22.02.2015 Views

Time-dependent density functional theory study on the hydrogen ...

Time-dependent density functional theory study on the hydrogen ...

Time-dependent density functional theory study on the hydrogen ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Computati<strong>on</strong>al and Theoretical Chemistry 972 (2011) 57–62<br />

C<strong>on</strong>tents lists available at ScienceDirect<br />

Computati<strong>on</strong>al and Theoretical Chemistry<br />

journal homepage: www.elsevier.com/locate/comptc<br />

<str<strong>on</strong>g>Time</str<strong>on</strong>g>-<str<strong>on</strong>g>dependent</str<strong>on</strong>g> <str<strong>on</strong>g>density</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g><strong>the</strong>ory</str<strong>on</strong>g> <str<strong>on</strong>g>study</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>hydrogen</strong> b<strong>on</strong>ding in<br />

electr<strong>on</strong>ic excited states of 6-amino-3-((thiophen-2-yl) methylene)-phthalide<br />

in methanol soluti<strong>on</strong><br />

H<strong>on</strong>g D<strong>on</strong>g, Ce Hao ⇑ , Jingwen Chen, Jieshan Qiu<br />

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, Lia<strong>on</strong>ing, China<br />

article<br />

info<br />

abstract<br />

Article history:<br />

Received 27 March 2011<br />

Received in revised form 17 June 2011<br />

Accepted 17 June 2011<br />

Available <strong>on</strong>line 25 June 2011<br />

Keywords:<br />

Hydrogen b<strong>on</strong>ding<br />

Electr<strong>on</strong>ic excited state<br />

<str<strong>on</strong>g>Time</str<strong>on</strong>g>-<str<strong>on</strong>g>dependent</str<strong>on</strong>g> <str<strong>on</strong>g>density</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g><strong>the</strong>ory</str<strong>on</strong>g><br />

Hydrogen b<strong>on</strong>d streng<strong>the</strong>ning and cleavage<br />

In this work, we have applied <strong>the</strong> time-<str<strong>on</strong>g>dependent</str<strong>on</strong>g> <str<strong>on</strong>g>density</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g><strong>the</strong>ory</str<strong>on</strong>g> (TDDFT) method to investigate<br />

<strong>the</strong> excited-state <strong>hydrogen</strong> b<strong>on</strong>ding dynamics of 6-amino-3-((thiophen-2-yl) methylene)-phthalide<br />

(6-ATMPH) in methanol (MeOH) soluti<strong>on</strong>. In <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded complex, <strong>the</strong> intermolecular <strong>hydrogen</strong><br />

b<strong>on</strong>d (C@OHAO) can be formed between <strong>the</strong> 6-ATMPH and <strong>the</strong> MeOH molecules. The 6-ATMPH m<strong>on</strong>omer<br />

and <strong>hydrogen</strong>-b<strong>on</strong>ded dimer can be photoexcited initially to <strong>the</strong> S 1 state. We calculated <strong>the</strong> geometric<br />

structures and energies of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded complex and <strong>the</strong> isolated 6-ATMPH in different<br />

electr<strong>on</strong>ic states at <strong>the</strong> level of B3LYP with <strong>the</strong> TZVP basis sets. We found that <strong>the</strong> b<strong>on</strong>d lengths of <strong>the</strong><br />

C@O and OAH groups increased after formati<strong>on</strong> of <strong>the</strong> intermolecular <strong>hydrogen</strong> b<strong>on</strong>d in <strong>the</strong> ground state.<br />

Fur<strong>the</strong>rmore, <strong>the</strong> calculated <strong>hydrogen</strong> b<strong>on</strong>d binding energy increased to 31.5 kJ/mol in <strong>the</strong> electr<strong>on</strong>ically<br />

excited state from 23.6 kJ/mol in <strong>the</strong> ground state. These results clearly indicate <strong>the</strong> intermolecular<br />

<strong>hydrogen</strong> b<strong>on</strong>d of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded complex is streng<strong>the</strong>ned in <strong>the</strong> electr<strong>on</strong>ically excited state.<br />

The <strong>hydrogen</strong> b<strong>on</strong>d of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded 6-ATMPH–MeOH complex streng<strong>the</strong>ning in <strong>the</strong> electr<strong>on</strong>ically<br />

excited state was also c<strong>on</strong>firmed by <strong>the</strong>oretically m<strong>on</strong>itoring <strong>the</strong> spectra shift of <strong>the</strong> stretching<br />

vibrati<strong>on</strong>al modes of <strong>the</strong> C@O and OAH groups. Our <strong>the</strong>oretical <str<strong>on</strong>g>study</str<strong>on</strong>g> results have clarified <strong>the</strong> dispute<br />

regarding <strong>the</strong> intermolecular <strong>hydrogen</strong> b<strong>on</strong>d cleavage or streng<strong>the</strong>ning in <strong>the</strong> electr<strong>on</strong>ically excited state.<br />

Ó 2011 Elsevier B.V. All rights reserved.<br />

1. Introducti<strong>on</strong><br />

Molecular photochemistry is of has a fundamental importance<br />

in modern chemistry. It is affected significantly by <strong>the</strong> intermolecular<br />

interacti<strong>on</strong>s between solute and solvent in soluti<strong>on</strong> [1–4]. Asa<br />

site-specific local interacti<strong>on</strong> between <strong>hydrogen</strong> d<strong>on</strong>or and acceptor<br />

molecules, intermolecular <strong>hydrogen</strong> b<strong>on</strong>ding is an important<br />

type of solute–solvent interacti<strong>on</strong>. Intermolecular <strong>hydrogen</strong> b<strong>on</strong>ding<br />

also plays a fundamental role in <strong>the</strong> chemical structure and<br />

reactivity of water, proteins, and DNA, <strong>the</strong> building blocks of life<br />

[5–10]. Photoexcitati<strong>on</strong> can induce charge redistributi<strong>on</strong> of <strong>the</strong><br />

<strong>hydrogen</strong> b<strong>on</strong>d in <strong>the</strong> electr<strong>on</strong>ically excited state, a process defined<br />

as <strong>hydrogen</strong>-b<strong>on</strong>ding dynamics [6,11–25]. Until now, many experimental<br />

and <strong>the</strong>oretical methods have been applied to investigate<br />

intermolecular <strong>hydrogen</strong> b<strong>on</strong>ding [26–34]. However, relatively<br />

few studies have been carried out <strong>on</strong> excited-state <strong>hydrogen</strong>b<strong>on</strong>ding<br />

dynamics. In very recent years, Zhao et al. have made a<br />

significant c<strong>on</strong>tributi<strong>on</strong> to <strong>the</strong> systematic <str<strong>on</strong>g>study</str<strong>on</strong>g> of <strong>the</strong> excited-state<br />

⇑ Corresp<strong>on</strong>ding author. Tel./fax: +86 411 84706323.<br />

E-mail address: haoce_dlut@126.com (C. Hao).<br />

<strong>hydrogen</strong> b<strong>on</strong>ding dynamics with a variety of experimental and<br />

<strong>the</strong>oretical studies [35–41].<br />

To obtain a better understanding of <strong>hydrogen</strong> b<strong>on</strong>ding dynamics<br />

in <strong>the</strong> electr<strong>on</strong>ically excited state, diverse experimental and<br />

<strong>the</strong>oretical methods have been applied [11,12,41–44]. Femtosec<strong>on</strong>d<br />

time-resolved vibrati<strong>on</strong>al spectroscopy has shown potential<br />

to provide good insight into <strong>the</strong> microscopic dynamics and informati<strong>on</strong><br />

<strong>on</strong> local structures [11,12]. The time-<str<strong>on</strong>g>dependent</str<strong>on</strong>g> <str<strong>on</strong>g>density</str<strong>on</strong>g><br />

<str<strong>on</strong>g>functi<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g><strong>the</strong>ory</str<strong>on</strong>g> (TDDFT) method has also been used to <str<strong>on</strong>g>study</str<strong>on</strong>g><br />

<strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ding dynamics in <strong>the</strong> electr<strong>on</strong>ically excited state<br />

[24,25,39–44]. Nibbering et al. have used site-specific vibrati<strong>on</strong>al<br />

spectroscopy in <strong>the</strong> femtosec<strong>on</strong>d domain to investigate <strong>the</strong> ultrafast<br />

resp<strong>on</strong>se of Coumarin 102 (C102) in <strong>the</strong> <strong>hydrogen</strong>-d<strong>on</strong>ating<br />

solvent CHCl 3 or phenol [11]. They found that <strong>the</strong> vibrati<strong>on</strong>al<br />

absorpti<strong>on</strong> of <strong>the</strong> C@O stretching showed an ultrafast blue-shift<br />

within a 200 fs time scale in <strong>the</strong> electr<strong>on</strong>ically excited state [11].<br />

Thus, <strong>the</strong>y proposed that <strong>the</strong> intermolecular <strong>hydrogen</strong> b<strong>on</strong>d<br />

C@OHAO formed between C102 and phenol can be cleaved up<strong>on</strong><br />

electr<strong>on</strong>ic excitati<strong>on</strong> [11]. Palit and co-workers <strong>the</strong>n followed this<br />

mechanism of <strong>hydrogen</strong> b<strong>on</strong>d cleavage up<strong>on</strong> photoexcitati<strong>on</strong> of<br />

chromophores in <strong>hydrogen</strong>-d<strong>on</strong>ating solvents [22]. But it has been<br />

dem<strong>on</strong>strated that <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ding dynamics and electr<strong>on</strong>ic<br />

state transiti<strong>on</strong> take place in <strong>the</strong> same time scale [11]. Thus <strong>the</strong>y<br />

2210-271X/$ - see fr<strong>on</strong>t matter Ó 2011 Elsevier B.V. All rights reserved.<br />

doi:10.1016/j.comptc.2011.06.013


58 H. D<strong>on</strong>g et al. / Computati<strong>on</strong>al and Theoretical Chemistry 972 (2011) 57–62<br />

should be coupled to <strong>on</strong>e o<strong>the</strong>r. Fur<strong>the</strong>rmore, Zhao et al. have dem<strong>on</strong>strated<br />

that <strong>the</strong> blue-shift of <strong>the</strong> spectra should be attributed to<br />

<strong>the</strong> transiti<strong>on</strong> from <strong>the</strong> ground state to <strong>the</strong> electr<strong>on</strong>ically excited<br />

state [41]. For <strong>the</strong> first time, Zhao et al. also dem<strong>on</strong>strated that<br />

<strong>the</strong> intermolecular <strong>hydrogen</strong> b<strong>on</strong>d between C102 and phenol can<br />

be streng<strong>the</strong>ned significantly in early photoexcitati<strong>on</strong> to <strong>the</strong> electr<strong>on</strong>ically<br />

excited state [41]. These two c<strong>on</strong>clusi<strong>on</strong>s about <strong>the</strong><br />

<strong>hydrogen</strong>-b<strong>on</strong>ding dynamics in <strong>the</strong> electr<strong>on</strong>ically excited state of<br />

<strong>the</strong> C102 in phenol solvent are completely different. We <strong>the</strong>refore<br />

need to fur<strong>the</strong>r investigate o<strong>the</strong>r systems to obtain informati<strong>on</strong> as<br />

to <strong>the</strong> <strong>hydrogen</strong> b<strong>on</strong>d in <strong>the</strong> electr<strong>on</strong>ically excited states.<br />

6-amino-3-((thiophen-2-yl) methylene)-phthalide (6-ATMPH),<br />

as <strong>on</strong>e of <strong>the</strong> derivatives of 3-phenylmethylene-1(3H)-isobenzofuran<strong>on</strong>e<br />

(benzylidene-phthalide, BPH), is an organic luminophore<br />

with high photostability and fluorescence quantum yield in soluti<strong>on</strong><br />

[45–50]. Nikolov et al. have investigated <strong>the</strong> properties of<br />

6-ATMPH in a series of n<strong>on</strong>polar to polar solvents [46]. They c<strong>on</strong>firmed<br />

that <strong>the</strong> intermolecular <strong>hydrogen</strong> b<strong>on</strong>ds between 6-ATMPH<br />

and solvent molecules can be formed <strong>on</strong>ly in protic solvents [46].<br />

Moreover, <strong>the</strong>y found that <strong>the</strong> shapes and positi<strong>on</strong> of <strong>the</strong> absorpti<strong>on</strong><br />

spectra of <strong>the</strong> 6-ATMPH in protic alcohol solvents were changed<br />

significantly [46]. They attributed <strong>the</strong>se changes to <strong>the</strong><br />

formati<strong>on</strong> of <strong>the</strong> intermolecular <strong>hydrogen</strong> b<strong>on</strong>d (C@OHAO) between<br />

<strong>the</strong> carb<strong>on</strong>yl group of <strong>the</strong> 6-ATMPH molecule and <strong>the</strong> hydroxyl<br />

group of <strong>the</strong> protic solvents [46]. However, we do not<br />

have sufficient informati<strong>on</strong> to describe <strong>the</strong> intermolecular <strong>hydrogen</strong><br />

b<strong>on</strong>d of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded 6-ATMPH–MeOH complex in<br />

<strong>the</strong> electr<strong>on</strong>ically excited state. Few <strong>the</strong>oretical works have been<br />

c<strong>on</strong>ducted to investigate <strong>the</strong> intermolecular <strong>hydrogen</strong> b<strong>on</strong>ding of<br />

<strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded 6-ATMPH–MeOH complex up<strong>on</strong> its photoexcitati<strong>on</strong><br />

to <strong>the</strong> excited state.<br />

In <strong>the</strong> present work, we have employed <strong>the</strong> TDDFT method to<br />

calculate <strong>the</strong> excited-state geometric structures, energies and<br />

vibrati<strong>on</strong>al spectrum of <strong>the</strong> isolated 6-ATMPH and <strong>the</strong> <strong>hydrogen</strong>b<strong>on</strong>ded<br />

complex. The TDDFT method has been c<strong>on</strong>firmed as a<br />

reliable method to investigate <strong>hydrogen</strong>-binding dynamics by<br />

m<strong>on</strong>itoring <strong>the</strong> infrared spectra of <strong>the</strong> groups involved in <strong>the</strong> formati<strong>on</strong><br />

of intermolecular <strong>hydrogen</strong> b<strong>on</strong>ds in <strong>the</strong> electr<strong>on</strong>ically excited<br />

state [24,25,39,41]. Only <strong>the</strong> solvent molecules in <strong>the</strong> first<br />

solvati<strong>on</strong> shell can c<strong>on</strong>tribute to <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ding dynamics<br />

[35,41,51–56]. So we focused our attenti<strong>on</strong> <strong>on</strong> investigating <strong>the</strong><br />

solvent molecule directly <strong>hydrogen</strong>-b<strong>on</strong>ded with <strong>the</strong> 6-ATMPH<br />

molecule without c<strong>on</strong>siderati<strong>on</strong> of <strong>the</strong> bulk effort of <strong>the</strong> outer<br />

solvati<strong>on</strong> shells. The excited-state <strong>hydrogen</strong>-b<strong>on</strong>ding dynamics,<br />

which occurs at ultrafast timescales, can be studied by m<strong>on</strong>itoring<br />

<strong>the</strong> vibrati<strong>on</strong>al moti<strong>on</strong>s of <strong>the</strong> <strong>hydrogen</strong> d<strong>on</strong>or and acceptor groups<br />

[39–41,57–64]. We have dem<strong>on</strong>strated <strong>the</strong>oretically that <strong>the</strong> intermolecular<br />

<strong>hydrogen</strong> b<strong>on</strong>d C@OHAO of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded 6-<br />

ATMPH–MeOH complex can be streng<strong>the</strong>ned in <strong>the</strong> electr<strong>on</strong>ically<br />

excited-state. The calculated <strong>hydrogen</strong> b<strong>on</strong>d binding energies,<br />

<strong>the</strong> spectral shift of <strong>the</strong> stretching mode of <strong>the</strong> C@O and OAH<br />

groups and <strong>the</strong> <strong>hydrogen</strong> b<strong>on</strong>d lengths of different electr<strong>on</strong>ic states<br />

c<strong>on</strong>firmed <strong>the</strong> mechanism of <strong>the</strong> <strong>hydrogen</strong> b<strong>on</strong>d streng<strong>the</strong>ning in<br />

<strong>the</strong> electr<strong>on</strong>ically excited state.<br />

2. Computati<strong>on</strong>al methods<br />

In this work, <strong>the</strong> isolated 6-ATMPH m<strong>on</strong>omer and <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded<br />

6-ATMPH–MeOH solute–solvent complex were investigated<br />

using <strong>the</strong> <str<strong>on</strong>g>density</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g><strong>the</strong>ory</str<strong>on</strong>g> (DFT) with Becke’s<br />

three-parameter hybrid exchange functi<strong>on</strong> with Lee–Yang–Parr<br />

gradient-corrected correlati<strong>on</strong> <str<strong>on</strong>g>functi<strong>on</strong>al</str<strong>on</strong>g> (B3-LYP) in <strong>the</strong> ground<br />

state [65]. For <strong>the</strong> excited state, however calculati<strong>on</strong>s were performed<br />

using <strong>the</strong> time-<str<strong>on</strong>g>dependent</str<strong>on</strong>g> <str<strong>on</strong>g>density</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g><strong>the</strong>ory</str<strong>on</strong>g><br />

(TDDFT) method with B3-LYP hybrid <str<strong>on</strong>g>functi<strong>on</strong>al</str<strong>on</strong>g> [65–67]. The<br />

triple-f valence quality with <strong>on</strong>e set of polarizati<strong>on</strong> functi<strong>on</strong> (TZVP)<br />

was chosen for basis sets throughout [66]. It is difficult to calculate<br />

<strong>the</strong> electr<strong>on</strong>ic structures of <strong>the</strong> electr<strong>on</strong>ic excited state for complex<br />

molecular systems. As we know, several quantum chemistry computati<strong>on</strong><br />

methods can be used to optimize <strong>the</strong> ground-state electr<strong>on</strong>ic<br />

structures for <strong>hydrogen</strong>-b<strong>on</strong>ded systems. The c<strong>on</strong>figurati<strong>on</strong><br />

interacti<strong>on</strong> with single substitute (CIS) and <strong>the</strong> complete active<br />

space self-c<strong>on</strong>sistent field (CASSCF) methods are very popular<br />

computati<strong>on</strong>al methods for <strong>the</strong> excited-state electr<strong>on</strong>ic structures<br />

[68–71]. It is noted that <strong>the</strong> CIS method is less expensive but gives<br />

less accurate results [68,69]. On <strong>the</strong> c<strong>on</strong>trary, <strong>the</strong> CASSCF method<br />

can give accurate results but is quite expensive for large molecular<br />

systems [70,71]. The time-<str<strong>on</strong>g>dependent</str<strong>on</strong>g> <str<strong>on</strong>g>density</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g><strong>the</strong>ory</str<strong>on</strong>g><br />

(TDDFT) method becomes a good candidate for computing <strong>the</strong><br />

electr<strong>on</strong>ic excited states of complex molecular systems because<br />

of its moderate efficiency and accuracy [35–41]. The intermolecular<br />

<strong>hydrogen</strong> b<strong>on</strong>ds in <strong>the</strong> electr<strong>on</strong>ic excited state of o<strong>the</strong>r systems<br />

in <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ding envir<strong>on</strong>ment have been investigated <strong>the</strong>oretically<br />

by Zhao et al. using <strong>the</strong> TDDFT method [51–60]. Fine<br />

quadrature grids 4 were employed. Harm<strong>on</strong>ic vibrati<strong>on</strong>al frequencies<br />

in <strong>the</strong> ground and excited state were determined by diag<strong>on</strong>alizati<strong>on</strong><br />

of <strong>the</strong> Hessian [72]. The excited-state Hessian was obtained<br />

by <strong>the</strong> numerical differentiati<strong>on</strong> of analytical gradients using central<br />

differences and default displacements of 0.02 Bohr [73]. The<br />

infrared intensities were determined from <strong>the</strong> gradients of <strong>the</strong> dipole<br />

moment [72,73]. The artificial curves of <strong>the</strong> infrared spectra<br />

were determined by fitting a Lorenz curve with half-peak width<br />

of 15 nm. All <strong>the</strong> electr<strong>on</strong>ic structure calculati<strong>on</strong>s were carried<br />

out using <strong>the</strong> TURBOMOLE program suite [65–67,72,73].<br />

3. Results and discussi<strong>on</strong><br />

The optimizati<strong>on</strong> geometric structures of <strong>the</strong> isolated 6-amino-<br />

3-((thiophen-2-yl) methylene)-phthalide (6-ATMPH) molecule and<br />

<strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded 6-ATMPH–MeOH complex in <strong>the</strong> ground<br />

state are shown in Fig. 1. A <strong>the</strong>oretical discussi<strong>on</strong> of <strong>the</strong> intermolecular<br />

<strong>hydrogen</strong> b<strong>on</strong>d formed between <strong>the</strong> 6-ATMPH and <strong>the</strong><br />

methanol molecule is firstly given here. One can find that <strong>the</strong> intermolecular<br />

<strong>hydrogen</strong> b<strong>on</strong>d may be formed between <strong>the</strong> nitrogen of<br />

<strong>the</strong> amino group or <strong>the</strong> oxygen of <strong>the</strong> carb<strong>on</strong>yl group in <strong>the</strong> molecule<br />

of 6-ATMPH and <strong>the</strong> methanol solvent, respectively [46].<br />

Nikolov et al. have attributed <strong>the</strong> shapes and positi<strong>on</strong> of <strong>the</strong><br />

absorpti<strong>on</strong> spectral changes of <strong>the</strong> 6-ATMPH in protic alcohol solvents<br />

to <strong>the</strong> formati<strong>on</strong> of <strong>the</strong> intermolecular <strong>hydrogen</strong> b<strong>on</strong>d<br />

(C@OHAO) [46]. In terms of our experimental approach, we <strong>on</strong>ly<br />

<str<strong>on</strong>g>study</str<strong>on</strong>g> <strong>hydrogen</strong> b<strong>on</strong>ds of <strong>the</strong> type C@OHAO here. In our <strong>hydrogen</strong>-b<strong>on</strong>ded<br />

complex model, <strong>on</strong>ly <strong>the</strong> solvent molecules in <strong>the</strong> inner<br />

solvati<strong>on</strong> shell are involved. We focused our attenti<strong>on</strong> <strong>on</strong><br />

investigating <strong>the</strong> solvent molecule directly <strong>hydrogen</strong>-b<strong>on</strong>ded with<br />

<strong>the</strong> 6-ATMPH molecule without c<strong>on</strong>siderati<strong>on</strong> of <strong>the</strong> bulk effort of<br />

<strong>the</strong> outer solvati<strong>on</strong> shells. It has been dem<strong>on</strong>strated that <strong>the</strong> electr<strong>on</strong>ic<br />

excited-state <strong>hydrogen</strong>-b<strong>on</strong>ding dynamics for chromophores<br />

in soluti<strong>on</strong> can be studied reliably using this type of<br />

<strong>hydrogen</strong>-b<strong>on</strong>ded complex model [51–56]. So <strong>the</strong> <strong>hydrogen</strong>b<strong>on</strong>ded<br />

complex proposed here is a good model for <str<strong>on</strong>g>study</str<strong>on</strong>g>ing <strong>the</strong><br />

<strong>hydrogen</strong>-b<strong>on</strong>ding dynamics in soluti<strong>on</strong>.<br />

From Fig. 1 we can see <strong>the</strong> 6-ATMPH molecule has a planar c<strong>on</strong>formati<strong>on</strong>.<br />

For <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded complex, <strong>the</strong> <strong>hydrogen</strong> b<strong>on</strong>d<br />

C@OHAO remains in <strong>the</strong> plane of <strong>the</strong> 6-ATMPH molecule. At<br />

<strong>the</strong> same time, <strong>the</strong> methyl group of <strong>the</strong> methanol molecule resides<br />

throughout <strong>the</strong> plane. These results are in accordance with o<strong>the</strong>r<br />

<strong>hydrogen</strong>-b<strong>on</strong>d complexes studied by Zhao et al [35–41]. The calculated<br />

length of <strong>the</strong> <strong>hydrogen</strong> b<strong>on</strong>d C@OHAO between <strong>the</strong> H<br />

and <strong>the</strong> O atoms is 2.020 Å; <strong>the</strong> calculated <strong>hydrogen</strong> b<strong>on</strong>d binding<br />

energy is 23.6 kJ/mol. We find that <strong>the</strong> lengths of <strong>the</strong> C@O and


H. D<strong>on</strong>g et al. / Computati<strong>on</strong>al and Theoretical Chemistry 972 (2011) 57–62 59<br />

Fig. 1. The optimized geometric structures of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded complex as well as <strong>the</strong> isolated 6-ATMPH in <strong>the</strong> ground state. Dotted lines denote <strong>the</strong> intermolecular<br />

<strong>hydrogen</strong> b<strong>on</strong>ds.<br />

HAO groups are increased because of <strong>the</strong> formati<strong>on</strong> of <strong>the</strong> <strong>hydrogen</strong><br />

b<strong>on</strong>d C@OHAO. The length of <strong>the</strong> C@O b<strong>on</strong>d increases from<br />

1.197 Å to 1.207 Å and <strong>the</strong> length of <strong>the</strong> OAH b<strong>on</strong>d increases from<br />

0.963 Å to 0.970 Å. Therefore, we can predict that <strong>the</strong> C@O and<br />

OAH groups will be c<strong>on</strong>tinue to be leng<strong>the</strong>ned into a str<strong>on</strong>ger<br />

<strong>hydrogen</strong> b<strong>on</strong>d. The angles formed by C@OH and OHAO are<br />

108° and 171°, respectively. The dihedral angle formed between<br />

<strong>the</strong> plane of <strong>the</strong> 6-ATMPH molecule and CAO group of <strong>the</strong> methanol<br />

is 170°, while <strong>the</strong> OAH group remains <strong>on</strong> <strong>the</strong> plane of <strong>the</strong><br />

6-ATMPH molecule. The NAH b<strong>on</strong>d resides out of <strong>the</strong> plane of<br />

<strong>the</strong> 6-ATMPH molecule after <strong>the</strong> intermolecular <strong>hydrogen</strong> b<strong>on</strong>d<br />

formed and <strong>the</strong> dihedral angle changes to 141°. When <strong>the</strong> methanol<br />

molecule forms <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded complex, <strong>the</strong> piramidalizati<strong>on</strong><br />

of <strong>the</strong> amino group may result form <strong>the</strong> formati<strong>on</strong> of a<br />

<strong>hydrogen</strong> b<strong>on</strong>d. This is <strong>the</strong> <strong>on</strong>ly distinctly geometrical structural<br />

change between <strong>the</strong> m<strong>on</strong>omer and <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded complex.<br />

All <strong>the</strong> results indicate that <strong>the</strong> geometric c<strong>on</strong>formati<strong>on</strong> of <strong>the</strong> 6-<br />

ATMPH molecule does not change remarkably after <strong>the</strong> <strong>hydrogen</strong><br />

b<strong>on</strong>d formed in <strong>the</strong> ground state.<br />

The electr<strong>on</strong>ic excitati<strong>on</strong> energies and corresp<strong>on</strong>ding oscillati<strong>on</strong><br />

strengths of <strong>the</strong> low-lying electr<strong>on</strong>ically excited states for <strong>the</strong><br />

<strong>hydrogen</strong>-b<strong>on</strong>ded complex and <strong>the</strong> isolated 6-ATMPH m<strong>on</strong>omer<br />

are calculated using <strong>the</strong> TDDFT method. According to <strong>the</strong> Franck–<br />

C<strong>on</strong>d<strong>on</strong> principle, <strong>the</strong> electr<strong>on</strong>ic excitati<strong>on</strong> energies and fluorescence<br />

energies given in Tables 1 and 2 are vertical energies<br />

(without optimizing <strong>the</strong> geometric c<strong>on</strong>formati<strong>on</strong> of <strong>the</strong> excited<br />

state). It should be noted that both <strong>the</strong> isolated 6-ATMPH and<br />

<strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded complex have <strong>the</strong> largest oscillator strength<br />

in <strong>the</strong> S 1 state. Thus, <strong>the</strong> 6-ATMPH m<strong>on</strong>omer and <strong>the</strong> <strong>hydrogen</strong>b<strong>on</strong>ded<br />

dimer can be photoexcited initially to <strong>the</strong> S 1 state. According<br />

to Table 1, <strong>the</strong> S 1 state mainly corresp<strong>on</strong>ds to <strong>the</strong> orbital<br />

Table 1<br />

The calculated electr<strong>on</strong>ic excitati<strong>on</strong> energies (nm) and corresp<strong>on</strong>ding oscillator<br />

strengths (in <strong>the</strong> paren<strong>the</strong>sis) of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded complex and <strong>the</strong> isolated 6-<br />

ATMPH molecule in <strong>the</strong> low-lying electr<strong>on</strong>ically excited states. The c<strong>on</strong>tributi<strong>on</strong>s of<br />

orbital transiti<strong>on</strong> for <strong>the</strong> S 1 state are also shown.<br />

6-ATMPH<br />

6-ATMPHAMeOH<br />

S 1 389 (0.506) 401 (0.453)<br />

H ? L 90.4% H ? L 91.6%<br />

S 2 336 (0.416) 338 (0.418)<br />

S 3 307 (0.074) 314 (0.022)<br />

S 4 285 (0.017) 312 (0.068)<br />

S 5 274 (0.001) 299 (0.015)<br />

H: The highest occupied molecular orbital (HOMO).<br />

L: The lowest unoccupied molecular orbital (LUMO).<br />

Table 2<br />

The calculated electr<strong>on</strong>ic excitati<strong>on</strong> energies (nm) and <strong>the</strong> fluorescence energies of<br />

<strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded complex and <strong>the</strong> isolated 6-ATMPH molecule in <strong>the</strong> S 1 state, <strong>the</strong><br />

experimental results are shown in <strong>the</strong> paren<strong>the</strong>sis.<br />

6-ATMPH<br />

6-ATMPHAMeOH<br />

Abs. 389 (385) 401 (387)<br />

Flu. 468 (482) 471 (483)<br />

transiti<strong>on</strong> from <strong>the</strong> highest occupied molecular orbital (HOMO)<br />

to <strong>the</strong> lowest unoccupied molecular orbital (LUMO). We also find<br />

that <strong>the</strong> excitati<strong>on</strong> energy and <strong>the</strong> oscillati<strong>on</strong> strength of <strong>the</strong> isolated<br />

6-ATMPH are very close to that of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded complex<br />

in <strong>the</strong> S 1 state.<br />

We list <strong>the</strong> calculated electr<strong>on</strong>ic excitati<strong>on</strong> energies and fluorescence<br />

energies of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded complex and <strong>the</strong> isolated<br />

6-ATMPH molecule in <strong>the</strong> S 1 state in Table 2 with experimental results<br />

in paren<strong>the</strong>ses. The calculated excitati<strong>on</strong> energy of <strong>the</strong><br />

6-ATMPH m<strong>on</strong>omer is 389 nm in <strong>the</strong> ground state. For <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded<br />

dimer, <strong>the</strong> calculated result is 401 nm. These results<br />

are in good agreement with <strong>the</strong> experimental data of 385 nm and<br />

387 nm [46]. In <strong>the</strong> S 1 state, <strong>the</strong> calculated fluorescence energies<br />

are 468 nm and 471 nm for <strong>the</strong> 6-ATMPH m<strong>on</strong>omer and <strong>hydrogen</strong>-b<strong>on</strong>ded<br />

dimer, respectively. These results also coincide with<br />

<strong>the</strong> experimentally observed results 482 nm and 483 nm, respectively<br />

[46]. After <strong>the</strong> intermolecular <strong>hydrogen</strong> b<strong>on</strong>d formed, <strong>the</strong><br />

excitati<strong>on</strong> energy of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded dimer is decreased corresp<strong>on</strong>dingly<br />

compared with that of <strong>the</strong> 6-ATMPH m<strong>on</strong>omer in <strong>the</strong><br />

ground state. But <strong>the</strong> fluorescence energy of <strong>the</strong> 6-ATMPH m<strong>on</strong>omer<br />

is nearly <strong>the</strong> same as that of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded dimer. This<br />

may be because <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ding dynamics and <strong>the</strong> electr<strong>on</strong>ic<br />

state transiti<strong>on</strong> take place at <strong>the</strong> same time scale [11]. They<br />

couple to <strong>on</strong>e o<strong>the</strong>r and weaken <strong>the</strong> effect to <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded<br />

dimer in <strong>the</strong> excited state.<br />

Molecule orbitals (MOs) analysis can provide insight directly<br />

into <strong>the</strong> nature of <strong>the</strong> excited state [22–24,51–61]. We display<br />

<strong>the</strong> fr<strong>on</strong>tier molecular orbitals of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded complex<br />

in Fig. 2. According to our calculated results in Table 1, <strong>the</strong> S 1 state<br />

of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded dimer corresp<strong>on</strong>ds to <strong>the</strong> orbital transiti<strong>on</strong><br />

from HOMO to LUMO. So <strong>on</strong>ly <strong>the</strong> HOMO and LUMO orbitals<br />

of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded complex are shown here. The p character<br />

for <strong>the</strong> HOMO and <strong>the</strong> p ⁄ character for <strong>the</strong> LUMO can be seen<br />

clearly from Fig. 2. So <strong>the</strong> S 1 state of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded complex<br />

has <strong>the</strong> p–p ⁄ feature. As <strong>the</strong> methanol molecule lacks p orbitals,<br />

both <strong>the</strong> electr<strong>on</strong>ic densities of <strong>the</strong> HOMO and LUMO are localized<br />

<strong>on</strong> <strong>the</strong> 6-ATMPH moiety. Thus, <strong>the</strong> S 1 state of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded


60 H. D<strong>on</strong>g et al. / Computati<strong>on</strong>al and Theoretical Chemistry 972 (2011) 57–62<br />

Fig. 2. Fr<strong>on</strong>tier molecular orbital (MOs) of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded complex.<br />

dimer is a locally excited (LE) state <strong>on</strong> <strong>the</strong> 6-ATMPH moiety. This<br />

may be ano<strong>the</strong>r reas<strong>on</strong> for <strong>the</strong> fluorescence energy of <strong>the</strong> 6-ATMPH<br />

m<strong>on</strong>omer being nearly <strong>the</strong> same as that of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded<br />

dimer. In <strong>the</strong> S 1 state, it is apparent that <strong>the</strong> transiti<strong>on</strong> from HOMO<br />

to LUMO involves an intramolecular charge redistributi<strong>on</strong> from <strong>the</strong><br />

N atom to <strong>the</strong> carb<strong>on</strong>yl group. The electr<strong>on</strong>ic <str<strong>on</strong>g>density</str<strong>on</strong>g> of <strong>the</strong> C@O<br />

group increases after <strong>the</strong> transiti<strong>on</strong>. These results have been proposed<br />

by Zhao and coworkers [35–41]. The charge of electr<strong>on</strong>ic<br />

<str<strong>on</strong>g>density</str<strong>on</strong>g> in <strong>the</strong> C@O group can influence <strong>the</strong> C@O and HAO groups<br />

directly, that is to say <strong>the</strong> intermolecular <strong>hydrogen</strong> will be changed<br />

in <strong>the</strong> S 1 state.<br />

From what has been discussed above, we know that <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded<br />

complex is directly photoexcited to <strong>the</strong> S 1 state. Geometric<br />

optimizati<strong>on</strong> of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded dimer in <strong>the</strong> S 1 state<br />

has been carried out using <strong>the</strong> TDDFT method. After that, we calculated<br />

<strong>the</strong> excited-state infrared spectra of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded<br />

complex at <strong>the</strong> same level. The calculated IR spectra in <strong>the</strong> electr<strong>on</strong>ically<br />

excited state are difficult and very time-c<strong>on</strong>suming<br />

[37–41]. Because <strong>the</strong> changes in site-specific <strong>hydrogen</strong> b<strong>on</strong>ding<br />

interacti<strong>on</strong> can induce spectral shifts of some characterized vibrati<strong>on</strong>al<br />

modes involved in <strong>the</strong> formati<strong>on</strong> of <strong>the</strong> <strong>hydrogen</strong> b<strong>on</strong>d [35–<br />

41], we give <strong>the</strong> stretching vibrati<strong>on</strong>al frequencies of C@O and<br />

OAH groups in different electr<strong>on</strong>ic states in Fig. 3. It is clear that<br />

<strong>the</strong> stretching mode of <strong>the</strong> C@O group of <strong>the</strong> 6-ATMPH m<strong>on</strong>omer<br />

is red-shifted 288 cm 1 from 1841 cm 1 in <strong>the</strong> ground state to<br />

1553 cm 1 in <strong>the</strong> S 1 state. We also find that <strong>the</strong> C@O stretching<br />

vibrati<strong>on</strong>al frequency of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded dimer is down<br />

shifted 40 cm 1 compared with that of <strong>the</strong> isolated 6-ATMPH in<br />

<strong>the</strong> ground state. Therefore both <strong>the</strong> electr<strong>on</strong>ic excitati<strong>on</strong> and<br />

intermolecular <strong>hydrogen</strong> b<strong>on</strong>d formati<strong>on</strong> can lead to <strong>the</strong> stretching<br />

vibrati<strong>on</strong>al frequency of <strong>the</strong> C@O group red-shift. Compared with<br />

<strong>the</strong> C@O stretching vibrati<strong>on</strong>al frequency of isolated 6-ATMPH in<br />

<strong>the</strong> S 1 state, we find that <strong>the</strong> C@O stretching vibrati<strong>on</strong>al frequency<br />

of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded 6-ATMPH complex in <strong>the</strong> S 1 state is nearly<br />

unchanged. The stretching mode of <strong>the</strong> C@O group is <strong>the</strong>refore not<br />

good enough to m<strong>on</strong>itor <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ding dynamics of <strong>the</strong><br />

<strong>hydrogen</strong>-b<strong>on</strong>ded 6-ATMPH–MeOH complex.<br />

The stretching mode of <strong>the</strong> OAH group has a red-shift of<br />

125 cm 1 after <strong>the</strong> formati<strong>on</strong> of <strong>the</strong> intermolecular <strong>hydrogen</strong> b<strong>on</strong>d<br />

C@OHAO in <strong>the</strong> ground state. However, an additi<strong>on</strong>al shift of<br />

36 cm 1 is found for <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded complex in <strong>the</strong> S 1 state.<br />

This result provides collateral evidence for <strong>the</strong> presumpti<strong>on</strong> that<br />

<strong>the</strong> intermolecular <strong>hydrogen</strong> b<strong>on</strong>d of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded dimer<br />

is streng<strong>the</strong>ned in <strong>the</strong> S 1 state. As we have c<strong>on</strong>firmed, <strong>the</strong> methanol<br />

moiety remains in its electr<strong>on</strong>ic ground state while <strong>the</strong> <strong>hydrogen</strong>b<strong>on</strong>ded<br />

complex is in <strong>the</strong> S 1 state. That may be <strong>the</strong> reas<strong>on</strong> why <strong>the</strong><br />

change of <strong>the</strong> stretching vibrati<strong>on</strong>al frequency of <strong>the</strong> OAH group<br />

reflects <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ding dynamics of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded<br />

6-ATMPH–MeOH complex and why <strong>the</strong> C@O group vibrati<strong>on</strong>al frequency<br />

is nearly unchanged in <strong>the</strong> excited state.<br />

The excited-state geometric optimizati<strong>on</strong> for <strong>the</strong> <strong>hydrogen</strong>b<strong>on</strong>ded<br />

dimer has been performed using <strong>the</strong> TDDFT method. We<br />

list <strong>the</strong> calculated <strong>hydrogen</strong> b<strong>on</strong>d binding energies and<br />

corresp<strong>on</strong>ding group b<strong>on</strong>d lengths, as well as <strong>the</strong> b<strong>on</strong>d length of<br />

<strong>the</strong> <strong>hydrogen</strong> b<strong>on</strong>d in different electr<strong>on</strong>ic states in Table 3. For<br />

<strong>the</strong> intermolecular <strong>hydrogen</strong> b<strong>on</strong>d C@OHAO, it is clear that<br />

<strong>the</strong> <strong>hydrogen</strong> b<strong>on</strong>d length of OH decreases from 2.020 Å in <strong>the</strong><br />

ground state to 1.995 Å in <strong>the</strong> excited state. On <strong>the</strong> o<strong>the</strong>r hand,<br />

we can find that <strong>the</strong> lengths of <strong>the</strong> C@O and OAH groups are<br />

slightly increased to 1.198 Å and 0.970 Å after <strong>the</strong> intermolecular<br />

<strong>hydrogen</strong> b<strong>on</strong>d formati<strong>on</strong> in <strong>the</strong> ground state. For <strong>the</strong> excited state,<br />

<strong>the</strong> b<strong>on</strong>d lengths of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded C@O and OAH groups<br />

are increased c<strong>on</strong>tinually to 1.212 and 0.972 Å. All <strong>the</strong>se b<strong>on</strong>d<br />

length changes of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded complex indicate that<br />

<strong>the</strong> intermolecular <strong>hydrogen</strong> b<strong>on</strong>d C@OHAO is streng<strong>the</strong>ned in<br />

<strong>the</strong> excited state. We have indicated that <strong>the</strong> S 1 state of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded<br />

dimer is in <strong>the</strong> locally excited (LE) state <strong>on</strong> <strong>the</strong><br />

6-ATMPH moiety, so <strong>the</strong> <strong>hydrogen</strong> b<strong>on</strong>d binding energy can be easily<br />

calculated by subtracting <strong>the</strong> energy of <strong>the</strong> isolated 6-ATMPH in<br />

its S 1 state and <strong>the</strong> energy of <strong>the</strong> methanol in its ground state from<br />

Fig. 3. The calculated vibrati<strong>on</strong>al absorpti<strong>on</strong> spectra of <strong>the</strong> isolated 6-ATMPH and <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded complex in different electr<strong>on</strong>ic states. The HAO stretching vibrati<strong>on</strong>al<br />

band of <strong>the</strong> free methanol in <strong>the</strong> ground state is also shown.


H. D<strong>on</strong>g et al. / Computati<strong>on</strong>al and Theoretical Chemistry 972 (2011) 57–62 61<br />

Table 3<br />

The calculated corresp<strong>on</strong>ding <strong>hydrogen</strong> b<strong>on</strong>ding energies E HB (in kJ/mol) and lengths<br />

(in Å) of <strong>the</strong> <strong>hydrogen</strong> b<strong>on</strong>ds and <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ding groups in different electr<strong>on</strong>ic<br />

states.<br />

<strong>the</strong> energy of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded complex in <strong>the</strong> S 1 state. The<br />

basis set superpositi<strong>on</strong> error (BSSE) of <strong>the</strong> calculated binding energy<br />

at this level is less than 1–2 kJ/mol and is much smaller than<br />

<strong>the</strong> <strong>hydrogen</strong> b<strong>on</strong>d binding energies. The calculated <strong>hydrogen</strong><br />

b<strong>on</strong>d binding energy for <strong>the</strong> intermolecular <strong>hydrogen</strong> b<strong>on</strong>d is increased<br />

to 31.5 kJ/mol in <strong>the</strong> excited from 23.6 kJ/mol in <strong>the</strong><br />

ground state. Thus, we can c<strong>on</strong>firm that <strong>the</strong> intermolecular <strong>hydrogen</strong><br />

b<strong>on</strong>d C@OHAO of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded 6-ATMPH–MeOH<br />

complex is streng<strong>the</strong>ned in <strong>the</strong> electr<strong>on</strong>ically excited state. At <strong>the</strong><br />

same time, <strong>the</strong> mechanism of <strong>hydrogen</strong> b<strong>on</strong>d streng<strong>the</strong>ning in<br />

<strong>the</strong> electr<strong>on</strong>ically excited state first proposed by Zhao et al. in a<br />

previous <str<strong>on</strong>g>study</str<strong>on</strong>g> is supported by our <strong>the</strong>oretical calculati<strong>on</strong> results.<br />

4. C<strong>on</strong>clusi<strong>on</strong><br />

MeOH 6-ATMPH 6-ATMPHAMeOH<br />

L OAH L C@O E HB L OAH L OH L C@O<br />

S 0 0.963 1.197 23.6 0.970 2.020 1.207<br />

S 1 1.198 31.5 0.972 1.995 1.212<br />

In this work, <strong>the</strong> electr<strong>on</strong>ic excited-state <strong>hydrogen</strong>-b<strong>on</strong>ding<br />

dynamics of <strong>the</strong> 6-ATMPH chromophore in methanol solvent was<br />

studied <strong>the</strong>oretically using <strong>the</strong> time-<str<strong>on</strong>g>dependent</str<strong>on</strong>g> <str<strong>on</strong>g>density</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>al</str<strong>on</strong>g><br />

<str<strong>on</strong>g><strong>the</strong>ory</str<strong>on</strong>g> (TDDFT) method at <strong>the</strong> level of B3LYP with <strong>the</strong> TZVP basis<br />

sets. The geometric c<strong>on</strong>formati<strong>on</strong>s of <strong>the</strong> isolated 6-ATMPH<br />

molecule as well as <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>d complex in <strong>the</strong> ground<br />

state and <strong>the</strong> S 1 state are discussed here. A type of <strong>hydrogen</strong> b<strong>on</strong>d<br />

C@OHAO can be formed between <strong>the</strong> 6-ATMPH and <strong>the</strong> methanol<br />

molecule in <strong>the</strong> ground state. The fr<strong>on</strong>tier molecular orbitals<br />

analysis dem<strong>on</strong>strates that <strong>the</strong> S 1 state of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded<br />

complex is an LE state localized <strong>on</strong> <strong>the</strong> 6-ATMPH moiety. Our calculated<br />

results indicate that <strong>the</strong> b<strong>on</strong>d lengths of C@O and OAH,<br />

which are involved in <strong>the</strong> <strong>hydrogen</strong> b<strong>on</strong>ding, are increased owing<br />

to <strong>the</strong> formati<strong>on</strong> of <strong>the</strong> intermolecular <strong>hydrogen</strong> C@OHAO in<br />

<strong>the</strong> ground state. Moreover, <strong>the</strong> lengths of <strong>the</strong> b<strong>on</strong>d C@O and<br />

OAH groups have a larger enlargement in <strong>the</strong> excited state compared<br />

with that in <strong>the</strong> ground state. Corresp<strong>on</strong>dingly, <strong>the</strong> length<br />

of <strong>the</strong> intermolecular <strong>hydrogen</strong> b<strong>on</strong>d is decreased in <strong>the</strong> excited<br />

state. In additi<strong>on</strong>, <strong>the</strong> calculated <strong>hydrogen</strong> b<strong>on</strong>d binding energy<br />

is increased to 31.5 kJ/mol in <strong>the</strong> excited state from 23.6 kJ/mol.<br />

These results have dem<strong>on</strong>strated clearly that <strong>the</strong> intermolecular<br />

<strong>hydrogen</strong> b<strong>on</strong>d C@OHAO between 6-ATMPH and methanol is<br />

streng<strong>the</strong>ned up<strong>on</strong> photoexcitati<strong>on</strong>. Using <strong>the</strong> TDDFT method, we<br />

also calculated <strong>the</strong> vibrati<strong>on</strong>al absorpti<strong>on</strong> spectra of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded<br />

groups in <strong>the</strong> ground and <strong>the</strong> excited state. By m<strong>on</strong>itoring<br />

<strong>the</strong> infrared spectral shift of OAH, we can c<strong>on</strong>firm that <strong>the</strong><br />

intermolecular <strong>hydrogen</strong> b<strong>on</strong>d of <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ded 6-<br />

ATMPH–MeOH complex is streng<strong>the</strong>ned in <strong>the</strong> excited state. The<br />

<strong>hydrogen</strong> b<strong>on</strong>d cleavage mechanism proposed in some o<strong>the</strong>r studies<br />

regarding <strong>the</strong> <strong>hydrogen</strong>-b<strong>on</strong>ding dynamics is excluded from<br />

our <strong>the</strong>oretically calculated results. Our results are in accordance<br />

with <strong>the</strong> mechanism of <strong>the</strong> intermolecular <strong>hydrogen</strong> b<strong>on</strong>d<br />

streng<strong>the</strong>ning in <strong>the</strong> electr<strong>on</strong>ically excited state that was first dem<strong>on</strong>strated<br />

by Zhao and coworkers.<br />

Acknowledgement<br />

This work was supported by <strong>the</strong> Nati<strong>on</strong>al Natural Science Foundati<strong>on</strong><br />

of China (Grant No. 21036006).<br />

References<br />

[1] K.-L. Han, G.-J. Zhao, Hydrogen B<strong>on</strong>ding and Transfer in <strong>the</strong> Excited State, John<br />

Wiley & S<strong>on</strong>s Ltd., UK, 2010. doi:10.1002/9780470669143.<br />

[2] K. Bhattacharyya, B. Bagchi, J. Phys. Chem. A 104 (2000) 10603–10613.<br />

[3] H. Zhang, S.F. Wang, Q. Sun, S.C. Smith, Phys. Chem. Chem. Phys. 11 (2009)<br />

8422–8424.<br />

[4] C.E. Dykstra, Adv. Chem. Phys. 126 (2003) 1–40.<br />

[5] C.E. Dykstra, Chem. Rev. 93 (1993) 2339–2353.<br />

[6] H. Zhang, Z.P. Xu, G.Q. Lu, S.C. Smith, J. Phys. Chem. C 113 (2009) 559–566.<br />

[7] G.-J. Zhao, K.-L. Han, Photochemistry Research Progress, Nova Science<br />

Publishers, New York, 2008 (Chapter 5).<br />

[8] K.I. Priyadarsini, J. Photochem. Photobiol., C: Photochem. Rev. 10 (2009) 81–95.<br />

[9] S. Jang, S. Shin, J. Phys. Chem. B 112 (2008) 3479–3484.<br />

[10] P. Schuster, G. Zundel, C. Sandorfy, The Hydrogen B<strong>on</strong>d: Recent Developments<br />

in Theory and Experiments, North-Holland, Amsterdam, 1976.<br />

[11] C.E. Chudoba, E.T.J. Nibbering, T. Elsaesser, Phys. Rev. Lett. 81 (1998) 3010–<br />

3013.<br />

[12] H. Zhang, S.C. Smith, J. Theor. Comput. Chem. 6 (2007) 789–802.<br />

[13] L. Serrano-Andres, M. Merchan, J. Photochem. Photobiol., C: Photochem. Rev.<br />

10 (2009) 21–32.<br />

[14] J. Lee, S. Shin, Bull. Korean Chem. Soc. 29 (2008) 741–748.<br />

[15] J. Lee, S. Jang, Y. Pak, S. Shin, Bull. Korean Chem. Soc. 24 (2003) 785–791.<br />

[16] Y. Liu, K. Ogawa, K.S. Schanze, J. Photochem. Photobiol., C: Photochem. Rev. 10<br />

(2009) 173–190.<br />

[17] C.E. Dykstra, J.M. Lisy, J. Mol. Struct. Theochem 500 (2000) 375–390.<br />

[18] G. Kohler, S. Bakalova, N. Getoff, P. Nikolov, I. Timtcheva, J. Photochem.<br />

Photobiol., A: Chem. 81 (1994) 73.<br />

[19] J.M. Stout, C.E. Dykstra, J. Am. Chem. Soc. 117 (1995) 5127–5132.<br />

[20] S.B. Suh, J.C. Kim, Y.C. Choi, S. Yun, K.S. Kim, J. Am. Chem. Soc. 126 (2004)<br />

2186–2193.<br />

[21] K.S. Kim, K.S. Oh, J.Y. Lee, Proc. Natl Acad. Sci. USA 97 (2000) 6373–6378.<br />

[22] V. Samant, A.K. Singh, G. Ramakrishna, H.N. Ghosh, T.K. Ghanty, D.K. Palit, J.<br />

Phys. Chem. A 109 (2005) 8693–8704.<br />

[23] Y.-H. Liu, G.-J. Zhao, G.-Y. Li, K.-L. Han, J. Photochem. Photobiol., A: Chem. 209<br />

(2010) 181–185.<br />

[24] G.-J. Zhao, B.H. Northrop, K.-L. Han, P.J. Stang, J. Phys. Chem. A 114 (2010)<br />

9007–9013.<br />

[25] S. Liu, S. Kokot, G. Will, J. Photochem. Photobiol., C: Photochem. Rev. 10 (2009)<br />

159–164.<br />

[26] W.J.D. Beenken, M. Sun, G.J. Zhao, T. Pullerits, Phys. Status Solidi B 245 (2008)<br />

849–853.<br />

[27] C.H. Tao, V.W.W. Yam, J. Photochem. Photobiol., C: Photochem. Rev. 10 (2009)<br />

130–140.<br />

[28] B. Nigro, S. Re, D. Laage, R. Rey, J.T. Hynes, J. Phys. Chem. A 110 (2006) 11237–<br />

11243.<br />

[29] D.W.H. Swens<strong>on</strong>, H.M. Jaeger, C.E. Dykstra, Chem. Phys. 326 (2006) 329–334.<br />

[30] E.E. Baquero, W.H. James, S.H. Choi, S.H. Gellman, T.S. Zwier, J. Am. Chem. Soc.<br />

130 (2008) 4784–4794.<br />

[31] L. Jin, J. Zhai, L. Heng, T. Wei, L. Wen, L. Jiang, X. Zhao, X. Zhang, J. Photochem.<br />

Photobiol., C: Photochem. Rev. 10 (2009) 149–154.<br />

[32] K. Chenoweth, C.E. Dykstra, Chem. Phys. Lett. 402 (2005) 329–334.<br />

[33] S. Horikoshi, N. Serp<strong>on</strong>e, J. Photochem. Photobiol., C: Photochem. Rev. 10<br />

(2009) 96–110.<br />

[34] S.K. Sahoo, M. Baral, J. Photochem. Photobiol., C: Photochem. Rev. 10 (2009) 1–<br />

20.<br />

[35] G.-J. Zhao, K.-L. Han, J. Phys. Chem. A 111 (2007) 9218–9223.<br />

[36] G.-J. Zhao, Y.-H. Liu, L.-C. Zhou, K.-L. Han, J. Phys. Chem. B 111 (2007) 8940–<br />

8945.<br />

[37] G.-J. Zhao, K.-L. Han, J. Chem. Phys. 127 (2007) 024306.<br />

[38] G.-J. Zhao, K.-L. Han, Biophys. J. 94 (2008) 38–46.<br />

[39] G.-J. Zhao, K.-L. Han, J. Comput. Chem. 29 (2008) 2010–2017.<br />

[40] G.-J. Zhao, K.-L. Han, ChemPhysChem 9 (2008) 1842–1846.<br />

[41] G.-J. Zhao, K.-L. Han, J. Phys. Chem. A 111 (2007) 2469–2474.<br />

[42] W. Hieringer, A. Gorling, Chem. Phys. Lett. 419 (2006) 557–562.<br />

[43] S. Perun, A.L. Sobolewski, W. Domcke, J. Phys. Chem. A 110 (2006) 9031–9038.<br />

[44] C. Yun, J. You, J. Kim, J. Huh, E. Kim, J. Photochem. Photobiol., C: Photochem.<br />

Rev. 10 (2009) 111–129.<br />

[45] F. Fratev, P. Nikolov, S. Minchev, J. Mol. Struct. 114 (1984) 239.<br />

[46] I. Timtcheva, P. Nikolov, N. Stojanov, St. Minchev, J. Photochem. Photobiol., A:<br />

Chem. 101 (1996) 145–150.<br />

[47] P. Nikolov, I. Timtcheva, J. Photochem. Photobiol., A 131 (2000) 23–26.<br />

[48] P. Nikolov, St. Fratev, F. Minchev, Z. Naturforsch., A 38 (1983) 200–205.<br />

[49] P. Nikolov, I. Petkova, G. Koehler, St. Stojanov, J. Mol. Struct. 448 (1998) 247–<br />

254.<br />

[50] P. Nikolov, H. Goerner, J. Photochem. Photobiol., A: Chem. 101 (1996) 137–144.<br />

[51] G.-J. Zhao, K.-L. Han, P.J. Stang, J. Chem. Theory Comput. 5 (2009) 1955–1958.<br />

[52] G.-J. Zhao, K.-L. Han, J. Phys. Chem. A 113 (2009) 14329–14335.<br />

[53] K.-L. Han, G.-Z. He, J. Photochem. Photobiol., C: Photochem. Rev. 8 (2007) 55–<br />

66.<br />

[54] K. Chenoweth, C.E. Dykstra, Chem. Phys. Lett. 400 (2004) 153–157.<br />

[55] M. Carmichael, K. Chenoweth, C.E. Dykstra, J. Phys. Chem. A 108 (2004) 3143–<br />

3152.<br />

[56] K.-L. Han, G.-Z. He, N.-Q. Lou, J. Chem. Phys. 105 (1996) 8699–8704.<br />

[57] K. Chenoweth, C.E. Dykstra, Theor. Chem. Acc. 110 (2003) 100–104.


62 H. D<strong>on</strong>g et al. / Computati<strong>on</strong>al and Theoretical Chemistry 972 (2011) 57–62<br />

[58] K. Shuler, C.E. Dykstra, J. Phys. Chem. A 104 (2000) 11522–11530.<br />

[59] B.Y. Chang, S. Shin, J. Santamaria, I.R. Sola, J. Chem. Phys. 130 (2009) 124320.<br />

[60] C.E. Dykstra, J. Mol. Struct. Theochem 573 (2001) 63–71.<br />

[61] C.E. Dykstra, J. Phys. Chem. A 107 (2003) 4196–4202.<br />

[62] T.-S. Chu, K.-L. Han, Phys. Chem. Chem. Phys. 10 (2008) 2431–2441.<br />

[63] F. Yu, P. Li, G. Li, G.J. Zhao, T.S. Chu, K.L. Han, J. Am. Chem. Soc. (2011),<br />

doi:10.1021/ja202582x.<br />

[64] T.-S. Chu, K.-L. Han, Int. Rev. Phys. Chem. 25 (2006) 201–235.<br />

[65] A.D. Becke, J. Chem. Phys. 98 (1993) 5648–5652.<br />

[66] A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 100 (1994) 5829–5835.<br />

[67] F. Furche, R. Ahlrichs, J. Chem. Phys. 117 (2002) 7433–7447.<br />

[68] P.A. Malmqvist, B.O. Roos, Chem. Phys. Lett. 155 (1989) 189–194.<br />

[69] J. Stalring, A. Bernhardss<strong>on</strong>, R. Lindh, Mol. Phys. 99 (2001) 103–114.<br />

[70] R. Krishnan, H.B. Schlegel, J.A. Pople, J. Chem. Phys. 72 (1980) 4654–4655.<br />

[71] J.B. Foresman, M. Head-Gord<strong>on</strong>, J.A. Pople, J. Phys. Chem. 96 (1992) 135–149.<br />

[72] R. Ahlrichs, M. Bar, H. Horn, C. Kolmel, Chem. Phys. Lett. 162 (1989) 165–169.<br />

[73] O. Treutler, R. Ahlrichs, J. Chem. Phys. 102 (1995) 346–354.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!