 ! cos xdx = 2 !sin x 0<br />

" = 2 !(0 # 0) = 0<br />

b. 5 ! y3/2<br />

3/2 + cos y + C = 10 3 y3/2 + cos y + C<br />

"<br />

#"<br />

$<br />

"<br />

0<br />

c. The antiderivative of 1 x<br />

has not yet been taught, but with a calculator this is ! 1.<br />

d. ! 1dx = x + C<br />

99. a. The graph represents distance and s !(t)is velocity.<br />

b. The graph represents sales rate (in sales/hr) and ! r(t)dt represents and indefinite<br />

area of total sales.<br />

c. The graph represents a weight rate in lbs/inch, and w(i)di ! represents an indefinite<br />

area or lbs.<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


#%<br />

100. a. v(t) = ! 20 t + 20, 0 " t " 4.5<br />

3<br />

$<br />

&% !!20t ! 100, 4.5 < t " 5<br />

b. For 3 hours, the triangle has area 1 2 ! 20 ! 3 = 30 miles. For the 4th hour we should<br />

count the area as positive, 1 2 ! 20 3 !1 = 10 3 , for a total of 33 1 3 miles.<br />

c. The car was traveling south, towards its starting point.<br />

!<br />

5<br />

d. v(t)dt<br />

!<br />

0<br />

5<br />

e. v(t) dt<br />

0<br />

101. a. The backwards/forwards nature of finding velocity from position and vice versa is<br />

accomplished using the derivative and integral, as proscribed in the Fundamental<br />

Theorem.<br />

b. We must consider integrating both parts of the function:<br />

#%<br />

s(t) = ! 10 3 t 2 + 20t, 0 " t " 4.5<br />

$<br />

&% 22.5 + 10t 2 ! 100t + 247.5 = 10t 2 ! 100t + 270, 4.5 < t " 5<br />

The 22.5 is ! 10 3 t 2 + 20t evaluated at t = 4.5 , and 247.5 is the opposite of<br />

10t 2 ! 100t evaluated at 4.5, in order to make s(t) continuous at 4.5.<br />

102. y ! = 3x 2 " 14x + 15 = (3x " 5)(x " 3) is non-negative in (!", 5 3 ) ! [3, ") , which is where y<br />

5<br />

is increasing. It is non-positive in !<br />

" 3 , 3 #<br />

$ , where y is decreasing.<br />

103. a. y ! = cos(x " 3) , differentiable everywhere<br />

#<br />

b. f !(x) = "2x, x < 1<br />

$<br />

3(x " 1) 2 , it is not differentiable at x = 1 because the limits (of<br />

%& , x > 1<br />

secants) are different from the left and right sides.<br />

%<br />

2<br />

104. 6 x dx !<br />

2<br />

0<br />

n#1<br />

$<br />

n " 621/n<br />

i=0<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


105. a. f (x) = 2x 3 + 6x 2 ! 7x + C<br />

b. 25 = f (!2)<br />

25 = 2(!2) 3 + 6(!2) 2 ! 7(!2) + C<br />

25 = !16 + 24 + 14 + C<br />

C = 3<br />

Therefore f (x) = 2x 3 + 6x 2 ! 7x + 3<br />

c. The integral of the derivative gives the original function plus a constant. Using the<br />

point provided, we can solve for the constant.<br />

106. a. The velocity is negative in the second interval, and s(1.6) = 84 and s(1.8) ! 74 .<br />

b. Look at the inflection point in each section:<br />

1 st section: s !(t) = "291.67 # 3t 2 + 1125 # 2t " 1360 ,<br />

s !!(t) = "291.67 # 6t + 1125 # 2 = 0 , t = 2!425<br />

291.67!6 " 1.286 , s ! (1.286) " 86.4 mph<br />

2 nd section: s !(t) = 2500 " 3t 2 # 12750 " 2t + 21600 , s !!(t) = 2500 " 6t # 12750 " 2 = 0 ,<br />

t = 12750!2<br />

12750!6 = 1.7 , s ! (1.7) = "75 mph so max speed is 75 mph<br />

3 rd section: s !(t) = "176.3t 2 + 1142.4 # 2t " 2402 , s !!(t) = "176 # 6t + 1142.4 # 2 = 0 ,<br />

t = 1142.4!2 " 2.164 , s !(2.164) " 69.7 mph<br />

176!6<br />

Basically the inspector is right, there are two sections where 70 mph is exceeded.<br />

107. Exhibit B does not meet the starting point of Exhibit C, portraying a discontinuity. At time<br />

t = 1hour, Exhibit C shows the teacher at a position of 48 miles, whereas the function of<br />

Exhibit B shows a position 45 miles. Exhibit B shows that the teacher arrived in D’exdete<br />

before an hour. (But if the teacher stopped in D’exdete, she should have left at an initial<br />

velocity of 0 for her distance function to be differentiable, but Exhibit C’s function starts<br />

with a derivative of 15mph).<br />

108. a. " (2y ! 3) 2 dy = " (4y 2 ! 12y + 9)dy = 4 3 y3 ! 6y 2 + 9y + C ; Expanded the function<br />

and then the reverse Power Rule was used for each term.<br />

b. ! 26.93 , using a calculator<br />

c. 9 ! m"1<br />

"1 + 7 ! m12<br />

12 + C = "9m"1 + 7<br />

12 m12 + C ; The reverse Power Rule was used for<br />

each term.<br />

d. ! 7.069 , using a calculator<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


109. y = x(x 2 + 2x ! 3) = x(x ! 1)(x + 3) crosses the x-axis at x = !3, so this is<br />

0<br />

(x 3 + 2x 2 ! 3x)dx = x4 4 + 2x3<br />

3 ! 3x2<br />

0<br />

(!3)<br />

" 2<br />

2 = ! ! 2(!3)3 + 3(!3)2 = 11.25un 4 3 2 2<br />

!3<br />

!3<br />

"<br />

9<br />

110. a. [ f (x) 2 ! g(x) 2 ]dx<br />

!<br />

2<br />

9<br />

b. f (x)dx<br />

3<br />

1<br />

c. " f (x)dx + " f (x)dx + " f (x)dx = " f (x)dx<br />

!<br />

!2<br />

8<br />

d. (2k(x) + j(x))dx<br />

2<br />

1<br />

4<br />

9<br />

4<br />

9<br />

!2<br />

#(x+h)<br />

111. a. f !(x) = lim<br />

2 +3(x+h)+1#(#x 2 +3x+1)<br />

= lim<br />

#2xh#h 2 +3h<br />

= lim # 2x # h + 3 = #2x + 3<br />

h"0<br />

h<br />

h"0<br />

h h"0<br />

b. f !(x) = "2x + 3 , the same<br />

c. f !(0) = 3, f !(1) = 1<br />

112. a. When f !(x) is non-negative: (!", !5] ! [1, 6]<br />

b. When f !(x) is increasing, roughly [–2.5, 3.7].<br />

c. Negative, because at x = 8 the slope of f '(x) is negative and f !! is the slope<br />

function of f ! .<br />

113. a. It is a cylinder with cones carved out of its top and bottom.<br />

b. !r 2 h " 2 (!r 2 # 4 # 1 3 ) = ! # 25 # 8 " 8 3 ! # 25 = 2 400!<br />

(! # 200) = un<br />

3 3 3<br />

19<br />

114.<br />

1<br />

# 5 (!4 + i 5 ) " 2!2+i/5 $ !6.448<br />

i=0<br />

3<br />

115. ! (h(x) + j(x))dx = "! (h(x) + j(x))dx = "! h(x)dx " ! j(x)dx = " (4 + 2) = "6<br />

5<br />

7<br />

5<br />

3<br />

5<br />

" (h(x ! 2) + 2)dx = " h(x)dx + " 2dx = 4 + 2x 7 = 2 + (14 ! 10) = 8<br />

5<br />

5<br />

3<br />

7<br />

5<br />

5<br />

3<br />

5<br />

3<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


116. All of the velocities basically connect between the pieces. The total area ! v(t)dt can be<br />

0<br />

obtained by adding each area separately:<br />

0.7<br />

" (!187.5t 2 + 150t + 45)dt + " (43.75t + 27.5)dt + " (!500t 2 + 1200t ! 640)dt +<br />

0<br />

1.8<br />

1.2<br />

0.7<br />

" (7500t 2 ! 25500t + 21600)dt + " (!528t 2 + 2284.8t ! 2402)dt =<br />

1.6<br />

#<br />

!187.5 " t3 3 + 150 t2 2<br />

$<br />

%<br />

+ 45t 0<br />

0.7<br />

23<br />

1.8<br />

1.6<br />

1.2<br />

&<br />

'<br />

( + "<br />

43.75 ! t2 2 + 27.5t 1.2 %<br />

#<br />

$<br />

0.7 &<br />

' + "<br />

!500 t3 3 + 1200 t2 2 ! 640t 1.6 %<br />

#<br />

$<br />

1.2 &<br />

' +<br />

#<br />

7500 ! t3 3 " 25500 ! t2 2 + 21600t 1.8 &<br />

$<br />

%<br />

1.6 '<br />

( + #<br />

!528 " t3 3 + 2284.8 t2 2 ! 2402t 2.3 &<br />

$<br />

%<br />

1.8 '<br />

( )<br />

46.81+ 34.53 + 21.33 + (!10) + 25.96 " 118.63 miles.<br />

This represents the total displacement and should be 100 miles according to Exhibit A, and<br />

represents a contradiction in the data.<br />

2.3<br />

4<br />

117. a. " (!x 2 + 6x ! 3)dx = ! x3 1<br />

3 + 6 # x2 2 ! 3x 4<br />

= !<br />

64<br />

+ 3#16 ! 12<br />

3<br />

1<br />

"<br />

4<br />

b. (x + 1)dx = x2 2 + x 1<br />

1<br />

4<br />

=<br />

16<br />

2 + 4 ! ( 1 + 1) = 10.5<br />

2<br />

( ) ! ( 1 3 + 3 ! 3 ) = 15<br />

c. " ( f (x) ! g(x))dx = " (!x 2 + 6x ! 3 ! x ! 1)dx = " (!x 2 + 5x ! 4)dx<br />

1<br />

4<br />

1<br />

4<br />

= ! x3 3 + 5 # x2 2 ! 4x 4<br />

= 2<br />

2<br />

3 ! (!1 5 6 ) = 4.5<br />

1<br />

This can also be seen as part (a) minus part (b).<br />

1<br />

4<br />

118. a. Length ! f (x) " g(x), width = !x , area ! "x( f (x) # g(x))<br />

"<br />

b<br />

b. ( f (x) ! g(x))dx<br />

a<br />

c. The x-values of the points where the curves intersect.<br />

119. a. Length ! g(x) " f (x) = "x + 8 " ((x " 3) 2 " 1) = "x 2 + 5x , width = !x ,<br />

area ! "x(#x 2 + 5x)<br />

5<br />

b. " (!x 2 + 5x)dx = ! x3 3 + 5x2<br />

5<br />

2 = !<br />

125<br />

3 + 125<br />

2 = 125<br />

6 = 20 5 6<br />

0<br />

2<br />

2<br />

120. a. " !x ! (x 2 ! 6)dx = 22 3 un2<br />

0<br />

b. Because we are finding the area between two curves. When g(x) is subtracted, the<br />

negative area becomes positive.<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


121. a. width = !x , length = !(x ! 3) 2 + 9 ! (x + 6) = !x 2 + 5x ! 6 = !(x ! 2)(x ! 3),<br />

3<br />

Area = # (!x 2 + 5x ! 6)dx = ! x3 3 + 5 " x2 2 ! 6x ! 27<br />

2<br />

3 + 45<br />

2 ! 18 ! ! 8 3 + 20<br />

2 ! 12<br />

2<br />

( ) = 1 6 un2<br />

= ! 9 2 ! ! 14 3<br />

b. width = !x , length = sin x ! (x 2 ! 1) ,<br />

1.410<br />

3<br />

=<br />

Area = " (sin x ! x 2 + 1)dx = ! cos x ! 1 3 x3 + x 1.410<br />

!0.637<br />

= 0.315 ! (!1.355) # 1.671un 2<br />

!0.637<br />

( )<br />

!2<br />

123. a. " (3m 2 + 2m ! 9)dm = m 3 + m 2 ! 9m<br />

!5<br />

!5<br />

!!!!!= !8 + 4 + 18 ! (!125 + 25 + 45) = 14 ! (!55) = 69<br />

2<br />

b. " (2t 2 + 3t)dt = 2 t3 !1<br />

3 + 3 t2 2 !1<br />

!1<br />

( ) dx<br />

2<br />

=<br />

16<br />

!2<br />

( ) = 10.5<br />

3 + 6 ! ! 2 3 + 3 2<br />

c. " 1 + 2 x + 1 , of which the middle term requires a calculator: ! 0.977<br />

!4<br />

x 2<br />

d. a x2 2 + bx 3<br />

= a !<br />

9<br />

2 + 3b<br />

2<br />

( ) " ( a ! 4 2 + 2b ) = 5a<br />

2 + b<br />

124. From the fundamental Theorem, F(x) is an antiderivative of f(x), so f(x) must be the<br />

derivative of F(x): f (x) = d dx (3(x ! 4)3 + 6) = 9(x ! 4) 2 .<br />

125. a. A hollow sphere.<br />

b. ! 4 3 "r 1 3 , ! 4 3 "r 2 3 = 4 3 " # 64 ! 4 3 " # 27 = 4 148"<br />

" # 37 = un<br />

3 3 3<br />

126. Yes, because: (1) It is continuous at x = 2 (both functions approach 1).<br />

(2) d dx ((x ! 1)2 ) = 2(x ! 1) approaches 2 and d 2 sin(x ! 2) = 2 cos(x ! 2) also approaches 2.<br />

dx<br />

127. a. Distance is an antiderivative: " (!32 ! 18)dt = !16t 2 ! 18t + C = s(t) and<br />

500 = s(0) = !16(0) 2 ! 18(0) + C = C ,so s(t) = !16t 2 ! 18t + 500 .<br />

So s(1) = !16(1) 2 ! 18(1) + 500 = 466 ft, s(2) = !16(2) 2 ! 18(2) + 500 = 400 ft,<br />

and s(3) = !16(3) 2 ! 18(3) + 500 = !144 ! 54 + 500 = 302 ft.<br />

b. s(t) = !16t 2 ! 18t + 500 is an antiderivative of v(t).<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


128. a. f (x) = (x!3)(x+1)<br />

x!2<br />

= x ! 3<br />

x!2 : As x ! "#, f (x) ! "# . As x ! 2" , f (x) ! # .<br />

As x ! 2 + , f (x) ! 0 ; as x ! ", f (x) ! " . End behavior: y = x .<br />

b. As x ! "#, f (x) ! 0 ; as x ! 0 " , f (x) ! "# ; as x ! 0 + , f (x) ! " ;<br />

as x ! ", f (x) ! 0 .<br />

129. No, d dx ((x ! 3)(2x ! 9)) = d dx (2x2 + 3x ! 27) = 4x + 3, but d dx (x ! 3) " d (2x + 9) = 1! 2 = 2 .<br />

dx<br />

130. a. lim<br />

x!9<br />

b. lim<br />

h!0<br />

2+h " 2<br />

h<br />

#<br />

x "3<br />

x"9 # x +3<br />

= lim x"9<br />

= lim<br />

x +3 x!9 (x"9)( x+3) x!9<br />

2 x +1<br />

c. lim = lim<br />

x!" 5# x x!"<br />

1<br />

x +3 = 1 6<br />

2+h + 2<br />

= lim 2+h"2<br />

= lim<br />

2+h + 2 h!0 h( 2+h + 2 ) h!0<br />

2 x<br />

x + 1 x<br />

5<br />

x # x x<br />

= lim<br />

2<br />

x!"<br />

#1 = #2<br />

1<br />

= 1 = 2<br />

2+h + 2 2 2 4<br />

d. Cos(x) oscillates between 1 and –1, therefore the limit does not exist.<br />

131. a. Width = !x , length = !2(x 2 ! 1) ! (!x 2 + 1) = 1 ! x 2 ,<br />

1<br />

Area = " (1 ! x 2 )dx = x ! x3 !1<br />

3 !1<br />

1<br />

=<br />

2<br />

b. Width = !x, length = sin x " 3 4 x + 7 ,<br />

2"<br />

( ) dx<br />

( ) = 4 3 un2<br />

3 ! ! 2 3<br />

Area = # sin x ! 3 4 x + 7 = ! cos x ! 3 "<br />

4 $ x2 2 + 7x "<br />

( ) # 8.89 un 2<br />

= !1 ! 3" 2<br />

2<br />

+ 14" ! 1! 3 8 " 2 + 7"<br />

2"<br />

132. This would give a negative area; it uses rectangles with negative height.<br />

133. a. The upper bound has two parts, one of which is x 2 and the other is !x + 6 .<br />

2<br />

b. (x 2 4<br />

#<br />

" ! x )dx = (!x + 6 ! x )dx<br />

1 " = x3 2<br />

3 ! x3/2<br />

$<br />

%<br />

3/2 1<br />

2<br />

&<br />

'<br />

( + "<br />

! x2 + 6x !<br />

x3/2<br />

2<br />

#<br />

$<br />

3/2 2<br />

4<br />

8<br />

3 ! 2 2<br />

3/2 ! (1 3 ! 2 3 ) + (! 16 2 + 24 ! 8<br />

3/2 ) ! (! 4 2 + 12 ! 2 x<br />

3/2 ) ! 1.114 + 2.552 ! 3 2 3 un2<br />

%<br />

&<br />

' =<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


134. a. The functions cross paths, so the first part requires an integral of g(x) ! f (x) and the<br />

second requires an integral of f (x) ! g(x) .<br />

1<br />

b. " (x 3 ! 2x 2 + 1 ! (x ! 1))dx + " (x ! 1 ! (x 3 ! 2x 2 + 1))dx<br />

!1<br />

1<br />

= " (x 3 ! 2x 2 ! x + 2)dx + " (!x 3 + 2x 2 + x ! 2)dx<br />

!1<br />

"<br />

= x4 4 ! 2 x3 3 ! x2 2 + 2x 1 %<br />

#<br />

$<br />

!1&<br />

' + "<br />

! x4 4 + 2 x3 3 + + x2 2 ! 2x 2 %<br />

#<br />

$<br />

1 &<br />

'<br />

1<br />

2<br />

1<br />

2<br />

( 3.083 or 3<br />

1<br />

12<br />

2<br />

5<br />

"<br />

135. a. " (2 ! x + 3)dx + (x ! 2 + 3)dx<br />

0 " = ! x2 2<br />

2 + 5x 2 %<br />

#<br />

$<br />

0 &<br />

' + "<br />

x2 2 + x 5 %<br />

#<br />

$<br />

2 &<br />

' =<br />

!2 + 10 ! (0) + ( 25 + 5) ! (2 + 2) = 8 + 13.5 = 21.5 , by splitting the integral into two<br />

2<br />

parts so as to remove the absolute value.<br />

b. " (4m !3 ! 3 cos m)dm = 4 m!2<br />

!2 ! 3 sin m + C = !2m!2 ! 3sin m + C by<br />

antidifferentiating each term.<br />

c. ! 2.050 by calculator integration<br />

d. ! 2 x + C , because ! 2 is just a constant.<br />

136. The most evident solutions are symmetric across the line y = x , but other solutions do exist<br />

(e.g. the rectangle with 0 ! x ! 3, 1 ! y ! 2 ).<br />

137. a. 0<br />

b. lim<br />

x 2 #2x+1 1#4x+(1 x<br />

x!" x 3 = lim<br />

2 )<br />

= 0<br />

x!"<br />

x<br />

cos x+1 # cos(x#" )+1 #(cos(x#" )#1)<br />

c. lim = lim<br />

= lim<br />

= #0 = 0<br />

x!"<br />

x#"<br />

x!"<br />

x#"<br />

x!"<br />

x#"<br />

138. a. lim<br />

2 x "2<br />

x!1 3 x # 0.42 b. lim<br />

1"cos x<br />

"3 x!0 x 2 # 0.50<br />

139. a. sin( x ! 2 2 ) = sin(x ! 2) for x ! 2<br />

b. sin 1 x ! 2<br />

c.<br />

1<br />

sin(x!2)<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

( ) for 1 x<br />

d. x for x ! 0<br />

! 2 , i.e., for 0.5 ! x > 0<br />

for x ! 2 (and x cannot be 2 + n! for integers n).<br />

<strong>Calculus</strong>


140. a. y = 3(x2 !4)<br />

x+2<br />

= 3(x!2)(x+2)<br />

x+2<br />

= 3(x ! 2) (for x = !2 ) and has derivative of 3, with<br />

y(1) = !3 ; tangent line is y + 3 = 3(x ! 1) or y = 3x ! 6 .<br />

b. y + 3 = ! 1 3 (x ! 1)!!" y = ! 1 3 x + 1 3 ! 3!!"!!y = ! 1 3 x ! 8 3<br />

141. a. It is hottest after ~7 months on July 1 st and coldest after ~1 month on February 1 st , by<br />

looking at the maximum and minimum peaks on the graph.<br />

b. The inflection points are about 4 months in, around May 1 st , and about 10 months in,<br />

around October 1 st .<br />

142. The derivative of each piece must be equal at x = 1; d dx ((x + 2)2 ! 3) = 2(x + 2) is 6 at<br />

x = 1 , so d (a sin(x ! 1) + 6) = a cos(x ! 1) must be 6 at x = 1 ; a cos(0) = 6, a = 6 .<br />

dx<br />

143. f(x) is increasing in [!3, 2] ! [4, "] (where f ! is non-negative), f(x) is decreasing in<br />

(!", !3] ! [2, 4] (where f ! is non-positive), f(x) is concave up in about<br />

(!", !1.2] ! [3.1, ") (where f !(x) increases), and f(x) is concave down in about<br />

[!1.2, 3.1] (where f !(x) decreases).<br />

144. The 2 n indicates that the width of the interval is 2 units. The function is y = x2 . Possible<br />

3<br />

answers include x 2 2<br />

! dx and ! (x + 1) 2 dx .<br />

1<br />

0<br />

145. a. A: first rectangle is 9 ! (!8x + 9) = 8x by !x , and the second is 9 ! x 2 by "x .<br />

B: !x by y " y"9 = y + y"9<br />

8 8<br />

C: x + x!9 by "x<br />

8<br />

b. Adam broke the region into two integrals:<br />

1 3<br />

! 8xdx + (9 " x 2 )dx<br />

0 ! = 4x 2 1<br />

1<br />

( 0 ) + "<br />

9x ! x3 3 %<br />

3<br />

#<br />

$ 1 &<br />

' = 4 + (27 ! 9) ! (9 ! 1 3 ) = 13 1 3<br />

Becky integrated over y-values:<br />

9<br />

" ( y + y!9<br />

8 ) dy = y3/2<br />

1<br />

3/2 + y2<br />

9<br />

16 ! 9 8 y = 27<br />

312 + 81<br />

16 ! 81<br />

8 ! ( 2 3 + 1<br />

16 ! 9 8 ) =<br />

1<br />

18 ! 5 1<br />

16 ! !19 = 13 +<br />

16<br />

48 48 = 13 1 3<br />

Cathy reflected the region across the line y = x and integrated over x-values:<br />

9<br />

" ( x + x!9<br />

8 ) dx , essentially the same integral as Becky’s, = 13 1<br />

1<br />

3<br />

Each method is valid and gives the same answer.<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


16<br />

146. The three possibilities are " (4 ! x )dx, " y 2 dy, and ! x 2 dx , and each equals<br />

64<br />

3 = 21 1 3 .<br />

0<br />

4<br />

0<br />

4<br />

0<br />

147. The curves intersect at 2 x = x!!!!!2 = x !!!!!x = 4 .<br />

4<br />

" (2 x ! x)dx = 4 3 x3/2 ! 1 2 x2 4 = 4 4<br />

0 3 3 ! 1 2 (42 ) = 32 3 ! 8 = 8 3 = 2 2 3 un2<br />

0<br />

148. The functions cross at x = ! . So students must take<br />

!<br />

" (sin x + sin x)dx + # (! sin x ! sin x)dx or double the first integral:<br />

0<br />

!<br />

2"<br />

"<br />

2 " (sin x + sin x)dx . (Or 4 " (sin x + sin x)dx works too). All methods yield 8 un 2 .<br />

0<br />

! /2<br />

0<br />

149. a. Using a calculator, the minimum of f is at (4, –13.5), so this is 13.5 in. This can also<br />

be obtained by factoring the derivative:<br />

f !(x) = x3<br />

128 + 3x2<br />

32 " 2 = 1 (x + 8)(x + 8)(x ! 14) is 0 at x = 4<br />

128<br />

b. It is ! 2<br />

225 x2 + 20 ! x4<br />

( 512 + x3<br />

32 ) ! 2x ! 8 = ! x4<br />

512 ! x3<br />

32 ! 2x2<br />

225<br />

+ 2x + 28 by !x .<br />

c. The bounds are obtained using a calculator: ! "15.326 and ! 9.753<br />

9.753<br />

Area ! # " x4<br />

512 " x3<br />

32 " 2x2 + 2x + 28 = ! x5<br />

225<br />

"15.326<br />

( ) dx<br />

! 544.60 in 2<br />

5"512 ! x4<br />

4"32 ! 2x3<br />

3"225 + x2 + 28x<br />

9.753<br />

!15.326<br />

1<br />

150. a. x 2 1 #<br />

" dx = 2 xdx<br />

!1 " = 2 x2 1 &<br />

0<br />

2<br />

$<br />

% 0 '<br />

( = 1, using symmetry to take double the second part<br />

of the integral (or two integrals may be used), followed by the Fundamental Theorem.<br />

b. 8 ! x4 4 " 1 2 ! x2 2 + C = 2x2 " x2 4<br />

+ C , by antidifferentiating each term.<br />

c.<br />

5 (3x+1)(x!2)<br />

dx<br />

1 3x+1<br />

5<br />

" = " (x ! 2)dx = x2 1<br />

2 # !2 1<br />

5<br />

=<br />

25<br />

( ) = 4<br />

2 ! 10 ! 1 2 ! 2<br />

d. y + C , by the second part of the Fundamental Theorem.<br />

151. Possible answers:<br />

5<br />

a. f (x) = x, g(x) = cos x b. f (x) = x 3 , g(x) = 3x cos(x 2 )<br />

c. f (x) = x + 1, g(x) = 0 d. f (x) = x + 1, g(x) = x ! 1<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


152. lim<br />

x!3 " f (x) = 4 " 3(3) = 5 , so a(3)2 + 2 = 5, 9a = 3, a = 1 3<br />

153. y ! = "4x , so y !(1) = "4 , so the linearization is y = !4(x ! 1) + 2 = !4x + 6 .<br />

Therefore y(1.15) ! "4(1.15) + 6 = 1.4<br />

154. a. The left bound is 0 and the right bound is ! 2.163 (using a calculator)<br />

2.163<br />

" (sin x ! (x ! 1) 4 + 1)dx = ! cos x ! (x!1)5 + x<br />

5<br />

0<br />

2.163<br />

0<br />

! 2.296 " (" 4 5 ) ! 3.096<br />

b. The left bound is 0 and the right bound is ! 3.532 (using a calculator)<br />

3.532<br />

" ( x ! x(x ! 3))dx = x3/2<br />

3/2 ! x3 3 + 3x2<br />

3.532<br />

2 # 8.451 ! 0 = 8.451.<br />

0<br />

0<br />

155. y = x 2 ! 1<br />

156. a. y = 2x 2<br />

b. y = 0<br />

c. y = x2 !3x!10<br />

x 2 = 1 + !3x!11<br />

!1 x 2 , so it is y = 1. The idea is that as x ! 0 or x ! " , the<br />

+1<br />

terms with a higher power of x in the denominator will approach zero.<br />

157. a. lim<br />

x!"<br />

y = "<br />

b. lim<br />

x!"<br />

y = 0<br />

c. lim y = lim<br />

x!" x 2 = 1<br />

+1<br />

These limits are the same as the limits of the respective end-behavior functions.<br />

x!"<br />

1+ #3x#11<br />

158. Answers may vary but should be below 2. One method would be to estimate it as a<br />

quadratic.<br />

159. a. x 1 = 1<br />

b. x 2 ! 0.7 ; x 2 is a better approximation<br />

c. x 3 ! 0.6<br />

d. Each successive estimate is better than the previous one.<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


160. a. f !(x) = 3x 2 + 2x ; f (1) = 1 , f !(1) = 5 , tangent is y = 5(x ! 1) + 1 = 5x ! 4 .<br />

x 2 = 0.8 , f (0.8) = 0.152 , f !(0.8) = 3.52 ,<br />

tangent is y = 3.52(x ! 0.8) + 0.152 = 3.52x ! 2.66<br />

x 3 = 2.664<br />

3.52 ! 0.757 , f (x 3 ) ! 0.006 , f "(x<br />

3 ) ! 3.232 ,<br />

tangent is y ! 3.232(x " 0.757) + 0.006 ! 3.23x " 2.440 , x 4 ! 0.755<br />

b. x n keeps getting smaller and closer to the actual root.<br />

161. If f (x) = x 2 "<br />

! N , then x n+1 = x n ! (x n )2 !N<br />

#<br />

$ 2xn<br />

%<br />

&<br />

' = x n ! x n<br />

2 + N<br />

2xn = x n<br />

2 + N<br />

2xn = 1 2<br />

( x n + N xn<br />

) .<br />

162. a. Since f (x) is a continuous function, f (!1) = !0.4597 , and f (0) = 1, by the<br />

Intermediate Value Theorem there must be a root between x = –1 and x = 0.<br />

b. f !(x) = 1" sin x , x 2 = "1" f ("1)<br />

f ("1) # "0.750 , x 3<br />

!<br />

f ("0.750)<br />

# "0.750 "<br />

f !("0.750) # "0.739<br />

c. The root is ! "0.739 (using a calculator), and the error ! 0.00003 ! 0 .<br />

163. f !(x) = 48x 2 " 48x + 12 ; e.g. for x 1 = 0.2 , x 2 ! 0.0685 , x 3 ! 0.100 , x 4 ! 0.103 " x 5<br />

164. a. 5 sin(6x)<br />

b. sin(x ! 3x) = sin(!2x)<br />

c. cos 2 (1 ! sin 2 x) ! sin 2 x(1 ! cos 2 x) =<br />

cos 2 x ! cos 2 x sin 2 x ! sin 2 x + sin 2 x cos 2 x = cos 2 x ! sin 2 x = cos(2x)<br />

Or, (cos 2 x ! sin 2 x)(cos 2 x + sin 2 x) = (cos 2 x ! sin 2 x) "1 = cos(2x)<br />

d.<br />

sin x<br />

cos x + cos x<br />

sin x = sin2 x+cos 2 x<br />

cos x!sin x<br />

=<br />

1<br />

1 2 sin 2x = 2 csc(2x)<br />

165. a. Let y = sin(x + 1) . Then 2y 2 ! y ! 1 = 0 = (2y + 1)(y ! 1) , y = 1, ! 1 2<br />

So sin(x + 1) = 1 or ! 1 2 ; x + 1 = ! 2 + 2!n or 7! 11!<br />

+ 2!n or<br />

6 6 + 2!n ;<br />

7!<br />

11!<br />

( ) + 2!n, ( ) + 2!n, ( ) + 2!n for integers n.<br />

x = ! 2 " 1<br />

6 " 1<br />

6 " 1<br />

b. Let y = x 2 ! 2x + 1 . Then y 2 ! 3y = !2 , y 2 ! 3y + 2 = 0 = (y ! 2)(y ! 1), y = 1, 2 .<br />

So x 2 ! 2x + 1 = 1 , x 2 ! 2x = 0 = x(x ! 2) , x = 0, 2 .<br />

Or, x 2 ! 2x + 1 = 2 = (x ! 1) 2 , x ! 1 = ±2 , x = 3, !1 ; x = !1, 0, 2, 3<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>


2/(x+h)<br />

166. lim<br />

2 "2/x 2<br />

h!0<br />

h<br />

= lim 2 # x2 "(x+h) 2<br />

h!0 hx 2 (x+h) 2 = lim 2 #<br />

"2xh"h 2<br />

h!0 hx 2 (x+h) 2 =<br />

lim 2 " #2x#h<br />

h!0 x 2 (x+h) 2 = 2 ! "2x<br />

x 2 !x 2 = "4x"3 = " 4<br />

x 3<br />

167. minimums: (!4.49, !0.217) and (4.49, !0.217)<br />

The maximum does not exist because y(0) is undefined (is discontinuous) at x = 0 .<br />

Inflection points: (!5.940, !0.057) , (5.940, !0.057) , (!2.082, 0.42) , (2.082, 0.42) .<br />

168. This is when y !! is non-negative: y ! = 3x 2 + 6x " 24 , y !! = 6x + 6 ; on [!1, ") .<br />

<strong>Chapter</strong> 4 <strong>Solutions</strong><br />

<strong>Calculus</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!