22.02.2015 Views

designing pcc pavements for economy and longevity - American ...

designing pcc pavements for economy and longevity - American ...

designing pcc pavements for economy and longevity - American ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

DESIGNING PCC PAVEMENTS<br />

FOR ECONOMY AND LONGEVITY<br />

WOUTER GULDEN P.E.<br />

DIR. OF ENGINEERING AND TRAINING<br />

AMERICAN CONCRETE PAVEMENT ASSOCIATION,<br />

SOUTHEAST CHAPTER<br />

CONCRETE AIRPORT PAVEMENT WORKSHOP<br />

NOVEMBER 4‐5, 2009 ATLANTA, GEORGIA


Economize Concrete Pavement?<br />

Longitudinal joints<br />

Transverse joints<br />

Thickness Design<br />

Concrete materials?<br />

Shoulder<br />

Subgrade<br />

Subbase/Drains


Concrete Pavement Design<br />

Geometrics<br />

Thickness(es)<br />

Joints<br />

Materials


Concrete Pavement Design<br />

Geometrics<br />

`<br />

Thickness<br />

Joints<br />

Materials<br />

Most Often Influence Cost<br />

& Selection of Projects<br />

C<br />

O<br />

S<br />

T


Concrete Pavement Design<br />

Geometrics<br />

Thickness<br />

Joints<br />

Materials<br />

Most Often Influence<br />

Real-world Per<strong>for</strong>mance<br />

PERFORMANCE


Design Procedures <strong>for</strong> Roads<br />

Empirical Design Procedures<br />

Based on observed per<strong>for</strong>mance<br />

AASHO Road Test<br />

Mechanistic Design Procedures<br />

Based on mathematically calculated pavement responses<br />

PCA Design Procedure (PCAPAV)…….Revised as StreetPave<br />

Mechanistic-Empirical Design<br />

AASHTO MEPDG


Principles of Design<br />

Load stresses<br />

Thickness<br />

Curling/Warping stresses<br />

Volume change stresses<br />

Jointing


Concrete Pavement Design<br />

Load Transfer (slabs( ability to share its load with neighboring g slabs)<br />

Dowels<br />

L= x<br />

U = 0<br />

Aggregate Interlock<br />

Poor Load Transfer<br />

Edge Support<br />

Widened lane<br />

Tied concrete shoulder<br />

L= x/2<br />

Good Load Transfer<br />

U= x/2


Aggregate Interlock<br />

Shear between aggregate particles<br />

below the initial saw cut


Edge Support<br />

Concrete Shoulder Curb & Gutter Widened Lane<br />

te separat<br />

or<br />

integral


AASHTO Pavement Design Guide<br />

Empirical methodology based on<br />

AASHO Road Test in the late<br />

1950’s<br />

Several versions:<br />

1961 (Interim Guide), 1972, 1986,<br />

1993<br />

1986 Guide highlights the need <strong>for</strong><br />

mechanistic design<br />

Design Guide


AASHO Road Test<br />

(1958-1960)<br />

Third large scale road test<br />

1 st : Maryl<strong>and</strong> Road Test (1950-51)<br />

Rigid <strong>pavements</strong> Only<br />

2 nd : WASHO Road Test (1952-54)<br />

Flexible <strong>pavements</strong> only<br />

Included both rigid <strong>and</strong> flexible<br />

pavement test sections<br />

Included a wide range of axle<br />

loads <strong>and</strong> pavement cross-<br />

sections


1986-93 Rigid Pavement Design<br />

Equation<br />

St<strong>and</strong>ard<br />

Normal Deviate<br />

Overall<br />

St<strong>and</strong>ard Deviation<br />

Depth<br />

Log(ESALs) =<br />

Z * s + 735 7.35 * Log(D + 1) - 006 0.06 +<br />

R<br />

Terminal<br />

Serviceability<br />

( )<br />

o<br />

Modulus of<br />

Rupture<br />

Drainage<br />

Coefficient<br />

i<br />

⎢ S' * C *<br />

[<br />

D 0.75 − 1.132<br />

]<br />

422 - * c d<br />

+ 4.22 0.32p<br />

t<br />

Log<br />

⎡<br />

⎢<br />

⎢<br />

⎢<br />

⎡<br />

215.63 * J * D<br />

0.75<br />

⎢ -<br />

⎢<br />

⎣<br />

⎣⎢<br />

Load<br />

Transfer<br />

E / k<br />

Load ( c<br />

)<br />

Modulus<br />

of Elasticity<br />

Change in Serviceability<br />

⎡<br />

⎡ Δ PSI<br />

⎢ Log<br />

⎢<br />

⎢ ⎣ 4.5 - 1.5<br />

⎢ 1.624 * 10<br />

⎢ 1+<br />

⎣⎢<br />

18.42<br />

(<br />

D +<br />

)<br />

⎤<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

1 846 .<br />

⎤<br />

⎥<br />

⎦<br />

⎤<br />

⎥<br />

025 .<br />

⎦⎥<br />

⎦<br />

Modulus of<br />

Subgrade Reaction<br />

7<br />

⎤<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦⎥


1986-93 Rigid Pavement Design<br />

Rigid pavement design parameters<br />

Thickness<br />

Serviceability (p o , p t )<br />

Traffic (ESALs, E-18s)<br />

Load transfer (J)<br />

Concrete properties (S’ c , E c )<br />

Subgrade strength (k, LS)<br />

Drainage (C d )<br />

Reliability (R, S o )


Traffic Characterization<br />

Equivalent Number of 18k Single Axle Loads


AASHTO Design – Traffic<br />

Load Equivalency Factor (LEF)<br />

The ratio of the effect (damage) of a specific axle load on<br />

pavement serviceability to the effect produced by an 18-kip<br />

axle load at the AASHO Road Test<br />

Change <strong>for</strong> each:<br />

Pavement Type<br />

Thickness<br />

Terminal Serviceability.


AASHTO Design - Traffic<br />

ESAL’s or E-18’s<br />

The number <strong>and</strong> weight of all axle loads from the<br />

anticipated vehicles expected during the pavement<br />

design life - expressed in 18-kip (80 kN) Equivalent<br />

Single Axle Loads <strong>for</strong> each type of pavement.<br />

—Rigid ESAL’s or E-18’s<br />

—Flexible ESAL’s or E-18’s


18 kip ESALs<br />

VEHICLE<br />

NUMBER<br />

RIGID<br />

ESALs<br />

FLEXIBLE<br />

ESALs<br />

Single Units 2 Axle 20 6.38 6.11<br />

Busses 5 13.55 8.73<br />

Panel Trucks 10 10.89 11.11<br />

Semi-tractor Trailer 3 Axles 10 20.06 13.41<br />

Semi-tractor Trailer 4 Axles 15 39.43 29.88<br />

Semi-tractor Trailer 5 Axles 15 57.33 36.87<br />

Automobile, Pickup, Van 425 1.88 2.25<br />

Total 500 149.52 108.36


StreetPavetP<br />

Pavement Design<br />

Procedure<br />

.


StreetPave Design Procedure<br />

ACPA Design Procedure<br />

used in StreetPave<br />

A pavement design tool <strong>for</strong><br />

low volume roads (streets &<br />

local roads<br />

Based on the PCA’s<br />

pavement thickness design<br />

methodology<br />

PCA assesses adequacy of<br />

concrete thickness using both<br />

fatigue <strong>and</strong> erosion criteria


Fatigue Analysis<br />

Allowable number of<br />

load repetitions <strong>for</strong><br />

each axle group is<br />

determined<br />

% Fatigue is<br />

calculated <strong>for</strong> each<br />

axle group<br />

Total fatigue<br />

consumed should<br />

not exceed 100%.<br />

Critical Loading Position<br />

Fatigue<br />

Transverse joint<br />

Midslab loading away from<br />

transverse joint produces critical<br />

edge stresses


Erosion Analysis<br />

Repetitions of heavy axle<br />

loads cause:<br />

pumping; erosion of<br />

subgrade, subbase <strong>and</strong><br />

shoulder materials; voids<br />

under <strong>and</strong> adjacent to the<br />

slab; <strong>and</strong> faulting of<br />

pavement joints.<br />

A thin pavement with its<br />

shorter deflection basin<br />

receives a faster load<br />

punch than a thicker slab.<br />

Critical Loading Position<br />

Erosion<br />

Corner loading produces critical<br />

pavement deflections<br />

Transverse joint


Project Specific “Global” Inputs in<br />

StreetPave<br />

Project in<strong>for</strong>mation.<br />

Design life.<br />

Reliability*<br />

.<br />

Failure criteria*.<br />

Terminal serviceability.<br />

Percent cracked slabs.<br />

*These values should be selected based on policy<br />

<strong>and</strong> experience.


Reliability<br />

Levels of Reliability <strong>for</strong> Pavement Design<br />

Functional Classification of<br />

Roadway<br />

Interstates, Freeways, <strong>and</strong><br />

Tollways<br />

Recommended d Reliability<br />

Urban<br />

Rural<br />

85 - 99 80 – 99<br />

Principal Arterials 80 - 99 75 – 95<br />

Collectors 80 - 95 75 – 95<br />

Residential & Local Roads 50 - 80 50 – 80


Failure Criteria (Cracked Slabs)<br />

Recommended Levels of Slab Cracking by Roadway Type<br />

Roadway Type<br />

Recommended Percent of<br />

Slabs Cracked at End of<br />

Design Life<br />

(Default) 15%<br />

Interstate Highways, Expressways,<br />

Tollways, Turnpikes<br />

5%<br />

State Roads, Arterials 10%<br />

Collectors, County Roads 15%<br />

Residential Streets 25%


Combined Effects of Reliability <strong>and</strong><br />

Failure Criteria


Site Condition Inputs in StreetPave<br />

The following StreetPave input data is needed <strong>for</strong><br />

a specific project.<br />

Traffic category.<br />

Ttl Total number of lanes.<br />

Directional distribution.<br />

Design lane distribution.<br />

ib ti<br />

ADTT or ADT plus % trucks.<br />

Truck traffic growth.<br />

Subgrade support value (k).


Street Classifications<br />

Street Class Description<br />

Two-way Average<br />

Daily Traffic<br />

(ADT)<br />

Two-way Average<br />

Daily Truck Traffic<br />

(ADTT)<br />

Typical Range of<br />

Slab Thickness<br />

Light<br />

Residential<br />

Residential<br />

Collector<br />

Business<br />

Industrial<br />

Short streets in subdivisions <strong>and</strong> similar<br />

residential areas – often not through-streets.<br />

Through-streets in subdivisions <strong>and</strong> similar<br />

residential areas that t occasionally carry a<br />

heavy vehicle (truck or bus).<br />

Streets that collect traffic from several<br />

residential subdivisions, <strong>and</strong> that may serve<br />

buses <strong>and</strong> trucks.<br />

Streets that provide access to shopping <strong>and</strong><br />

urban central business districts.<br />

Streets that provide access to industrial areas<br />

or parks, <strong>and</strong> typically carry heavier trucks than<br />

the business class.<br />

Less than 200 2-4 4.0 - 5.0 in.<br />

(100-125 mm)<br />

200-1,000 10-50 5.0 - 7.0 in.<br />

(125-175175 mm)<br />

1,000-8,000 50-500 5.5 - 9.0 in.<br />

(135-225 mm)<br />

11,000-17,000 400-700 6.0 - 9.0 in.<br />

(150-225 mm)<br />

2,000-4,000 300-800 7.0 - 10.5 in.<br />

(175-260 mm)<br />

Arterial<br />

Streets that serve traffic from major 4,000-15,000 (minor) 300-600 6.0 - 9.0 in.<br />

expressways <strong>and</strong> carry traffic through<br />

4,000-30,000<br />

(150-225 mm)<br />

metropolitan areas. Truck <strong>and</strong> bus routes are<br />

(major)<br />

7.0 - 11.0 in.<br />

primarily on these roads.<br />

700-1,500<br />

(175-275 mm)


Subgrade Properties<br />

Subgrade Soil Types <strong>and</strong> Approximate k Values<br />

Type of Soil Support k value range)<br />

Fine-grained soils in which<br />

silt <strong>and</strong> clay-size<br />

Low<br />

particles predominate<br />

S<strong>and</strong>s <strong>and</strong> s<strong>and</strong>-gravel<br />

mixtures with moderate Medium<br />

amounts of silt <strong>and</strong> clay<br />

S<strong>and</strong>s <strong>and</strong> s<strong>and</strong>-gravel<br />

mixtures it relatively lti l free<br />

High<br />

of plastic fines<br />

75 - 120 pci<br />

(20 - 34 MPa/m)<br />

130 - 170 pci<br />

(35 - 49 MPa/m)<br />

180 - 220 pci<br />

(50 - 60 MPa/m)


Subgrade Properties<br />

Typical composite k-values <strong>for</strong> unbound granular, aggregate, or crushed stone subbase<br />

Thickness of Unbound Granular or Crushed Stone<br />

Subgrade k-<br />

Subbase<br />

value (pci) 4” 6” 9” 12”<br />

50 65 75 85 110<br />

100 130 140 160 190<br />

150 176 185 215 255<br />

200 220 230 270 320


Subgrade <strong>and</strong> Subbase<br />

Subgrade strength is not a critical element in the<br />

thickness design.<br />

Has little impact on thickness.<br />

Need to know if pavement is on:<br />

Subgrade (k ≈100 psi/in.)<br />

Granular subbase (k ≈ 150 psi/in.)<br />

Asphalt treated t subbase (k ≈ 300 psi/in.)<br />

Cement treated subbase (k ≈ (500 psi/in.)


Subbases as a Design Element<br />

Assuming that a plain jointed doweled concrete<br />

pavement was designed d with these k values (90%<br />

reliability, 10 million ESALS), the effect on concrete<br />

thickness follows:<br />

No subbase, PCC thickness = 10.23 in.<br />

4-in. dense-graded aggregate, 10.18 in.<br />

6-in. dense-graded aggregate, 10.14 in.<br />

12-in. dense-graded aggregate, 10.01 in.<br />

4-in. cement stabilized subbase, 9.9797 in.<br />

6-in. cement stabilized subbase, 9.79 in.


Subgrade <strong>and</strong> Subbase<br />

Proper design <strong>and</strong> construction are absolutely<br />

necessary if the pavement is to per<strong>for</strong>m.<br />

Must be uni<strong>for</strong>m throughout pavement’s life.<br />

Subbases can contribute to the constructability of a<br />

concrete pavement under adverse conditions<br />

Poor subgrade/subbase preparation can not be<br />

overcome with thickness.


WWW.TRB.ORG/MEPDG


Pavement Design Factors<br />

Climate<br />

Traffic<br />

Materials<br />

Structure<br />

Damage<br />

Response<br />

Time<br />

Damage<br />

Accumulation<br />

Field Distress


JPCP Raw Input (Level 1, 2, or 3)<br />

Environment<br />

• Temperature<br />

Materials<br />

• PCC<br />

Traffic<br />

• Axle classification<br />

• Precipitation •Base<br />

• Subgrade<br />

•Axle loads<br />

Process raw input <strong>for</strong> PCC distress modeling<br />

Ti Trial lDesign<br />

Assemble input <strong>and</strong> trial design in<strong>for</strong>mation <strong>for</strong> each distress model<br />

Top-down cracking<br />

Bottom-up cracking<br />

Faulting<br />

•Calculate stresses<br />

•Calculate damage<br />

•Predict top-down<br />

cracking<br />

•Calculate stresses<br />

•Calculate damage<br />

•Predict bottom-up<br />

cracking<br />

•Calculate deflections<br />

•Calculate diff. energy<br />

•Predict joint faulting<br />

trial desig gn<br />

Compute IRI over Design Period<br />

(Initial IRI, Distress, Climate,<br />

Subgrade)<br />

Requirements<br />

satisfied?<br />

Yes<br />

Design completed<br />

No<br />

Revise


Cost - Per<strong>for</strong>mance Balance<br />

Considerations<br />

Type of facility<br />

Design expectations<br />

Budget constraints


What do we mean by<br />

economizing...?


Is it about “Cheap”?<br />

Cost<br />

Per<strong>for</strong>mance


The question becomes…<br />

Cost<br />

Per<strong>for</strong>mance<br />

What is the optimum design <strong>for</strong> the expected per<strong>for</strong>mance?


Selecting Appropriate Features<br />

<br />

<br />

<br />

Subgrade<br />

<br />

<br />

Compact<br />

Treat/Stabilize<br />

Subbase<br />

<br />

<br />

<br />

<br />

Unstabilized<br />

Cement Stabilized<br />

GAB+ AC<br />

GAB<br />

Joint Spacing<br />

<br />

<br />

20 ft<br />

15 ft<br />

<br />

<br />

<br />

Dowels<br />

<br />

<br />

Full basket<br />

Partial basket<br />

Tiebars<br />

<br />

<br />

Number<br />

Spacing<br />

Joint Sealant<br />

<br />

<br />

<br />

<br />

None<br />

Hot pour<br />

Silicone<br />

Pre<strong>for</strong>med


Selecting Appropriate Features<br />

<br />

Thickness<br />

<br />

8 in.<br />

<br />

Full-depth Concrete<br />

10 in.<br />

Partial-Depth Concrete<br />

12 in.<br />

Asphalt<br />

14 in. RCC<br />

Widened lane<br />

<br />

Shoulder


Effect of Base Thickness on PCC Thickness<br />

93 guide (widened lane +dowels)<br />

Subgrade k value is 150 psi<br />

GAB(inch) Kvalue PCC (inch)<br />

12 245 12 .00<br />

10 220 12.06<br />

8 190 12.13<br />

12 GAB+3 AC 290 11.91


Base Thickness<br />

GDOT GUIDELINES<br />

SSV<br />

GAB THICKNESS<br />

20 2.0–2.5 25 12-1010 inches<br />

2.6-3.0 10-8 inches<br />

3135 3.1-3.5 8-6 inches


STREETPAVE


STREETPAVE


MEPDG<br />

Effect of Selection of<br />

Design Features<br />

es


Sensitivity of JPCP Cracking to<br />

Slab Thickness <strong>and</strong> Joint Spacing<br />

slabs cracked<br />

ercent<br />

P<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

19 million trucks (TTC 2 [30 million ESALs])<br />

Wet-freeze climate<br />

8- to 11-in JPCP; 6-in aggregate base<br />

8-in slab<br />

9-in slab<br />

10-in slab<br />

11-in slab<br />

12 13 14 15 16 17 18 19 20<br />

Joint spacing, ft


Effect of Dowel Diameter on Faulting<br />

0.3<br />

0.25<br />

19 million trucks<br />

Wet-freeze climate<br />

10-in JPCP; 6-in aggregate base<br />

EROD=4<br />

AC shoulder<br />

15-ft joint spacing<br />

Faulting, in<br />

0.2<br />

0.15<br />

01 0.1<br />

no dowels<br />

d = 1 in<br />

d = 1.25 in<br />

d = 1.375 in<br />

d = 1.5 in<br />

0.05<br />

0<br />

0 50 100 150 200 250 300<br />

Age, months


WIDENED LANES


EXAMPLE PROJECT<br />

9 INCH PCC, 8 INCH GAB, 12FT OSL<br />

Predicted Cracking<br />

100<br />

90<br />

80<br />

70<br />

Percent slabs cracked<br />

Cracked at specified reliability<br />

Limit percent slabs cracked<br />

Percent slabs cracke ed, %<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20 22<br />

Pavement age, years


EXAMPLE PROJECT<br />

9 INCH PCC, 8 INCH GAB, 13FT OSL<br />

Predicted Cracking<br />

100<br />

90<br />

80<br />

Pe ercent slabs cra acked, %<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

Percent slabs cracked<br />

Cracked at specified reliability<br />

Limit percent slabs cracked<br />

10<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20 22<br />

Pavement age, years


Cost<br />

Per<strong>for</strong>mance<br />

What is the optimum design <strong>for</strong> the expected per<strong>for</strong>mance?


Law of Diminishing Returns…<br />

Adding bells <strong>and</strong> whistles<br />

Pav vement Pe er<strong>for</strong>manc ce<br />

Cost of Additional Features


Parking Lots<br />

Pervious Concrete Pavements<br />

Roller Compacted Concrete


What is Pervious Concrete?<br />

• AN<br />

No-Fines<br />

Concrete Mix<br />

• Coarse Aggregate<br />

• Portl<strong>and</strong> Cement<br />

• Water<br />

• Intended <strong>for</strong> use as<br />

an open-graded<br />

drainage material


Uses<br />

• Commercial parking<br />

lots <strong>and</strong> driveways.<br />

• Residential parking<br />

lots <strong>and</strong> driveways.<br />

• Sidewalks & Streets<br />

• Jogging trails<br />

• Embankments <strong>for</strong><br />

erosion control etc.


Pervious Concrete Pavements:<br />

Environmental Advantages<br />

• Percolation recharges<br />

groundwater<br />

• Water resources are<br />

conserved<br />

• Less need <strong>for</strong> irrigation<br />

• Adjacent vegetation<br />

allowed more<br />

rainwater<br />

• Reduced runoff<br />

• Cooler surface has<br />

less impact on air<br />

temperature


Pervious Concrete Properties<br />

• Drainage rate = 3 to 5<br />

gal/min/ft /ft 2<br />

• Equivalent of 275” to<br />

450” of rain per hour!<br />

• Water drains through<br />

pavement <strong>and</strong> stone<br />

bed <strong>and</strong> infiltrates<br />

slowly into underlying<br />

soil mantle<br />

• 0.1 – 0.5 in/hr preferred<br />

• System design may be<br />

customized <strong>for</strong> unique soil<br />

conditions


Pervious Concrete Properties<br />

• 15% to 30% air void content<br />

• Field studies show 20-25% average<br />

• 100 to 120 lbs/ft 3 unit weight<br />

• 2500 to 3500 psi strength*<br />

• Introduction ti of small amount of ffine aggregate<br />

can increase strength to 4000 psi (+/-)<br />

• compressive strength typically y not used as<br />

acceptance criteria. Air void structure <strong>and</strong> unit<br />

weight are used instead.


System Hydrological Design<br />

Considerations<br />

• Required Input<br />

• Soil permeability<br />

• Porosity of pervious concrete<br />

• Thickness of pervious concrete<br />

• Local rainfall data<br />

• Adjacent areas that will drain onto pervious


Typical System Structure Design:<br />

Cross-section diagram<br />

Pervious Concrete<br />

Compacted Sub-basebase<br />

(#57/#67 Stone)<br />

Filter Fabric<br />

mum<br />

2 feet mini<br />

Compacted Sub-grade<br />

(92% max)<br />

Water Table<br />

(wet season level)


Application Selection<br />

Two Way ADTT<br />

Application Pavement<br />

Thickness<br />

MR<br />

Light Residential<br />

3 6” 150-350 Psi<br />

(Driveways)<br />

Residential – Non Critical<br />

(Side Walks & Jogging<br />

0 4” 150 Psi<br />

Trails, Patios)<br />

Medium Residential<br />

10-30 8” 350 Psi<br />

(Residential & Secondary)<br />

Light Commercial<br />

(Parking Lots)<br />

10-30 8” 350 Psi


Case Studies


Tree Protection, Stormwater Management, Run-off Quality<br />

Improvement, Reflective “Cool” Surface Color Make Pervious Concrete<br />

Pavement an Excellent Choice <strong>for</strong> Parking Lots


The Pervious Concrete Paving Rapidly Absorbs the<br />

The Pervious Concrete Paving Rapidly Absorbs the<br />

Run-off During Rain Showers


Wilmington, NC: Costco


Wilmington, NC: Halyburton & Ann<br />

McCrary City Parks


East Atlanta Library<br />

• All parking areas <strong>and</strong> a pedestrian plaza<br />

• System captures all rainfall on site<br />

• Features color concrete & underground<br />

storage chamber<br />

• Small site – limited parking


Silver LEED Library- parking area


University Of Tennessee/ Chattanooga<br />

Finley Stadium Parking Lot (1997)


LEED CREDITS OBTAINED WITH<br />

PERVIOUS CONCRETE (from ACI 522)<br />

• SS-C6.1&6.2 Stormwater Design<br />

• SS-C7.1<br />

• WE C1.1<br />

Heat isl<strong>and</strong> Effect non roof<br />

Water Efficient L<strong>and</strong>scaping<br />

• MR-C4.1&4.2 Recycled Content<br />

• MR-C5.1&5.2 Regional Materials


Satellite Infrared Imaging – ATL Airport<br />

Asphalt Parking Lots Concrete<br />

Parking Decks<br />

Concrete Runways


SS Credit 7.1: Heat Isl<strong>and</strong> Effect<br />

(Non-roof)<br />

• Provide shade (within five years) on at least<br />

30% of non-roof impervious surfaces on site,<br />

including parking lots, walkways, etc.<br />

• Use light-colored/high l h albedo materials<br />

(reflectance of at least 0.3) <strong>for</strong> 30% of the<br />

non-roof impervious surfaces<br />

• Place a minimum of 50% of parking space<br />

underground<br />

• Use open-grid pavement system (net<br />

impervious area less than 50%) <strong>for</strong> a<br />

minimum of 50% of the parking area.


Albedo : Solar reflectance<br />

• Ordinary gray cement concrete has an<br />

initial albedo in the range of 0.35 – 0.45<br />

• White Cement concrete has an albedo of<br />

0.7 – 0.8<br />

• Slag Cement used in Concrete should<br />

increase the albedo value, while Fly ash<br />

may lower it.<br />

• Asphalt is from 0.0505 – 015 0.15


www.PerviousPavement.org<br />

• Benefits<br />

• Applications<br />

• Per<strong>for</strong>mance<br />

• Design Guidelines<br />

• Construction<br />

•Inspection &<br />

maintenance<br />

• Resources


Roller Compacted<br />

Concrete Pavements


Definition<br />

“Roller-Compacted Concrete (RCC) is a no-slump<br />

concrete that is compacted by vibratory rollers.”<br />

‣ Zero slump (consistency of dense graded aggr.)<br />

‣ No <strong>for</strong>ms<br />

‣ No rein<strong>for</strong>cing steel<br />

‣ No finishing<br />

‣ Consolidated with vibratory rollers<br />

Concrete pavement placed in a different way!


Engineering g Properties<br />

‣Compressive strength (f’ c )<br />

–4,000 to 10,000 psi<br />

‣Flexural strength (MR)<br />

–500 to 1,000 psi<br />

–MR = C(f’ c ) 1/2 where C = 9 (up to 11)<br />

‣Modulus of elasticity<br />

–3,000,000 to 5,500,000 psi<br />

–E = C E (f’ c ) 1/2 where C E = 57,000 (up to 67,000)


Surface Appearance<br />

‣Not as smooth as<br />

conventional<br />

concrete<br />

‣Important p to<br />

recognize difference<br />

‣Similar appearance<br />

to asphalt only light<br />

grey instead of black


RCC vs. AC Intermediate Course<br />

100<br />

#200 #100 #16 #4 1/2" 1"<br />

80<br />

Percen nt Passing<br />

60<br />

40<br />

20<br />

0<br />

0.075 0.150 1.180 2.360 4.750 12.5 25<br />

Sieve Opening (mm)


Compaction Very Important


Applications


Military Facilities<br />

Ft. Lewis, WA ,1986 Ft. Carsons, CO, 2008<br />

Ft. Drum, NY, 1990


Intermodal Facilities<br />

Central Station, Detroit, MI<br />

Burlington Northern, Denver, CO


Port Terminals<br />

Norfolk International<br />

Terminal, VA, 2006<br />

Port of Houston, TX, 2007


Port Terminals<br />

Port of Mobile<br />

RCC being load tested


Distribution Centers<br />

18 acre distribution<br />

center in Austin, TX<br />

10 years after construction


Honda Plant<br />

Lincoln, Alabama


Mercedes-Benz Plant<br />

Vance, Alabama


I-285 Highway<br />

Atlanta, GA<br />

Highway Shoulders


I-75 Tift-Cook Co, GA


GREYSTONE BLVD, COLUMBIA, SC


RICHLAND AV. (US 78) AIKEN, SC


Benefits of RCC Pavements<br />

• Economical (both initial <strong>and</strong> life-cycle costs)<br />

• High load carrying ability<br />

• Eliminates rutting<br />

• Excellent overall durability<br />

• Simple, fast construction<br />

• No <strong>for</strong>ms or finishing<br />

i


QUESTIONS OR COMMENTS<br />

IN CROP DUSTING YOU KNOW WITH 100% CERTAINTY<br />

HOW LOW YOU CAN GO

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!