phylogeny of scaphopoda.pdf - Department of Marine Sciences

phylogeny of scaphopoda.pdf - Department of Marine Sciences phylogeny of scaphopoda.pdf - Department of Marine Sciences

cima.uprm.edu
from cima.uprm.edu More from this publisher
19.02.2015 Views

Blackwell Publishing Ltd. Molecular phylogeny of Scaphopoda (Mollusca) inferred from 18S rDNA sequences: support for a Scaphopoda– Cephalopoda clade GERHARD STEINER & HERMANN DREYER Accepted: 15 September 2002 Steiner, G. & Dreyer, H. (2003). Molecular phylogeny of Scaphopoda (Mollusca) inferred from 18S rDNA sequences: support for a Scaphopoda–Cephalopoda clade. — Zoologica Scripta, 32, 343–356. The phylogenetic relationships of the Scaphopoda, one of the ‘lesser’ molluscan classes, with the other conchiferan taxa are far from clear. They appear either as the sister-group to the Bivalvia (Diasoma concept) or to a Gastropoda–Cephalopoda clade or to the Cephalopoda alone (helcionellid concept). We compiled a 18S rDNA sequence dataset of 48 molluscan species containing 17 scaphopods to test these hypotheses and to address questions regarding high-level relationships with the Scaphopoda. Both parsimony and maximum likelihood trees show low branch support at the base of the Conchifera, except for the robust clade uniting Scaphopoda and Cephalopoda. This result is corroborated by spectral analysis and likelihood mapping. We also tested alternative topologies which scored significantly worse both in tree length and in likelihood. The 18S rDNA data thus reject the Diasoma in favour of a Scaphopoda– Cephalopoda clade as proposed in the helcionellid concept. When plotted on the molecular tree, the pivotal morphological characters associated with the burrowing life style of the Bivalvia and Scaphopoda, i.e. mantle/shell enclosure of the body and the burrowing foot with true pedal ganglia, appear convergent in these groups. In contrast, the prominent and tilted dorsoventral body axes, multiple cephalic tentacles and a ring-shaped muscle attachment on the shell are potential synapomorphies of Scaphopoda and Cephalopoda. Most of the higher taxa within the Scaphopoda are supported by the molecular data. However, there is no support for the families Dentaliidae and Gadilidae. The basal position of the Fustiariidae within the Dentaliida is confirmed. Gerhard Steiner & Hermann Dreyer, Institute of Zoology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria. E-mail: gerhard.steiner@univie.ac.at Introduction Scaphopoda is one of the less diverse major groups of conchiferan molluscs, with about 520 Recent species (Steiner & Kabat 2001; Steiner & Kabat 2001) living in all types of unconsolidated marine sediments (Shimek & Steiner 1997). Scaphopoda are adapted to their infaunal habit by a tubular mantle/shell, open at both ends, and a burrowing foot; there are no gills or osphradia (Steiner 1992; Shimek & Steiner 1997). They are generally considered to be microcarnivores collecting their prey items (mainly foraminifers) with numerous captacula — cerebrally innervated cephalic appendages — and processing them with a large radula apparatus (Shimek 1988, 1990; Palmer & Steiner 1998). The phylogenetic relationships of Scaphopoda with the other conchiferan taxa are far from settled. There are two competing basic concepts: (1) the Diasoma–Cyrtosoma (Runnegar & Pojeta 1974; Pojeta & Runnegar 1976) or Loboconcha–Visceroconcha (Salvini-Plawen 1980) concept proposing a Scaphopoda–Bivalvia vs. Gastropoda– Cephalopoda clade; and (2) the ‘helcionellid’ concept (Peel 1991) placing Scaphopoda closer to, or within, the Gastropoda– Cephalopoda lineage (Fig. 1A,B). Neither concept was fundamentally new at the time of proposal. The idea that Scaphopoda and Bivalvia are closely related was introduced by Lacaze-Duthiers (1857−58) who emphasized the similarities in the weakly developed head, pedal morphology and in the formation of mantle and shell. This was further developed by Runnegar & Pojeta (1974; Pojeta & Runnegar 1976, 1979, 1985) proposing the Rostroconchia, a palaeozoic group of laterally compressed, pseudo-bivalved molluscs, as the common stem group of Bivalvia and Scaphopoda and coining the term Diasoma for this lineage. The concept was widely accepted (e.g. © The Norwegian Academy of Science and Letters • Zoologica Scripta, 32, 4, July 2003, pp343–356 343

Blackwell Publishing Ltd.<br />

Molecular <strong>phylogeny</strong> <strong>of</strong> Scaphopoda (Mollusca) inferred<br />

from 18S rDNA sequences: support for a Scaphopoda–<br />

Cephalopoda clade<br />

GERHARD STEINER & HERMANN DREYER<br />

Accepted: 15 September 2002<br />

Steiner, G. & Dreyer, H. (2003). Molecular <strong>phylogeny</strong> <strong>of</strong> Scaphopoda (Mollusca) inferred<br />

from 18S rDNA sequences: support for a Scaphopoda–Cephalopoda clade. — Zoologica Scripta,<br />

32, 343–356.<br />

The phylogenetic relationships <strong>of</strong> the Scaphopoda, one <strong>of</strong> the ‘lesser’ molluscan classes, with<br />

the other conchiferan taxa are far from clear. They appear either as the sister-group to the<br />

Bivalvia (Diasoma concept) or to a Gastropoda–Cephalopoda clade or to the Cephalopoda<br />

alone (helcionellid concept). We compiled a 18S rDNA sequence dataset <strong>of</strong> 48 molluscan species<br />

containing 17 scaphopods to test these hypotheses and to address questions regarding<br />

high-level relationships with the Scaphopoda. Both parsimony and maximum likelihood trees<br />

show low branch support at the base <strong>of</strong> the Conchifera, except for the robust clade uniting<br />

Scaphopoda and Cephalopoda. This result is corroborated by spectral analysis and likelihood<br />

mapping. We also tested alternative topologies which scored significantly worse both in tree<br />

length and in likelihood. The 18S rDNA data thus reject the Diasoma in favour <strong>of</strong> a Scaphopoda–<br />

Cephalopoda clade as proposed in the helcionellid concept. When plotted on the molecular<br />

tree, the pivotal morphological characters associated with the burrowing life style <strong>of</strong> the<br />

Bivalvia and Scaphopoda, i.e. mantle/shell enclosure <strong>of</strong> the body and the burrowing foot with<br />

true pedal ganglia, appear convergent in these groups. In contrast, the prominent and tilted<br />

dorsoventral body axes, multiple cephalic tentacles and a ring-shaped muscle attachment on<br />

the shell are potential synapomorphies <strong>of</strong> Scaphopoda and Cephalopoda. Most <strong>of</strong> the higher<br />

taxa within the Scaphopoda are supported by the molecular data. However, there is no support<br />

for the families Dentaliidae and Gadilidae. The basal position <strong>of</strong> the Fustiariidae within the<br />

Dentaliida is confirmed.<br />

Gerhard Steiner & Hermann Dreyer, Institute <strong>of</strong> Zoology, University <strong>of</strong> Vienna, Althanstr. 14,<br />

A-1090 Vienna, Austria. E-mail: gerhard.steiner@univie.ac.at<br />

Introduction<br />

Scaphopoda is one <strong>of</strong> the less diverse major groups <strong>of</strong> conchiferan<br />

molluscs, with about 520 Recent species (Steiner &<br />

Kabat 2001; Steiner & Kabat 2001) living in all types <strong>of</strong><br />

unconsolidated marine sediments (Shimek & Steiner 1997).<br />

Scaphopoda are adapted to their infaunal habit by a tubular<br />

mantle/shell, open at both ends, and a burrowing foot; there<br />

are no gills or osphradia (Steiner 1992; Shimek & Steiner<br />

1997). They are generally considered to be microcarnivores<br />

collecting their prey items (mainly foraminifers) with numerous<br />

captacula — cerebrally innervated cephalic appendages<br />

— and processing them with a large radula apparatus<br />

(Shimek 1988, 1990; Palmer & Steiner 1998).<br />

The phylogenetic relationships <strong>of</strong> Scaphopoda with the<br />

other conchiferan taxa are far from settled. There are two<br />

competing basic concepts: (1) the Diasoma–Cyrtosoma<br />

(Runnegar & Pojeta 1974; Pojeta & Runnegar 1976) or<br />

Loboconcha–Visceroconcha (Salvini-Plawen 1980) concept<br />

proposing a Scaphopoda–Bivalvia vs. Gastropoda–<br />

Cephalopoda clade; and (2) the ‘helcionellid’ concept (Peel<br />

1991) placing Scaphopoda closer to, or within, the Gastropoda–<br />

Cephalopoda lineage (Fig. 1A,B). Neither concept was<br />

fundamentally new at the time <strong>of</strong> proposal. The idea that<br />

Scaphopoda and Bivalvia are closely related was introduced by<br />

Lacaze-Duthiers (1857−58) who emphasized the similarities<br />

in the weakly developed head, pedal morphology and in the<br />

formation <strong>of</strong> mantle and shell. This was further developed by<br />

Runnegar & Pojeta (1974; Pojeta & Runnegar 1976, 1979, 1985)<br />

proposing the Rostroconchia, a palaeozoic group <strong>of</strong> laterally<br />

compressed, pseudo-bivalved molluscs, as the common stem<br />

group <strong>of</strong> Bivalvia and Scaphopoda and coining the term Diasoma<br />

for this lineage. The concept was widely accepted (e.g.<br />

© The Norwegian Academy <strong>of</strong> Science and Letters • Zoologica Scripta, 32, 4, July 2003, pp343–356 343


Molecular <strong>phylogeny</strong> <strong>of</strong> Scaphopoda • G. Steiner & H. Dreyer<br />

Fig. 1 A–D. Competing hypotheses on the<br />

<strong>phylogeny</strong> <strong>of</strong> extant conchiferan classes tested<br />

in this study. —A. Diasoma–Cyrtosoma (after<br />

Pojeta & Runnegar 1976) or Loboconcha–<br />

Visceroconcha (Salvini-Plawen 1980, 1990),<br />

with fossil Rostroconchia as stemgroup <strong>of</strong><br />

Scaphopoda and Bivalvia. —B. Helcionellid<br />

concept (Waller 1998), with fossil Helcionellida<br />

as stemgroup <strong>of</strong> Scaphopoda and Cephalopoda;<br />

Scaphopoda–Cephalopoda clade also<br />

according to Grobben (1886). —C. Modified<br />

Visceroconcha concept (Haszprunar 2000).<br />

—D. Scaphopoda–Gastropoda clade according<br />

to Plate (1892) and Simroth (1894).<br />

Engeser & Riedel 1996; Ponder & Lindberg 1997; Reynolds<br />

& Okusu 1999; Salvini-Plawen 1980, 1990; Salvini-Plawen &<br />

Steiner 1996; Wagner 1997) although Steiner (1992, 1996)<br />

pointed out discrepancies in the development <strong>of</strong> body axes<br />

between Rostroconchia and Scaphopoda.<br />

Connecting Scaphopoda to the Gastropoda–Cephalopoda<br />

line has a similarly long tradition. A close relationship <strong>of</strong><br />

Scaphopoda and Gastropoda based on the similarities <strong>of</strong><br />

branched head tentacles, prominent dorsoventral body axes<br />

and the occurrence <strong>of</strong> shell slits was proposed by Plate (1892)<br />

and Simroth (1894) (Fig. 1D). The common derivation <strong>of</strong><br />

Scaphopoda and Cephalopoda was favoured by Grobben<br />

(1886) using similar arguments. These hypotheses have<br />

recently gained new support. Waller (1998) elaborated on<br />

and modified the helcionellid concept <strong>of</strong> Peel (1991) by<br />

deriving the Scaphopoda–Cephalopoda line from helcionellid<br />

monoplacophorans as the sister-group <strong>of</strong> Gastropoda. In<br />

a recent cladistic analysis <strong>of</strong> morphological data, Haszprunar<br />

(2000) proposed Scaphopoda as the sister taxon <strong>of</strong> Gastropoda<br />

and Cephalopoda (Fig. 1C). The alternative to identifying<br />

any <strong>of</strong> the extant classes <strong>of</strong> Conchifera as sister-groups<br />

and deriving Scaphopoda directly from an unknown, independent<br />

‘monoplacophoran’ stock was suggested by Edlinger<br />

(1991), while Starobogatov (1974) and Chistikov (1979)<br />

identified the palaeozoic Xenoconchia as the closest relatives<br />

<strong>of</strong> Scaphopoda. Yochelson (1978, 1979) even considered the<br />

derivation <strong>of</strong> an un-shelled ancestor.<br />

This variety <strong>of</strong> competing phylogenetic hypotheses is<br />

partly due to the lack <strong>of</strong> information provided by the fossil<br />

record. Scaphopoda are the latest to appear in the fossil<br />

record among all conchiferan classes, and there are no obvious<br />

transitional forms connecting them to other molluscs.<br />

The oldest scaphopod reported is the Ordovician Rhytiodentalium<br />

kentuckyesnis Pojeta & Runnegar, 1979, although its<br />

scaphopod nature has been questioned by Engeser & Riedel<br />

(1996), as has that <strong>of</strong> several Devonian and Carboniferous<br />

scaphopods (Yochelson 1999; Yochelson & Goodison 1999;<br />

Palmer 2001).<br />

It is evident from the competing hypotheses that we<br />

have to deal with convergent morphologies in several organ<br />

systems. The pivotal characters involved (discussed in<br />

Haszprunar 2000; Reynolds & Okusu 1999; Steiner 1992, 1998,<br />

1999a; Waller 1998) are listed in Table 1. Depending on the<br />

topology <strong>of</strong> the conchiferan phylogenetic tree, at least one <strong>of</strong><br />

the sets <strong>of</strong> similarities must have arisen convergently. If the<br />

Diasoma–Cyrtosoma/Loboconcha–Visceroconcha concept<br />

is favoured, elongation <strong>of</strong> the dorsoventral body axis (multiple)<br />

cephalic tentacles, and the ring-shaped attachment <strong>of</strong><br />

the dorsoventral body muscles (Mutvei 1964; Yochelson et al.<br />

1973) must have evolved convergently in Scaphopoda and the<br />

Cyrtosoma/Visceroconcha. If, however, the ‘helicionellid’<br />

concept is assumed, the ‘ventral’ mantle/shell extension with<br />

similar innervation <strong>of</strong> the anterior mantle regions, epiatroid<br />

nervous system with fully concentrated pedal ganglia, and<br />

burrowing foot evolved convergently in the Scaphopoda<br />

and Bivalvia. When faced with a tie like that, a morphologyindependent<br />

dataset such as that provided by DNA sequences<br />

may help in addressing this question.<br />

The relationships <strong>of</strong> the higher taxa within Scaphopoda<br />

are only partly resolved. Cladistic analysis <strong>of</strong> morphological<br />

344 Zoologica Scripta, 32, 4, July 2003, pp343–356 • © The Norwegian Academy <strong>of</strong> Science and Letters


G. Steiner & H. Dreyer • Molecular <strong>phylogeny</strong> <strong>of</strong> Scaphopoda<br />

Table 1 Potential synapomorphies <strong>of</strong><br />

Scaphopoda with Bivalvia, Gastropoda, and<br />

Cephalopoda. Scoring refers to the<br />

presumed ancestral states for each class.<br />

Numbering <strong>of</strong> characters corresponds to that<br />

<strong>of</strong> Fig. 7.<br />

Scaphopod character states Bivalvia Gastropoda Cephalopoda<br />

1 Lateroventral extension <strong>of</strong> mantle-shell enclosing body + – –<br />

2 Burrowing foot with functionally hydraulic component + – –<br />

3 Epiatroid nervous system with true pedal ganglia + – ?<br />

4 Visceral connectives lateral <strong>of</strong> dorsoventral muscles + – –<br />

5 Prominent dorsoventral body axis with resulting – + +<br />

U-shaped gut<br />

6 More than two cephalic tentacles – – +<br />

7 Ring-shaped attachment <strong>of</strong> dorsoventral muscles – – +<br />

Fig. 2 Phylogenetic relationships <strong>of</strong> scaphopod family group taxa<br />

from morphological data after Steiner (1998, 1999a). Taxa in<br />

boldface are represented in the present molecular dataset.<br />

data (Reynolds 1997; Reynolds & Okusu 1999; Steiner 1992,<br />

1998, 1999a) has supported the basic dichotomy separating<br />

the monophyletic Dentaliida and Gadilida and returned<br />

identical topologies within the Gadilida: (Entalinidae<br />

(Pulsellidae (Wemersoniellidae, Gadilidae))) (Fig. 2). In contrast,<br />

relationships <strong>of</strong> the dentaliid family taxa are less clear<br />

due to the lack <strong>of</strong> reliable morphological characters for this<br />

systematic level and to uncertain monophyly <strong>of</strong> certain<br />

families and genera (Reynolds & Okusu 1999; Steiner 1998,<br />

1999a). There is agreement on the basal position <strong>of</strong> the<br />

Gadilinidae, but the position <strong>of</strong> the Fustiariidae is controversial.<br />

Reynolds & Okusu (1999) placed it in a derived position<br />

as the sister-group <strong>of</strong> the Dentaliidae, whereas Steiner (1998,<br />

1999a) recovered it either as a sister-group to the Gadilinidae<br />

or in a position between Gadilinidae and the other dentaliid<br />

families. In addition to these uncertainties, the relationships<br />

<strong>of</strong> the families Laevidentaliidae, Calliodentaliidae, and Rhabdidae<br />

are completely unresolved.<br />

Having been used only as outgroup taxa in molecular<br />

analyses <strong>of</strong> other molluscan groups, Scaphopoda are rather<br />

under-represented in molecular data sets. There are three<br />

partial cytochrome-oxidase-I sequences (Hoeh et al. 1998;<br />

Giribet & Wheeler, 2002), two partial engrailed sequences<br />

(Wray et al. 1995), three partial 28S rDNA sequences<br />

(Rosenberg et al. 1997; Giribet & Wheeler, 2002) and five<br />

near-complete 18S rDNA sequences (Winnepenninckx et al.<br />

1996; Giribet et al. 2000; Steiner & Hammer 2000) available<br />

in GenBank. Inadequate representation <strong>of</strong> the crown-group<br />

conchiferan taxa, at least <strong>of</strong> Scaphopoda and Cephalopoda,<br />

and/or the use <strong>of</strong> inadequate molecular markers for resolving<br />

conchiferan relationships (e.g. Rosenberg et al. 1997)<br />

accounts for the lack <strong>of</strong> information on this question from the<br />

molecular side.<br />

In order to test the morphological data against an independent<br />

data set we obtained near-complete 18S rDNA<br />

sequences <strong>of</strong> 12 scaphopod species from five families and<br />

aligned them to the existing ones and to a selected set <strong>of</strong><br />

gastropods, bivalves and cephalopods, using the available<br />

polyplacophorans as outgroup. The resulting trees provide<br />

a guideline for interpreting the patterns <strong>of</strong> homology <strong>of</strong> the<br />

disputed morphological characters and for assessing the<br />

sister-group <strong>of</strong> the Scaphopoda. Although some <strong>of</strong> the scaphopod<br />

family group taxa, especially those <strong>of</strong> the Dentaliida, are<br />

not represented in the present data set, we are able to address<br />

also some <strong>of</strong> their high-rank internal relationships.<br />

Materials and methods<br />

Most <strong>of</strong> the specimens were collected by dredging in the<br />

North Atlantic <strong>of</strong>f Trondheim, Norway, and south <strong>of</strong> Iceland;<br />

Dentalium austini was collected from western Australia and<br />

Fustiaria rubescens from Greece (Table 2).<br />

DNA extraction, amplification and sequencing<br />

Living specimens were fixed in ethanol (96%) or frozen in<br />

liquid nitrogen at −70 °C. Total DNA was isolated from the<br />

entire s<strong>of</strong>t body (small specimens) or pieces <strong>of</strong> tissue (larger<br />

specimens) <strong>of</strong> 12 scaphopods (eight Gadilida and four Dentaliida)<br />

with the ‘DNeasy Tissue Kit’ (Qiagen) or with CTAB<br />

(Winnepenninckx et al. 1993a).<br />

© The Norwegian Academy <strong>of</strong> Science and Letters • Zoologica Scripta, 32, 4, July 2003, pp343–356 345


Molecular <strong>phylogeny</strong> <strong>of</strong> Scaphopoda • G. Steiner & H. Dreyer<br />

Table 2 Species used in the phylogenetic analysis, arranged systematically, with GenBank accession numbers, sources, and sampling location<br />

for those sequenced in this study.<br />

Systematic position Species GenBank no. Authors Sampling locality<br />

Scaphopoda<br />

Dentaliida<br />

Dentaliidae Antalis pilsbry (Rehder, 1942) AF120522 Giribet et al. (2000)<br />

Antalis inaequicostata (Dautzenberg, 1891) AJ389660 Steiner & Hammer (2000)<br />

Antalis vulgaris (Da Costa, 1778) X91980 Winnepenninckx et al. (1996)<br />

Antalis perinvoluta (Boissevain, 1906) AJ389663 Steiner & Hammer (2000)<br />

Dentalium austini (Lamprell & Healy, 1998) AF490594 this study Watering Cove, Burrup<br />

Dampier, NW Australia<br />

Peninsula<br />

Fissidentalium capillosum (Jeffreys, 1877) AF490596 this study BIOICE st. 3188, 62°09.15′–<br />

62°08.73′ N<br />

27°00.32′−27°01.31′ W, 1339–<br />

1338 m<br />

Fissidentalium candidum (Jeffreys, 1877) AF490595 this study BIOICE st. 3172, 60°05.42′–<br />

60°05.68′ N<br />

20°51.30′−20°49.76′ W, 2709 m<br />

Rhabdidae Rhabdus rectius (Carpenter, 1864) AF120523 Giribet et al. (2000)<br />

Fustiariidae Fustiaria rubescens (Deshayes, 1825) AF490597 this study Near Athens, Greece<br />

Gadilida<br />

Entalimorpha<br />

Entalinidae<br />

Entalininae Entalina tetragona (Brocchi, 1814) AF490598 this study Trondheim Fjord, Norway<br />

Hetero- Heteroschismoides subterfissum (Jeffreys, 1877) AF490599 this study<br />

schismoidinae BIOICE st. 3167, 60°54.88′–<br />

60°55.28′ N<br />

22°47.26′−22°47.62′ W, 1897–<br />

1899 m<br />

Gadilimorpha<br />

Pulsellidae Pulsellum affine (M. Sars, 1865) AF490600 this study BIOICE st. 3167, 60°54.88′–<br />

60°55.28′ N<br />

22°47.26′−22°47.62′ W, 1897–<br />

1899 m<br />

Gadilidae<br />

Siphono- Siphonodentalium lobatum (Sowerby, 1860)<br />

dentaliinae AF490601 this study BIOICE st. 3161, 62°37.08′–<br />

62°37.59′ N<br />

23°21.79′−23°21.48′ W, 1230–<br />

1300 m<br />

Polyschides olivi (Scacchi, 1835) AF490602 this study BIOICE st. 3187, 62°09.04′–<br />

62°08.67′ N<br />

27°00.74′−27°01.23′ W, 1327–<br />

1326 m<br />

Gadilinae Cadulus subfusiformis (M. Sars, 1865) AF490603 this study Trondheim Fjord, Norway<br />

Cadulus sp. A AF490604 this study BIOICE st. 3181, 60°52.86′–<br />

60°52.62′ N<br />

26°47.72′−26°48.30′ W, 1543–<br />

1562 m<br />

Cadulus sp. B AF490605 this study BIOICE st. 3173, 60°05.38′–<br />

60°05.59′ N<br />

20°51.23′−20°52.11′ W, 2709–<br />

2710 m<br />

Bivalvia<br />

Protobranchia<br />

Solemyida<br />

Solemyidae Solemya reidi (Bernard, 1980) AF117737 Distel (2000)<br />

Solemya togata (Poli, 1795) AJ389658 Steiner & Hammer (2000)<br />

346 Zoologica Scripta, 32, 4, July 2003, pp343–356 • © The Norwegian Academy <strong>of</strong> Science and Letters


G. Steiner & H. Dreyer • Molecular <strong>phylogeny</strong> <strong>of</strong> Scaphopoda<br />

Table 2 continued.<br />

Systematic position Species GenBank no. Authors Sampling locality<br />

Nuculida<br />

Nuculanoidea<br />

Nuculanidae Nuculana minuta (O. F. Müller 1776) AF120529 Giribet & Wheeler (2002)<br />

Nuculana pella (Linné, 1767) Solemyida AJ389665 Steiner & Hammer (2000)<br />

Yoldiella nana (M. Sars, 1865) AJ389659 Steiner & Hammer (2000)<br />

Neionellidae Neilonella subovata (Verrill & Bush, 1897) AF207645 Giribet & Wheeler (2002)<br />

Pteriomorpha<br />

Arcoidea<br />

Arcidae Arca noae (Linné, 1758) X90960 Steiner & Müller (1996)<br />

Acar plicata (Dillwyn, 1817) AJ389630 Steiner & Hammer (2000)<br />

Mytiloidea<br />

Modiolinae Modiolus auriculatus (Krauss, 1848) AJ389644<br />

Mytilinae Mytilus edulis (Linné, 1758) L33448 Kenchington et al. (1995)<br />

Pterioidea<br />

Pinnidae Pinna muricata (Linné, 1758) AJ389636 Steiner & Hammer (2000)<br />

Atrina pectiniata (Linné, 1767) X90961 Steiner & Müller (1996)<br />

Heteroconchia<br />

Unionida<br />

Unionidae Elliptio complanata (Lightfoot, 1786) AF117738 Distel (2000)<br />

Carditoidea<br />

Carditidae Carditamera floridana (Conrad, 1838) AF229617 Campbell (2000)<br />

Solenoidea<br />

Pharidae Ensiculus cultellus (Linné, 1758) AF229614 Campbell (2000)<br />

Veneroidea<br />

Ungulinidae Diplodonta subrotundata (Issel, 1869) AJ389654 Steiner & Hammer (2000)<br />

Cyamioidea<br />

Sportellidae Basterotia elliptica (Récluz, 1850) AF229616 Campbell (2000)<br />

Gastropoda<br />

Neritopsina<br />

Neritidae Nerita albicilla (Linné, 1758)<br />

Vetigastropoda<br />

Trochidae Monodonta labio (Linné, 1758) X94271 Winnepenninckx et al. (1998)<br />

Fissurellidae Diodora graeca (Linné, 1758) AF120513 Giribet et al. (2000)<br />

Caenogastropoda<br />

Nassariidae Zeuxis siquijorensis (A. Adams, 1852) X94273 Winnepenninckx et al. (1998)<br />

Bursidae Bursa rana (Linné, 1758) X94269 Winnepenninckx et al. (1998)<br />

Calyptraeidae Crepidula adunca (Sowerby, 1825) X94277 Winnepenninckx et al. (1998)<br />

Cephalopoda<br />

Nautiloidea<br />

Nautilidae Nautilus macromphalus (Sowerby, 1848) AJ301606 Bonnaud & Boucher-Rodoni (unpublished.)<br />

Nautilus scrobiculatus (Lightfoot, 1786) AF120504 Giribet & Wheeler (2002)<br />

Coleoidea<br />

Loliginidae Loligo pealei (Lesueur, 1821) AF120505 Giribet & Wheeler (2002)<br />

Sepiidae Sepia elegans (Blainville, 1827) AF120506 Giribet & Wheeler (2002)<br />

Polyplacophora<br />

Ischnochitonina<br />

Chitonidae Liolophura japonica (Lischke, 1873) X70210 Winnepenninckx et al. (1993b)<br />

Acanthochitonina<br />

Acanthochitonidae Acanthochitona crinita (Pennant, 1777) AF120503 Giribet et al. (2000)<br />

Lepidopleurina<br />

Lepidopleuridae Lepidopleurus cajetanus (Poli, 1791) AF120502 Giribet et al. (2000)<br />

© The Norwegian Academy <strong>of</strong> Science and Letters • Zoologica Scripta, 32, 4, July 2003, pp343–356 347


Molecular <strong>phylogeny</strong> <strong>of</strong> Scaphopoda • G. Steiner & H. Dreyer<br />

Table 3 PCR and sequencing primers used in this study. The NS<br />

primers were designed by White et al. 1990. All other primers were<br />

designed for this project.<br />

Name Position on D. austini Sequence<br />

18A1 −20–0 5′-CCT ACC TGG TTG ATC CTG CCA G-3′<br />

NS3 580–600 5′-GCA AGT CTG GTG CCA GCA GCC-3′<br />

600 r 669–650 5′-CCG AGA TCC AAC TAC GAG CT-3′<br />

NS4 r 1203–1184 5′-CTT CCG TCA ATT CCT TTA AG-3′<br />

NS5 1182–1203 5′-AAC TTA AAG GAA TTG ACG GAA G-3′<br />

1400 f 1473–1495 5′-GAG CAA TAA CAG GTC TGT GAT GC-3′<br />

1400 r 1495–1473 5′-GCA TCA CAG ACC TGT TAT TGC TC-3′<br />

1800 r 1843−1865 5′-ATG ATC CTT CCG CAG GTT CAC C-3′<br />

The complete 18S rRNA gene was amplified in overlapping<br />

fragments using the primer pairs 18A1/600r, NS3/<br />

1800r, NS3/1400r and NS5/1800r (Table 3). The PCR<br />

was performed on a Robocycler 96 (Stratagene) in a 30-µL<br />

reaction mix containing 1.5 mM MgCl 2<br />

, each dNTP at<br />

250 µM, each primer at 0.5 µM, 0.6 units Taq polymerase<br />

(Biotaq Red, Bioline) and the supplied reaction buffer at<br />

1 × concentration. The PCR cycle conditions were as follows:<br />

initial denaturation step <strong>of</strong> 2 min at 94 °C, 36 cycles <strong>of</strong><br />

30 s denaturation at 94 °C, 45 s annealing at 50 °C, and 2 min<br />

primer extension at a 72 °C, followed by a final primer extension<br />

step <strong>of</strong> 10 min at 72 °C. PCR products were purified<br />

with the Concert Rapid PCR Purification System (Life Technologies)<br />

and sequenced automatically with a range <strong>of</strong><br />

primers (Table 3) on an ABI 3700 at VBC-Genomics Bioscience<br />

Research GmbH, Vienna.<br />

Choice <strong>of</strong> taxa, alignment and phylogenetic analysis<br />

In addition to the five published sequences we obtained 18S<br />

rDNA sequences <strong>of</strong> 12 species <strong>of</strong> Scaphopoda resulting in 17<br />

ingroup taxa <strong>of</strong> a sufficiently wide systematic range to address<br />

major phylogenetic relationships within the group. For the<br />

assessment <strong>of</strong> the conchiferan relationships we selected 17<br />

bivalve species (six each <strong>of</strong> the Protobranchia, Pteriomorpha,<br />

and five <strong>of</strong> the Heteroconchia), seven streptoneuran gastropods,<br />

the four available cephalopod species, and rooted the<br />

trees with three polyplacophoran species.<br />

Sequences were aligned with CLUSTALX 1.8 (Thompson<br />

et al. 1997) applying several combinations <strong>of</strong> gap penalties<br />

(opening penalty: 10–20; extension penalty: 5–12) and subsequent<br />

manual corrections. The strategy we used was to align<br />

the species <strong>of</strong> each class first in the ‘multiple alignment mode’<br />

and united these in the ‘pr<strong>of</strong>ile alignment mode’. The alignment<br />

is available upon request from the corresponding<br />

author (G.S.).<br />

Phylogenetic analyses were performed with PAUP* 4.0b8a<br />

and 4.0b10 (Sw<strong>of</strong>ford 1998) on a PC and on the Schrödinger<br />

1 Linux-Cluster at the Central Informatics Service,<br />

University <strong>of</strong> Vienna. Unweighted heuristic maximum<br />

parsimony (MP) searches were made with 50 random addition<br />

sequences and TBR branch swapping. Bootstrap support<br />

(BS) was assessed by 1000 replicates, each with three random<br />

sequence additions and number <strong>of</strong> trees limited to 200 per<br />

replicate. Decay indices (DI) (Bremer 1988, 1994) were<br />

calculated using a batch file produced by TREEROT (Sorensen<br />

1996) with 10 random addition sequences, keeping 100 trees<br />

per replicate for each search.<br />

For maximum-likelihood analyses (ML), the most parsimonious<br />

trees (MPTs) were used as starting trees for the<br />

calculation <strong>of</strong> the model parameters and subsequent branch<br />

swapping. Empirical nucleotide frequencies and the parameters<br />

for the transition/transversion ratio, proportion <strong>of</strong> invariable<br />

sites, and the gamma shape value were estimated under<br />

the HKY85 model with rate heterogeneity and four categories<br />

<strong>of</strong> substitution rates following a gamma distribution<br />

(HKY85 + I + Γ model). The resulting values were then set<br />

for subtree-pruning-regrafting (SPR) branch swapping with<br />

rearrangements limited to cross four branches. We tested the<br />

signal in, and the robustness <strong>of</strong>, the ML tree with the quartetpuzzling<br />

program TREE-PUZZLE 5.0 (Schmidt et al. 2000)<br />

under the same model as the ML analysis and parameters<br />

estimated by the program and with 100.000 puzzling steps.<br />

Four-cluster likelihood-mapping (Strimmer & Haeseler<br />

1997) implemented in TREE-PUZZLE 5.0 was performed with<br />

10 000 randomly chosen quartets to test the relationships <strong>of</strong><br />

the four conchiferan classes. Resulting trees were visualized<br />

with TREEVIEW 1.6.1 (Page 1996). Competing alternative<br />

phylogenies were obtained by searching under topological<br />

constraints and subsequently compared with the KH<br />

(Kishino & Hasegawa 1989) and Templeton tests for MP, and<br />

the SH (Shimodaira & Hasegawa 1999) test for ML as implemented<br />

in PAUP* under the RELL option.<br />

The programs PREPARE and HADTREE (Hendy & Penny<br />

1993) were used for spectral analysis using the options for<br />

recoding the data to two-state characters and ‘sum-<strong>of</strong>-7’ as<br />

in Steiner (1999b) and Steiner & Hammer (2000). As the<br />

number <strong>of</strong> species is limited to 20 in these programs we<br />

created two data sets, one for the Scaphopoda only and one<br />

with selected molluscan species to address the sisterg-roup<br />

relationships <strong>of</strong> the Scaphopoda.<br />

Results<br />

The 18S rDNA sequences <strong>of</strong> scaphopods obtained in this<br />

study range in length from 1808 to 1854 basepairs in the<br />

Dentaliida and from 1915 to 1991 basepairs in the Gadilida.<br />

The increased sequence lengths <strong>of</strong> the Gadilida are due to<br />

inserts in helices E23_1 and E23_2 to E23_5 <strong>of</strong> the V4 region<br />

(Table 4), according to the secondary structure model in<br />

Wuyts et al. (2002). Sequence similarity <strong>of</strong> these inserts is<br />

high and suggests homology. The alignment has 2500<br />

348 Zoologica Scripta, 32, 4, July 2003, pp343–356 • © The Norwegian Academy <strong>of</strong> Science and Letters


G. Steiner & H. Dreyer • Molecular <strong>phylogeny</strong> <strong>of</strong> Scaphopoda<br />

Table 4 Comparison <strong>of</strong> 18S rDNA sequence<br />

lengths <strong>of</strong> Scaphopoda with the gastropod<br />

Limicolaria kambeul as reference for the<br />

secondary structure elements. The<br />

representatives <strong>of</strong> the scaphopod order<br />

Gadilida show extensions in the helices<br />

E23_1 and E23_2 to E23_5 <strong>of</strong> the V4 region.<br />

Abbreviations: B–E, beginning−end; Dr,<br />

difference to reference.<br />

Species<br />

Length<br />

E23_1<br />

E23_2 to E23_5<br />

B–E Length Dr B–E Length Dr<br />

Reference<br />

Limicolaria kambeul (Gastropoda) 1839 662–713 51 — 714–773 59 —<br />

Dentaliida<br />

Dentalium austini 1842 669–716 47 −4 717–785 68 9<br />

Fissidentalium candidum 1808 649–695 46 −5 696–755 59 0<br />

Fissidentalium capillosum 1812 651–697 46 −5 698–757 59 0<br />

Antalis vulgaris 1865 683–730 47 −4 731–792 61 2<br />

Antalis inaequicostata 1762 635–682 47 −4 683–744 61 2<br />

Antalis perinvoluta 1744 621–668 47 −5 669–727 58 −1<br />

Antalis pilsbryi 1804 648–694 46 −5 695–754 59 0<br />

Rhabdus rectius 1810 649–695 46 −5 696–758 62 3<br />

Fustiaria rubescens 1854 681–727 46 −5 728–793 65 6<br />

Gadilida<br />

Entalina tetragona 1915 675–757 82 31 758–847 89 30<br />

Heteroschismoides subterfissum 1915 675–758 83 32 759–847 88 29<br />

Pulsellum affine 1974 682–774 92 41 775–902 127 68<br />

Siphonodentalium lobatum 1926 677–763 86 35 764–857 93 34<br />

Polyschides olivi 1926 677–763 86 35 764–857 93 34<br />

Cadulus subfusiformis 1986 684–772 88 37 773–915 142 83<br />

Cadulus sp. A 1991 684–776 92 41 777–921 144 85<br />

Cadulus sp. B 1991 685–754 69 18 755–921 166 107<br />

characters, <strong>of</strong> which 948 are parsimony-informative. Parsimony<br />

analysis returns three MPTs <strong>of</strong> 3206 steps (CI = 0.522,<br />

RC = 0.3935) (parsimony-uninformative characters excluded).<br />

The strict consensus tree (Fig. 3A and B) is 3220 steps long.<br />

The single ML tree (Fig. 4) has a −ln L = 20050.762 (transition/transversion<br />

ratio = 1.338, proportion <strong>of</strong> invariable sites<br />

= 0.18, gamma shape parameter = 0.5). Likelihood-mapping<br />

(Fig. 5A) associates 91.1% <strong>of</strong> all quartets with areas <strong>of</strong> wellresolved<br />

topologies (tips <strong>of</strong> the triangle) and 5.1% with the<br />

area <strong>of</strong> unresolved or star topologies (centre <strong>of</strong> the triangle).<br />

This indicates a strong phylogenetic signal in the dataset,<br />

although some parts <strong>of</strong> the trees can be expected to show low<br />

resolution and/or support.<br />

Class relationships<br />

Scaphopoda is a well-supported monophylum in all analyses,<br />

with BS <strong>of</strong> 92, DI <strong>of</strong> 9, and quartet-puzzling support (QP) <strong>of</strong><br />

74 (Figs 3A, 4 and 6A). There is also high support for the<br />

monophyly <strong>of</strong> Polyplacophora (BS = 100, QP = 83, DI = 25)<br />

and Cephalopoda (BS = 100, QP = 87, DI = 53). Monophyletic<br />

Gastropoda are not supported by MP (BS = 29) as<br />

the Nerita sequence renders them paraphyletic with regard<br />

to the Cephalopoda and Scaphopoda. However, ML finds<br />

Gastropoda monophyletic with moderate puzzling support<br />

(QP = 63), although the clade appears as sister taxon to the<br />

solemyid bivalves. None <strong>of</strong> the analyses supports monophyly<br />

<strong>of</strong> the Bivalvia, which appears as a set <strong>of</strong> paraphyletic<br />

branches at the base <strong>of</strong> the conchiferan tree. In general,<br />

branch support and phylogenetic signals in the deep parts <strong>of</strong><br />

the tree is low. In contrast to this, the only supported sistergroup<br />

relationship <strong>of</strong> molluscan classes is that <strong>of</strong> Scaphopoda<br />

and Cephalopoda (BS = 86, QP* = 51, DI = 10). Parsimony<br />

places Gastropoda as the sister-group <strong>of</strong> the Scaphopoda–<br />

Cephalopoda clade but with low support (BS = 38, DI = 5).<br />

This topology is not represented in the ML tree where Gastropoda<br />

root within the Bivalvia. However, puzzling support<br />

(QP = 33) for this topology indicates that the signal is also<br />

detected by ML. Spectral analysis results (Fig. 6A) corroborate<br />

the (Gastropoda (Scaphopoda, Cephalopoda)) topology.<br />

The six top-ranked splits are those <strong>of</strong> the four cephalopod<br />

species, the scaphopod orders Dentaliida and Gadilida, and<br />

the Polyplacophora. The seventh split unites Cephalopoda<br />

and Scaphopoda, whereas the scaphopod split ranks 10th.<br />

Two splits ranking immediately before that <strong>of</strong> the Scaphopoda<br />

is the first ‘nonsense-split’ uniting the vetigastropod<br />

Monodonta labio with the two coleolids, Loligo pealei and Sepia<br />

elegans (split 8), and a split within the Scaphopoda (split 9).<br />

The 49th split is that uniting the Gastropoda with Cephalopoda<br />

and Scaphopoda. There is also signal for a Gastropoda<br />

and Cephalopoda split which ranks 60th.<br />

The comparison <strong>of</strong> alternative competing topologies<br />

against the MP and ML trees shows that trees with all conchiferan<br />

classes being constrained as monophyletic is not significantly<br />

worse (Table 5). The latter tree also features a<br />

Scaphopoda–Cephalopoda clade like the unconstrained trees<br />

but with monophyletic Bivalvia. The other trees tested differ<br />

© The Norwegian Academy <strong>of</strong> Science and Letters • Zoologica Scripta, 32, 4, July 2003, pp343–356 349


Molecular <strong>phylogeny</strong> <strong>of</strong> Scaphopoda • G. Steiner & H. Dreyer<br />

(Scaphopoda + Bivalvia) and (Scaphopoda + Gastropoda)<br />

have 19.5% and 2.3% support, respectively.<br />

Relationships within Scaphopoda<br />

The two ordinal taxa, Dentaliida and Gadilida, are robustly<br />

supported by all analyses (Figs 3A and B, 4, 5B). The monophyly<br />

<strong>of</strong> the Gadilida is further corroborated by the<br />

homologous extensions in the helices E23_1 and E23_2 to<br />

E23_5; the topology within it is identical in MP and ML trees,<br />

although the internal branches have only moderate to low<br />

support. Note that the puzzling values exceed the bootstrap<br />

values for these branches indicating the ML method being<br />

more efficient in assessing the phylogenetic signal. The basal<br />

dichotomy separating Entalimorpha from Gadilimorpha has<br />

low BS and QP support (Fig. 3B) but takes fifth rank <strong>of</strong> all<br />

scaphopod splits in the spectral analyses (Fig. 5B). Monophyly<br />

<strong>of</strong> the Entalinidae and Siphonodentaliidae is fully<br />

supported, whereas the robustness <strong>of</strong> the Gadilidae is low. The<br />

three Cadulus sequences representing the Gadilidae are set<br />

<strong>of</strong>f together with the single pulsellid species from the Siphonodentaliidae<br />

by a better supported branch (QP = 76). Thus,<br />

Gadilidae and Siphonodentaliidae are not sister taxa.<br />

As in the Gadilida, the dentaliid topology is consistent<br />

between the analyses. However, branch support is considerably<br />

higher for most clades, and bootstrap values tend to be<br />

higher than puzzling values in this subtree. Fustiaria appears<br />

as the first <strong>of</strong>fshoot within the Dentaliida. The monophyly <strong>of</strong><br />

the Dentaliidae receives no support, with Rhabdus rectius<br />

(Rhabdidae) emerging from among the dentaliid species.<br />

Furthermore, the genus Antalis represented by four species is<br />

polyphyletic, with only A. inaequicostata and A. vulgaris forming<br />

a clade. Antalis pilsbryi appears closer related to the two<br />

Fissidentalium species than to its congeners.<br />

Fig. 3 A, B. Strict consensus tree (L = 3220, CI = 0.5199, RC = 0.3906)<br />

<strong>of</strong> three MPT (L = 3206, CI = 0.5221, RC = 0.3935) with support<br />

indices. Bootstrap and puzzling values are above, and decay index<br />

below branches. —A. Subtree showing relationships <strong>of</strong> Scaphopoda<br />

with the other molluscan taxa. —B. Subtree <strong>of</strong> Scaphopoda.<br />

in the sister-group relationship <strong>of</strong> the Scaphopoda and are<br />

significantly worse (P < 0.05) both than the unconstrained<br />

trees and the monophyletic classes trees, both in terms <strong>of</strong><br />

tree length and likelihood. The tree with the Diasoma–<br />

Cyrtosoma topology is the least parsimonious and least likely <strong>of</strong><br />

those tested. The likelihood-mapping with four clusters represented<br />

by Scaphopoda, Bivalvia, Gastropoda and Cephalopoda<br />

(Fig. 5B), returns the highest support, 51.6%, to the<br />

(Scaphopoda + Cephalopoda) topology. The topologies with<br />

Discussion<br />

Class relationships<br />

Scaphopoda and Cephalopoda are robustly monophyletic in<br />

all analyses. Gastropoda appear as a clade only in the ML<br />

tree, which is likely due to the long branch <strong>of</strong> the Nerita<br />

sequence and the greater sensitivity to long branch attraction<br />

effects <strong>of</strong> the MP method. As in previous analyses (Steiner &<br />

Müller 1996, Giribet & Carranza 1999; Steiner 1999b;<br />

Steiner & Hammer 2000), the Bivalvia clade is difficult to<br />

detect, and here they are always paraphyletic at the base <strong>of</strong><br />

the conchiferan clade. A likely explanation (see Steiner &<br />

Mueller 1996) posits their low average substitution rates<br />

compared to the other conchiferans. However, the MP and<br />

ML trees found under the constraint for all classes being<br />

monophyletic are insignificantly longer or less likely than the<br />

optimal trees, allowing for assessing their phylogenetic relationships.<br />

Although there are several long-branch taxa — e.g.<br />

the Vetigastropoda (Monodonta labio and Diodora graeca), the<br />

350 Zoologica Scripta, 32, 4, July 2003, pp343–356 • © The Norwegian Academy <strong>of</strong> Science and Letters


G. Steiner & H. Dreyer • Molecular <strong>phylogeny</strong> <strong>of</strong> Scaphopoda<br />

Fig. 4 Maximum likelihood tree <strong>of</strong> –ln L = 20050.7621 under the<br />

HKY85 + I + Γ model with transition/transversion ratio = 1.3,<br />

proportion <strong>of</strong> invariable sites = 0.17217, gamma shape parameter =<br />

0.4632, and four categories <strong>of</strong> substitution rates.<br />

heterodont Bivalvia (except for Carditamera floridana), the<br />

gadilid Scaphopoda, and all four cephalopods — they do not<br />

seem to seriously affect the results as these long branches<br />

do not come together in the trees and do not cluster near the<br />

root. All analyses <strong>of</strong> the present dataset strongly support the<br />

sister-group relationship <strong>of</strong> Scaphopoda and Cephalopoda,<br />

whereas there is no apparent signal for a Scaphopoda–<br />

Bivalvia clade. Spectral analysis and likelihood-mapping<br />

using clusters also detect the signal for a Cephalopoda–<br />

Gastropoda clade. It is, however, much weaker in both cases.<br />

This result is further corroborated by the comparison <strong>of</strong> the<br />

alternative tree topologies (Table 5) showing that they are all<br />

significantly worse than both the best trees and the trees forcing<br />

all classes to be monophyletic. Thus, there is no support<br />

for the Diasoma/Loboconcha concept, its respective topology<br />

being the worst <strong>of</strong> all alternative trees tested.<br />

In the light <strong>of</strong> these results, the helcionellid concept as<br />

proposed by Waller (1998) gains considerable support. When<br />

plotted on the topology with monophyletic Bivalvia, the<br />

Fig. 5 A, B. Maximum likelihood mapping using TREE-PUZZLE<br />

5.0. Areas at the corners <strong>of</strong> the triangle represent one <strong>of</strong> the three<br />

possible fully resolved four-taxon (quartet) topologies, those along<br />

the edges partly resolved quartets for which it is not possible to<br />

decide between two possible topologies. The central area represents<br />

unresolved quartets. Figures give percentages <strong>of</strong> 10 000 randomly<br />

chosen quartets in each area. —A. General likelihood mapping<br />

showing 91.1% <strong>of</strong> all quartets being fully resolved and only 5.1%<br />

unresolved. This indicates high phylogenetic information content <strong>of</strong><br />

the 18S rDNA data. —B. Four-cluster likelihood mapping <strong>of</strong> the<br />

conchiferan classes, testing their phylogenetic relationships. The<br />

corners <strong>of</strong> the triangle are labelled with the corresponding unrooted<br />

tree topology. The Scaphopoda–Cephalopoda topology receives<br />

greatest support with 51.6% <strong>of</strong> all quartets, compared to 19.5 and<br />

2.3% for the competing topologies. Note that the topology at the top<br />

corner does not necessarily represent the Diasoma–Cyrtosoma concept<br />

because the root can also be placed at the Bivalvia branch, resulting<br />

in the modified Visceroconcha concept <strong>of</strong> Haszprunar (2000).<br />

morphological similarities <strong>of</strong> Scaphopoda and Cephalopoda,<br />

i.e. multiple cephalic tentacles and a ring-shaped dorsoventral<br />

muscle attachment (see Table 1), can be interpreted as<br />

synapomorphies (Fig. 7). The pronounced dorsoventral axis<br />

is already developed in the Gastropoda and therefore<br />

plesiomorphic for this clade. Consequently, the similarities <strong>of</strong><br />

© The Norwegian Academy <strong>of</strong> Science and Letters • Zoologica Scripta, 32, 4, July 2003, pp343–356 351


Molecular <strong>phylogeny</strong> <strong>of</strong> Scaphopoda • G. Steiner & H. Dreyer<br />

Fig. 6 A, B. Spectral analysis. Histogram <strong>of</strong> signal (positive values on ordinate) and normalized conflict (negative values on ordinate) for the<br />

top 60 splits (abscissa) in the alignment, ranked by net signal (signal minus conflict). —A. Analysis <strong>of</strong> 20 selected molluscan taxa assessing sistergroup<br />

relationships <strong>of</strong> Scaphopoda (Polyplacophora: Lepidopleurus cajetanus, Acanthochitona critina; Bivalvia: Solemya togata, Yoldiella nana, Arca<br />

noae, Ensiculus cultellus, Elliptio complanata; Gastropoda: Nerita albicilla, Monodonta labio, Zeuxis siquijorensis; Cephaolopoda: Nautilus<br />

macromphalus, N. scrobiculatus, Loligo pealei, Sepia elegans; Scaphopoda: Antalis perinvoluta, A. pilsbryi, Rhabdus rectius, Entalina tetragona,<br />

Siphonodentalium lobatum, Cadulus subfusiformis). Solid bars represent nodes present in the strict consensus tree. The split uniting Scaphopoda<br />

and Cephalopoda ranks seventh whereas the split uniting Cephalopoda and Gastropoda ranks 60th. —B. Analysis <strong>of</strong> all scaphopod<br />

species. Solid bars represent nodes present in the unrooted topology <strong>of</strong> the ML subtree (inset), numbers at branches indicate their rank in<br />

the spectrum.<br />

Scaphopoda and Bivalvia emphasized by the Diasoma/Loboconcha<br />

concept must have arisen convergently. The characters<br />

associated with the burrowing, infaunal habit <strong>of</strong> these<br />

two groups, i.e. the enclosure <strong>of</strong> the body by the mantle/shell<br />

and the burrowing foot innervated by fully concentrated<br />

pedal ganglia, are certainly good candidates for convergent<br />

evolution.<br />

More difficult to explain is the derived position <strong>of</strong> the visceral<br />

connectives median to the dorsoventral muscles shared<br />

by Cephalopoda and Gastropoda, as this is unlikely to be the<br />

result <strong>of</strong> a similar life-style. However, the shift <strong>of</strong> nerve position<br />

is not necessarily homologous when the highly concentrated<br />

central nervous system <strong>of</strong> Cephalopoda is considered.<br />

While the shift in Gastropoda is apparently a result <strong>of</strong> a<br />

352 Zoologica Scripta, 32, 4, July 2003, pp343–356 • © The Norwegian Academy <strong>of</strong> Science and Letters


G. Steiner & H. Dreyer • Molecular <strong>phylogeny</strong> <strong>of</strong> Scaphopoda<br />

Table 5 Comparison <strong>of</strong> MP and ML trees with those <strong>of</strong> competing hypotheses obtained by heuristic searches with topological constraints<br />

enforced. The unconstrained MP and ML trees and the tree with all classes were constrained as monophyletic, showing Scaphopoda and<br />

Cephalopoda as sister-groups. For the MP criterion, tree lengths were tested with KH, for the ML criterion, with SH (see text); the probability<br />

<strong>of</strong> the null hypothesis (P) is listed. * indicates significant differences (P < 0.05). Note that with reference to the Bivalvia the best trees with all<br />

classes monophyletic are not significantly worse. All trees showing Scaphopoda as not being the sister-group <strong>of</strong> Cephalopoda are significantly<br />

worse than both the unconstrained and monophyletic trees.<br />

Constraint Tree length Diff. KH-Test (P) –ln L Diff. SH-Test (P)<br />

No [Scaphopoda + Cephalopoda] 3206 — — 20050.762 — —<br />

Monophyletic classes<br />

[Scaphopoda + Cephalopoda] 3213 7 0.3624 20058.367 7.605 0.4328<br />

Scaphopoda + Bivalvia (Diasoma) 3246 40 0.0006* 20078.994 28.228 0.0289*<br />

Scaphopoda + Gastropoda 3236 30 0.0019* 20077.761 26.999 0.0452*<br />

Cephalopoda + Gastropoda 3232 26 0.0079* 20076.278 25.516 0.0452*<br />

Fig. 7 Character-state transitions <strong>of</strong> characters from Table 1 plotted<br />

on the topology supported by 18S rDNA. Solid bars indicate<br />

nonhomoplastic, empty bars homoplastic characters. 1, lateroventral<br />

extension <strong>of</strong> mantle-shell enclosing body; 2, burrowing foot; 3, epiatroid<br />

nervous system with true pedal ganglia; 4, visceral connectives lateral<br />

<strong>of</strong> dorsoventral muscles (change to median <strong>of</strong> dorsoventral muscles<br />

indicated); 5, prominent dorsoventral body axis with resulting<br />

U-shaped gut; 6, more than 2 cephalic tentacles; 7, ring-shaped<br />

attachment <strong>of</strong> dorsoventral muscles. Note that the homoplastic<br />

characters 1–3 are associated with infaunal, burrowing life style and,<br />

thus, prone to convergent evolution. Scaphopoda and Cephalopoda<br />

are linked by synapomorphic multiple cephalic tentacles and the<br />

ring-shaped muscle attachment. Both share the prominent<br />

dorsoventral body axis and the U-shaped gut with Gastropoda.<br />

change in developmental timing <strong>of</strong> muscle and neuronal differentiation,<br />

there are no data on this process for Cephalopoda<br />

(Haszprunar & Wanninger 2000).<br />

The differentiation <strong>of</strong> a distinct head is yet another problematic<br />

issue. We have not included this character in Table 1<br />

because delimiting character states and subsequent character<br />

coding are not as straightforward as in the other characters.<br />

The head <strong>of</strong> Scaphopoda, consisting <strong>of</strong> a movable buccal tube<br />

and a pair <strong>of</strong> shields from which the captacula arise (Shimek<br />

& Steiner 1997), is clearly separated from foot but not from<br />

the visceral sac or the mantle. It does not protrude from the<br />

shell or directly contact the substratum. Scaphopoda are<br />

thus intermediate between the ‘headless’ Bivalvia and the<br />

Gastropoda and Cephalopoda with their well-developed heads.<br />

They are at a similar level <strong>of</strong> head differentiation as the<br />

Tryblidia (Recent monoplacophorans) (Haszprunar & Schaefer<br />

1997), with the significant difference that they have preoral<br />

cephalic tentacles like Gastropoda and Cephalopoda. The<br />

assumption <strong>of</strong> a Scaphopoda–Cephalopoda clade requires a<br />

de-differentiation <strong>of</strong> the head region in Scaphopoda and the<br />

complete reduction <strong>of</strong> the (cerebral) eyes which are considered<br />

a potential synapomorphy <strong>of</strong> Gastropoda and Cephalopoda.<br />

The latter argument is, however, weakened by the<br />

presence <strong>of</strong> cerebrally innervated eyes on the first ctenidial<br />

filaments <strong>of</strong> several pteriomorph Bivalvia (e.g. Rosen et al.<br />

1978). Such a de-differentiation <strong>of</strong> the head and loss <strong>of</strong><br />

photoreceptors can, again, be correlated with the acquisition<br />

<strong>of</strong> an infaunal life style and the anterior elongation <strong>of</strong> the<br />

mantle/shell. However, as the de-differentiation <strong>of</strong> the head<br />

region can occur from any level, this character is not very<br />

informative.<br />

Relationships within Scaphopoda<br />

The taxon sampling <strong>of</strong> the Scaphopoda in this study is not<br />

sufficient to allow definitive conclusions to be drawn on all<br />

relationships <strong>of</strong> its higher taxa. We have no molecular data<br />

on the dentaliid families Calliodentaliidae, Gadilinidae,<br />

Laevidentaliidae and Omniglyptidae, or on the gadilid deep-sea<br />

family Wemersoniellidae. Moreover, some <strong>of</strong> the family taxa<br />

are represented by a single species only. Nevertheless, it is<br />

possible to address several important questions and demonstrate<br />

problematic points.<br />

The monophyletic status <strong>of</strong> the orders Dentaliida and<br />

Gadilida is fully supported, as is that <strong>of</strong> the Entalimorpha and<br />

Gadilimorpha in the latter taxon. The diphyletic origin <strong>of</strong> the<br />

© The Norwegian Academy <strong>of</strong> Science and Letters • Zoologica Scripta, 32, 4, July 2003, pp343–356 353


Molecular <strong>phylogeny</strong> <strong>of</strong> Scaphopoda • G. Steiner & H. Dreyer<br />

Gadilidae was unexpected but is consistent with the analyses<br />

and comparatively well supported. The morphological<br />

character setting Siphonodentaliinae and Gadilinae apart from<br />

all other scaphopods is the anterior constriction <strong>of</strong> the shell.<br />

Steiner (1992, 1998) noted that not all species <strong>of</strong> Siphonodentalium<br />

show this constriction. In the light <strong>of</strong> the present<br />

results, the possibility that this trait evolved independently in<br />

the two groups becomes likely.<br />

The internal branches <strong>of</strong> the dentaliid clade are generally<br />

shorter than those <strong>of</strong> the Gadilida but show a similar level <strong>of</strong><br />

support. Together with the short-terminal branches in this<br />

subtree, this indicates low substitution rates and/or a recent<br />

series <strong>of</strong> cladogenetic events. For further phylogenetic<br />

studies on lower systematic levels it seems appropriate to use<br />

faster evolving markers since the genetic distances in the 18S<br />

rDNA become too small within the Dentaliidae. Dentaliidae<br />

itself is at least paraphyletic, with Rhabdus rectius (Rhabdidae)<br />

being part <strong>of</strong> the quite recent radiation mentioned above.<br />

The addition <strong>of</strong> more species <strong>of</strong> the smooth-shelled taxa like<br />

Laevidentaliidae or Calliodentaliidae is likely to make this<br />

even more apparent. The only morphological synapomorphy<br />

<strong>of</strong> the Dentaliidae is the longitudinally ribbed shell, but<br />

several species <strong>of</strong> the genus Antalis show this feature transiently<br />

in the juvenile shell only. Moreover, Lamprell & Healy<br />

(1998) demonstrated longitudinal sculpture also in some<br />

Laevidentaliidae. The rather clear separation <strong>of</strong> Antalis<br />

vulgaris and A. inaequicostata from the other dentaliids could<br />

point to multiple development and/or reduction <strong>of</strong> shell ribbing.<br />

The present results on dentaliid molecular <strong>phylogeny</strong><br />

clearly demonstrate the urgent need <strong>of</strong> a revision <strong>of</strong> this<br />

group based on additional morphological and molecular<br />

data.<br />

The position <strong>of</strong> Fustiaria rubescens (Fustiariidae) at the base<br />

<strong>of</strong> the Dentaliida is in accordance with the morphological<br />

analyses in Steiner (1998, 1999a). Fustiariidae and Gadilinidae<br />

share a simple anatomy <strong>of</strong> the posterior mantle edge compared<br />

to the other Dentaliida (Steiner 1991, 1998). However, confirmation<br />

<strong>of</strong> this character state being plesiomorphic depends<br />

on future analyses including species <strong>of</strong> the Gadilinidae.<br />

Acknowledgements<br />

We are greatly indebted to the institutions involved in the<br />

BIOICE program, the University <strong>of</strong> Iceland, the Icelandic<br />

<strong>Marine</strong> Research Institute, and the Icelandic Institute <strong>of</strong><br />

Natural History, and Jon-Arne Sneli (Trondheim Biological<br />

Station, Norway) and Torleiv Brattegard (University <strong>of</strong> Bergen,<br />

Norway) for the opportunity to join the summer 2000 cruise<br />

where most <strong>of</strong> the species for this study were collected. We<br />

also wish to thank John Taylor and Emily Glover (Natural<br />

History Museum London), and Kurt Schaefer and Christiane<br />

Todt (University <strong>of</strong> Vienna) for providing us with specimens.<br />

We are grateful for the discussions with Luitfried Salvini-Plawen<br />

(University <strong>of</strong> Vienna) and his comments on the manuscript.<br />

The study was partly funded by the Austrian Science Foundation<br />

(FWF), projects P11846-GEN and P14356-BIO.<br />

References<br />

Bremer, K. (1988). The limits <strong>of</strong> amino acid sequence data in<br />

angiosperm phylogenetic reconstruction. Evolution, 42, 795–803.<br />

Bremer, K. (1994). Branch support and tree stability. Cladistics, 10,<br />

295–304.<br />

Campbell, D. C. (2000). Molecular evidence on the evolution <strong>of</strong> the<br />

Bivalvia. In E. M. Harper, J. D. Taylor & J. A. Crame (Eds) The<br />

Evolutionary Biology <strong>of</strong> the Bivalvia (pp. 31–46). London: Geological<br />

Society <strong>of</strong> London Special Publications 77.<br />

Chistikov, S. D. (1979). Phylogenetic relations <strong>of</strong> the Scaphopoda.<br />

In I. M. Likharev (Ed.) Molluscs, Main Results <strong>of</strong> their Study<br />

(pp. 20–23). Leningrad: Academy <strong>of</strong> <strong>Sciences</strong> [in Russian].<br />

Distel, D. L. (2000). Phylogenetic relationships among Mytilidae<br />

(Bivalvia): 18S rDNA data suggest convergence in mytilid body<br />

plans. Molecular Phylogenetics and Evolution, 15, 25–33.<br />

Edlinger, K. (1991). Zur Evolution der Scaphopoden-Konstruktion.<br />

Natur und Museum (Frankfurt), 121, 116–122.<br />

Engeser, T. & Riedel, F. (1996). The evolution <strong>of</strong> the Scaphopoda<br />

and its implication for the systematics <strong>of</strong> the Rostroconchia<br />

(Mollusca). Mitteilungen des Geologisch-Paläontologischen Instituts der<br />

Universität Hamburg, 79, 117–138.<br />

Giribet, G. & Carranza, S. (1999). Point counter point: What can<br />

18S rDNA do for bivalve <strong>phylogeny</strong>? Journal <strong>of</strong> Molecular Evolution,<br />

48, 256–258.<br />

Giribet, G., Distel, D. L., Polz, M., Sterrer, W. & Wheeler, W. C.<br />

(2000). Triploblastic relationships with emphasis on the acoelomates<br />

and the position <strong>of</strong> Gnathostomulida, Cycliophora, Plathelminthes,<br />

and Chaetognatha: a combined approach <strong>of</strong> 18S rDNA<br />

sequences and morphology. Systematic Biology, 49, 539–562.<br />

Giribet, G. & Wheeler, W. C. (2002). On bivalve <strong>phylogeny</strong>: a<br />

high-level analysis <strong>of</strong> the Bivalvia (Mollusca) based on combined<br />

morphology and DNA sequence data. Invertebrate Biology, 212,<br />

271–324.<br />

Grobben, C. (1886). Zur Kenntnis und Morphologie und der<br />

Verwandtschaftsverhältnisse der Cephalopoda. Arbeiten des<br />

Zoologischen Instituts Wien, VI, 1–22.<br />

Haszprunar, G. (2000). Is the Aplacophora monophyletic? A cladistic<br />

point <strong>of</strong> view. American Malacological Bulletin, 15, 115–130.<br />

Haszprunar, G. & Schaefer, K. (1997). Monoplacophora. In<br />

F. W. Harrison & A. J. Kohn (Eds) Microscopic Anatomy <strong>of</strong> Invertebrates,<br />

Vol. 6B (pp. 415–457). New York: Wiley-Liss Inc.<br />

Haszprunar, G. & Wanninger, A. (2000). Molluscan muscle systems<br />

in development and evolution. Journal <strong>of</strong> Zoological Systematics and<br />

Evolutionary Research, 38, 157–163.<br />

Hendy, M. D. & Penny, D. (1993). Spectral analysis <strong>of</strong> phylogenetic<br />

data. Journal <strong>of</strong> Classification, 10, 5–24.<br />

Hoeh, W. R., Black, M. B., Gustafson, R., Bogan, A. E., Lutz, R. A.<br />

& Vrijenhoek, R. C. (1998). Testing alternative hypotheses <strong>of</strong><br />

Neotrigonia (Bivalvia: Trigonioida) phylogenetic relationships<br />

using cytochrome c oxidase subunit I DNA sequences. Malacologia,<br />

40, 267–278.<br />

Kenchington, E., Landry, D. & Bird, C. J. (1995). Comparison <strong>of</strong><br />

taxa <strong>of</strong> the mussel Mytilus (Bivalvia) by analysis <strong>of</strong> the nuclear<br />

small-subunit rRNA gene sequence. Canadian Journal <strong>of</strong> Fisheries<br />

and Aquatic <strong>Sciences</strong>, 52, 2613–2620.<br />

354 Zoologica Scripta, 32, 4, July 2003, pp343–356 • © The Norwegian Academy <strong>of</strong> Science and Letters


G. Steiner & H. Dreyer • Molecular <strong>phylogeny</strong> <strong>of</strong> Scaphopoda<br />

Kishino, H. & Hasegawa, M. (1989). Evaluation <strong>of</strong> the maximum<br />

likelihood estimate <strong>of</strong> the evolutionary tree topologies from DNA<br />

sequences data, and the branching order in Hominoidea. Journal<br />

<strong>of</strong> Molecular Evolution, 29, 170–179.<br />

Lacaze-Duthiers, H. (1857–1858). Histoire de l’organisation et du<br />

développement du Dentale. Annales des <strong>Sciences</strong> Naturelles, Zoologie,<br />

6, 225–281; 7, 5–51, 171–255; 8, 18–44.<br />

Lamprell, K. L. & Healy, J. M. (1998). A revision <strong>of</strong> the Scaphopoda<br />

from Australian waters (Mollusca). Records <strong>of</strong> the Australian<br />

Museum, Supplement, 24, 1–189.<br />

Mutvei, H. (1964). Remarks on the anatomy <strong>of</strong> recent and fossil<br />

cephalopods, with description <strong>of</strong> the minute shell structure <strong>of</strong><br />

belemnoids. Stockholm Contributions to Geology, 11, 79–102.<br />

Page, R. D. M. (1996). TREEVIEW: An application to display phylogenetic<br />

trees on personal computers. Computer Applications in the<br />

Biosciences, 12, 357–358.<br />

Palmer, C. P. (2001). Dentalium giganteum Phillips: a serpulid worm<br />

tube. Proceedings <strong>of</strong> the Yorkshire Geological Society, 53, 253–255.<br />

Palmer, C. P. & Steiner, G. (1998). Scaphopoda Introduction. In<br />

P. L. Beesley, G. J. P. Ross & A. Wells (Eds) Mollusca: the Southern<br />

Synthesis, Vol. 5 (pp. 431–438). Melbourne: CSIRO Publishing.<br />

Peel, J. S. (1991). Functional morphology <strong>of</strong> the class Helcionelloida<br />

nov. and the early evolution <strong>of</strong> the Mollusca. In A. M. Simonetta<br />

& S. Conway-Morris (Eds) The Early Evolution <strong>of</strong> Metazoa and<br />

the Significance <strong>of</strong> Problematic Taxa (pp. 157–178). Cambridge:<br />

Cambridge University Press.<br />

Plate, L. H. (1892). Über den Bau und die Verwandtschaftsbeziehungen<br />

der Solenoconchen. Zoologische Jahrbücher der Anatomie, 5,<br />

301–386.<br />

Pojeta, J. & Runnegar, B. (1976). The paleontology <strong>of</strong> rostroconch<br />

molluscs and the early history <strong>of</strong> the phylum Mollusca. United<br />

States Geological Survey Pr<strong>of</strong>essional Papers, 968, 1–86.<br />

Pojeta, J. & Runnegar, B. (1979). Rhytiodentalium kentuckyensis, a new<br />

genus and new species <strong>of</strong> Ordovician scaphopods,and the early<br />

history <strong>of</strong> scaphopod Molluscs. Journal <strong>of</strong> Paleontology, 53, 530–541.<br />

Pojeta, J. & Runnegar, B. (1985). The early evolution <strong>of</strong> diasome<br />

molluscs. In E. R. Trueman & M. R. Clarke (Eds) The Mollusca,<br />

Vol. 10. Evolution (pp. 295–336). London: Academic Press.<br />

Ponder, W. F. & Lindberg, D. R. (1997). Towards a <strong>phylogeny</strong> <strong>of</strong><br />

gastropod molluscs — analysis using morphological characters.<br />

Zoological Journal <strong>of</strong> the Linnean Society, 119, 83–265.<br />

Reynolds, P. D. (1997). The <strong>phylogeny</strong> and classification <strong>of</strong><br />

Scaphopoda (Mollusca) — an assessment <strong>of</strong> current resolution and<br />

cladistic reanalysis. Zoologica Scripta, 26, 13–21.<br />

Reynolds, P. D. & Okusu, A. (1999). Phylogenetic relationships<br />

among families <strong>of</strong> the Scaphopoda (Mollusca). Zoological Journal <strong>of</strong><br />

the Linnean Society, 126, 131–154.<br />

Rosen, M. D., Stasek, C. R. & Hermans, C. O. (1978). The<br />

ultrastructure and evolutionary significance <strong>of</strong> the cerebral ocelli<br />

<strong>of</strong> Mytilus edulis, the bay mussel. Veliger, 21, 10–18.<br />

Rosenberg, G., Tillier, S., Tillier, A., Kuncio, G. S., Hanlon, R. T.,<br />

Masselot, M. & Williams, C. J. (1997). Ribosomal RNA <strong>phylogeny</strong><br />

<strong>of</strong> selected major clades in the Mollusca. Journal <strong>of</strong> Molluscan<br />

Studies, 63, 301–309.<br />

Runnegar, B. & Pojeta, J. (1974). Molluscan <strong>phylogeny</strong>: The paleontological<br />

viewpoint. Science, New York, 186 (4161), 311–317.<br />

Salvini-Plawen, L. (1980). A reconsideration <strong>of</strong> systematics in<br />

Mollusca (Phylogeny and higher classification). Malacologia, 19,<br />

247–278.<br />

Salvini-Plawen, L. (1990). Origin, <strong>phylogeny</strong> and classification <strong>of</strong><br />

the phylum Mollusca. Iberus, 9, 1–33.<br />

Salvini-Plawen, L. & Steiner, G. (1996). Synapomorphies and plesiomorphies<br />

in higher classification <strong>of</strong> Mollusca. In J. Taylor (Ed.)<br />

Origin and Evolutionary Radiation <strong>of</strong> the Mollusca (pp. 29–52).<br />

Oxford: Oxford University Press.<br />

Schmidt, H., Strimmer, K., Vingron, M. & von Haeseler, A. (2000).<br />

TREE-PUZZLE 5.0 Manual. Maximum Likelihood Analysis for<br />

Nucleotide, Amino acid, and Two-state Data. Available via http://<br />

www.tree-puzzle.de/manual.html.<br />

Shimek, R. L. (1988). The functional morphology <strong>of</strong> scaphopod captacula.<br />

Veliger, 30, 213–221.<br />

Shimek, R. L. (1990). Diet and habitat utilization in a Northeastern<br />

Pacific Ocean scaphopod assemblage. American Malacological<br />

Bulletin, 7, 147–169.<br />

Shimek, R. L. & Steiner, G. (1997). Scaphopoda. In F. W. Harrison<br />

& A. J. Kohn (Eds) Microscopic Anatomy <strong>of</strong> Invertebrates, Vol. 6B<br />

(pp. 719–781). New York: Wiley-Liss Inc.<br />

Shimodaira, H. & Hasegawa, M. (1999). Multiple comparisons<br />

<strong>of</strong> log-likelihoods with applications in phylogenetic inference.<br />

Molecular Biology and Evolution, 16, 1114–1116.<br />

Simroth, H. (1894). Dr. H. G. Bronn’s Klassen und Ordnungen des<br />

Thier-Reichs, wissenschaftlich dargestellt in Wort und Bild. Dritter<br />

Band. Mollusca (Weichthiere). Abteilung I: Amphineura, Scaphopoda.<br />

Leipzig: C. F. Winter’sche-Verlagshandlung.<br />

Sorenson, M. D. (1996). Tree-Rot. Ann Arbor: University <strong>of</strong> Michigan.<br />

Starobogatov, Y. I. (1974). Xenoconchias and their bearing on the<br />

<strong>phylogeny</strong> and systematics <strong>of</strong> some molluscan classes. Paleontological<br />

Journal <strong>of</strong> the American Geological Institute, 8, 1–13.<br />

Steiner, G. (1991). Observations on the anatomy <strong>of</strong> the scaphopod<br />

mantle, and the description <strong>of</strong> a new family, the Fustiariidae.<br />

American Malacological Bulletin, 9, 1–20.<br />

Steiner, G. (1992). Phylogeny and classification <strong>of</strong> Scaphopoda.<br />

Journal <strong>of</strong> Molluscan Studies, 58, 385–400.<br />

Steiner, G. (1996). Suprageneric <strong>phylogeny</strong> in Scaphopoda. In<br />

J. Taylor (Ed.) Origin and Evolutionary Radiation <strong>of</strong> the Mollusca<br />

(pp. 329–335). Oxford: Oxford University Press, 29–52.<br />

Steiner, G. (1998). Phylogeny <strong>of</strong> Scaphopoda (Mollusca) in the light<br />

<strong>of</strong> new anatomical data on the Gadilinidae and some Problematica,<br />

and a reply to Reynolds. Zoologica Scripta, 27, 73–82.<br />

Steiner, G. (1999a). A new genus and species <strong>of</strong> the family Anulidentaliidae<br />

(Scaphopoda: Dentaliida) and its systematic implications.<br />

Journal <strong>of</strong> Molluscan Studies, 65, 151–161.<br />

Steiner, G. (1999b). Point counter point: What can 18S rDNA do<br />

for bivalve <strong>phylogeny</strong>? Response. Journal <strong>of</strong> Molecular Evolution,<br />

48, 258–261.<br />

Steiner, G. & Hammer, S. (2000). Molecular <strong>phylogeny</strong> <strong>of</strong> Bivalvia<br />

(Mollusca) inferred from, 18S. rD. N. A. sequences with particular<br />

reference to the Pteriomorphia. In E. M. Harper, J. D. Taylor &<br />

J. A. Crame (Eds) The Evolutionary Biology <strong>of</strong> the Bivalvia (pp. 11–<br />

29). London: Geological Society <strong>of</strong> London Special Publications<br />

77.<br />

Steiner, G. & Kabat, A. R. (2001). Catalogue <strong>of</strong> supraspecific taxa <strong>of</strong><br />

Scaphopoda (Mollusca). Zoosystema, 23, 433–460.<br />

Steiner, G., & Kabat, A. R. (200x). Catalogue <strong>of</strong> species-group<br />

names <strong>of</strong> Recent and fossil Scaphopoda (Mollusca). Zoosystema (in<br />

press).<br />

Steiner, G. & Müller, M. (1996). What can 18S rDNA do for bivalve<br />

<strong>phylogeny</strong>? Journal <strong>of</strong> Molecular Evolution, 43, 58–70.<br />

© The Norwegian Academy <strong>of</strong> Science and Letters • Zoologica Scripta, 32, 4, July 2003, pp343–356 355


Molecular <strong>phylogeny</strong> <strong>of</strong> Scaphopoda • G. Steiner & H. Dreyer<br />

Strimmer, K. S. & Haeseler, A. (1997). Likelihood-mapping: a<br />

simple method to visualize phylogenetic content <strong>of</strong> a sequence<br />

alignment. Proceedings <strong>of</strong> the National Academy <strong>of</strong> <strong>Sciences</strong>, USA, 94,<br />

6815–6819.<br />

Sw<strong>of</strong>ford, D. L. (1998). PAUP*. Phylogenetic Analysis Using Parsimony<br />

(*and Other Methods), Version 4. Sunderland, MA: Sinauer<br />

Associates.<br />

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. &<br />

Higgins, D. G. (1997). The ClustalX windows interface: flexible<br />

strategies for multiple sequence alignment aided by quality<br />

analysis tools. Nucleic Acids Research, 24, 4876–4882.<br />

Wagner, P. J. (1997). Patterns <strong>of</strong> morphological diversification<br />

among the Rostroconchia. Palaeobiology, 23, 115–150.<br />

Waller, T. R. (1998). Origin <strong>of</strong> the molluscan class Bivalvia and a<br />

<strong>phylogeny</strong> <strong>of</strong> major groups. In P. A. Johnston & J. W. Haggart<br />

(Eds) Bivalves: an Eon <strong>of</strong> Evolution — Paleobiological Studies Honoring<br />

Norman D. Newell (pp. 1–47). Calgary: University <strong>of</strong> Calgary<br />

Press.<br />

White, T. J. T., Bruns, S. & Lee & Taylor, J. W. (1990). Amplification<br />

and direct sequencing <strong>of</strong> fungal ribosomal RNA genes for<br />

phylogenetics. In: M. A. Innis, D. H. Gelfand, J. J. Sninsky &<br />

T. J. White (Eds) PCR Protocols: a Guide to Methods and Applications<br />

(pp. 315–322). New York: Academic Press.<br />

Winnepenninckx, B., Backeljau, T. & De Wachter, R. (1993a).<br />

Extraction <strong>of</strong> high molecular weight DNA from molluscs. Trends<br />

in Genetics, 9, 407.<br />

Winnepenninckx, B., Backeljau, T. & De Wachter, R. (1993b).<br />

Complete small ribosomal subunit RNA sequence <strong>of</strong> the chiton<br />

Acanthopleura japonica (Lischke, 1873) (Mollusca, Polyplacophora).<br />

Nucleic Acids Research, 21, 1670.<br />

Winnepenninckx, B., Backeljau, T. & De Wachter, R. (1996). Investigation<br />

<strong>of</strong> molluscan <strong>phylogeny</strong> on the basis <strong>of</strong> 18s rRNA<br />

sequences. Molecular Biology and Evolution, 13, 1306–1317.<br />

Winnepenninckx, B., Steiner, G., Backeljau, T. & De Wachter, R.<br />

(1998). Details <strong>of</strong> gastropod <strong>phylogeny</strong> inferred from 18S rDNA<br />

sequences. Molecular Phylogenetics and Evolution, 9, 55–63.<br />

Wray, C. G., Jacobs, D. K., Kostriken, R., Vogler, A. P., Baker, R. &<br />

DeSalle, R. (1995). Homologues <strong>of</strong> the engrailed gene from five<br />

molluscan classes. FEBS Letters, 365, 71–74.<br />

Wuyts, J., Van de Peer, Y., Winkelmans, T. & De Wachter, R.<br />

(2002). The European database on small subunit ribosomal RNA.<br />

Nucleic Acids Research, 30, 183–185.<br />

Yochelson, E. L. (1978). An alternative approach to the interpretation<br />

<strong>of</strong> the <strong>phylogeny</strong> <strong>of</strong> ancient molluscs. Malacologia, 17, 165–191.<br />

Yochelson, E. L. (1979). Early radiation <strong>of</strong> Mollusca and mollusclike<br />

groups. In M. R. House (Ed.) The Origin <strong>of</strong> Major Invertebrate<br />

Groups, Vol. 12 (pp. 323–358). New York: Academic Press.<br />

Yochelson, E. L. (1999). Rejection <strong>of</strong> Carboniferous Quasidentalium<br />

Shimansky, 1974, from the phylum Mollusca. Journal <strong>of</strong> Paleontology,<br />

73, 63–65.<br />

Yochelson, E. L., Flower, R. H. & Webers, G. F. (1973). The bearing<br />

<strong>of</strong> the new Late Cambrian monoplacophoran genus Knightoconus<br />

upon the origin <strong>of</strong> the Cephalopoda. Lethaia, 6 (3), 275–309.<br />

Yochelson, E. L. & Goodison, R. (1999). Devonian Dentalium<br />

martini Whitfield, 1882, is not a mollusk but a worm. Journal <strong>of</strong><br />

Paleontology, 73, 634–640.<br />

356 Zoologica Scripta, 32, 4, July 2003, pp343–356 • © The Norwegian Academy <strong>of</strong> Science and Letters

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!