22.02.2015 Views

Preparation of double-walled carbon nanotubes from fullerene ...

Preparation of double-walled carbon nanotubes from fullerene ...

Preparation of double-walled carbon nanotubes from fullerene ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CARBON 48 (2010) 1312– 1320 1315<br />

structure <strong>of</strong> FWS-derived anodes, which is evidenced by the<br />

fact that no DWCNTs are obtained under identical arcing conditions<br />

when high-purity graphite powder was used instead<br />

<strong>of</strong> FWS powders. Previous study suggested that FWS may be<br />

seen as icospiral graphitic giant molecules or spheroidal graphitic<br />

microparticles with pentagonal configurations [13–15],<br />

and the structure may remain curly after <strong>carbon</strong>ization<br />

[16,17]. With all <strong>of</strong> these information in mind, it is easy for<br />

one to envision that some special Cn species formed in the<br />

arcing discharge <strong>of</strong> FWS-derived <strong>carbon</strong> rods would act as<br />

the basic building blocks for the construction <strong>of</strong> DWCNTs<br />

[18]. To confirm and clarify this speculation, more detailed<br />

work would be necessary, in which the effect <strong>of</strong> composition<br />

and structures <strong>of</strong> the FWS-anodes needs to be addressed. The<br />

work is now in progress.<br />

In summary, high quality DWCNTs were synthesized by<br />

arc-discharge using FWS as raw material. The present work<br />

provides an alternative way for direct synthesis <strong>of</strong> high quality<br />

DWCNTs, and opens a new cost-effective approach to utilization<br />

<strong>of</strong> FWS.<br />

Acknowledgements<br />

The work was supported by the National Natural Science<br />

foundation <strong>of</strong> China (Nos. 50472082, 20836002, 20725619).<br />

REFERENCES<br />

[1] Bandow S, Takizawa M, Hirahara K, Yudasaka M, Iijima S.<br />

Raman scattering study <strong>of</strong> <strong>double</strong>-wall <strong>carbon</strong> <strong>nanotubes</strong><br />

derived <strong>from</strong> the chains <strong>of</strong> <strong>fullerene</strong>s in single-wall <strong>carbon</strong><br />

<strong>nanotubes</strong>. Chem Phys Lett 2001;337(1–3):48–54.<br />

[2] Ren WC, Li F, Chen J, Bai S, Cheng HM. Morphology, diameter<br />

distribution and Raman scattering measurements <strong>of</strong> <strong>double</strong><br />

<strong>walled</strong> <strong>carbon</strong> <strong>nanotubes</strong> synthesized by catalytic<br />

decomposition <strong>of</strong> methane. Chem Phys Lett 2002;359(3–4):<br />

196–202.<br />

[3] Zhu HW, Xu CL, Wei BQ, Wu DH. A new method for<br />

synthesizing <strong>double</strong>-<strong>walled</strong> <strong>carbon</strong> <strong>nanotubes</strong>. Carbon<br />

2002;40(11):2023–5.<br />

[4] Hutchison JL, Kiselev NA, Krinichnaya EP, Krestinin AV, Loutfy<br />

RO, Morawsky AP, et al. Double-<strong>walled</strong> <strong>carbon</strong> <strong>nanotubes</strong><br />

fabricated by a hydrogen arc discharge method. Carbon<br />

2001;39(5):761–70.<br />

[5] Saito Y, Nakahira T, Uemura S. Growth conditions <strong>of</strong> <strong>double</strong><strong>walled</strong><br />

<strong>carbon</strong> <strong>nanotubes</strong> in arc discharge. J Phys Chem B<br />

2003;107(4):931–4.<br />

[6] Qiu HX, Shi ZJ, Guan LH, You LP, Gao M, Zhang SL, et al. Highefficient<br />

synthesis <strong>of</strong> <strong>double</strong>-<strong>walled</strong> <strong>carbon</strong> <strong>nanotubes</strong> by arc<br />

discharge method using chloride as a promoter. Carbon<br />

2006;44(3):516–21.<br />

[7] Qiu JS, Wang ZY, Zhao ZB, Wang TH. Synthesis <strong>of</strong> <strong>double</strong><strong>walled</strong><br />

<strong>carbon</strong> <strong>nanotubes</strong> <strong>from</strong> coal in hydrogen-free<br />

atmosphere. Fuel 2007;86(1–2):282–6.<br />

[8] Li LX, Li F, Liu C, Cheng HM. Synthesis and characterization <strong>of</strong><br />

<strong>double</strong>-<strong>walled</strong> <strong>carbon</strong> <strong>nanotubes</strong> <strong>from</strong> multi-<strong>walled</strong> <strong>carbon</strong><br />

<strong>nanotubes</strong> by hydrogen-arc discharge. Carbon<br />

2005;43(3):623–9.<br />

[9] Chen ZG, Li F, Ren WC, Cong HT, Liu C, Lu GQ, et al. Double<strong>walled</strong><br />

<strong>carbon</strong> <strong>nanotubes</strong> synthesized using <strong>carbon</strong> black as<br />

the dot <strong>carbon</strong> source. Nanotechnology 2006;17:3100–4.<br />

[10] Howard JB, Mckinnon JT, Makarovsky Y, Lafleur AL, Johnson<br />

ME. Fullerenes C 60 and C 70 in flames. Nature 1991;352:<br />

139–41.<br />

[11] Murayama H, Tomonoh S, Alford JM, Karpuk ME. Fullerene<br />

production in tons and more: <strong>from</strong> science to industry. In:<br />

Abstracts, 6th Biennial International Workshop Fullerenes<br />

and Atomic Clusters IWFAC’2003, vol. 35. St. Petersburg<br />

(Russia): I<strong>of</strong>fe Physico-Technical Institute and St. Petersburg<br />

Nuclear Physics Institute <strong>of</strong> the Russian Academy <strong>of</strong><br />

Sciences; 2003.<br />

[12] Osswald S, Flahaut E, Gogotsi Y. In situ Raman spectroscopy<br />

study <strong>of</strong> oxidation <strong>of</strong> <strong>double</strong>- and single-wall <strong>carbon</strong><br />

<strong>nanotubes</strong>. Chem Mater 2006;18(6):1525–33.<br />

[13] Zhang QL, O’Brien SC, Heath JR, Liu Y, Curl RF, Kroto HW,<br />

et al. Reactivity <strong>of</strong> large <strong>carbon</strong> clusters: spheroidal <strong>carbon</strong><br />

shells and their possible relevance to the formation and<br />

morphology <strong>of</strong> soot. J Phys Chem 1986;90(4):525–8.<br />

[14] Kroto HW, Allaf AW, Balm SP. C 60 : buckminster<strong>fullerene</strong>.<br />

Chem Rev 1991;91(6):1213–35.<br />

[15] Kroto HW. Fullerene cage clusters. J Chem Soc Faraday Trans<br />

1990;86(13):2465–8.<br />

[16] Harris PJF, Tsang SC, Claridge JB, Green MLH. High-resolution<br />

electron microscopy studies <strong>of</strong> a microporous <strong>carbon</strong><br />

produced by arc-evaporation. J Chem Soc Faraday Trans<br />

1994;90(18):2799–802.<br />

[17] Harris PJF. New perspectives on the structure <strong>of</strong> graphitic<br />

<strong>carbon</strong>s. Crit Rev Solid State Mater Sci 2005;30:235–53.<br />

[18] Kataura H, Kumazawa Y, Maniwa Y, Ohtsuka Y, Sen R, Suzuki<br />

S, et al. Diameter control <strong>of</strong> single-<strong>walled</strong> <strong>carbon</strong> <strong>nanotubes</strong>.<br />

Carbon 2000;38(12):1691–7.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!