17.02.2015 Views

Planetary Radiation Budgets - ceres

Planetary Radiation Budgets - ceres

Planetary Radiation Budgets - ceres

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

Robert Kandel and Michel Viollier<br />

Laboratoire de Météorologie Dynamique<br />

LMD – IPSL, Ecole Polytechnique<br />

Palaiseau, France<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

1


<strong>Radiation</strong> Balance : R N =<br />

absorbed SW flux – emitted LW flux<br />

(averaged over the planetary surface)<br />

CERES STM<br />

23-25 Sept. 2003<br />

Energy Balance : R N – P = 0<br />

P = average energy flux from the planetary interior<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

2


Absorbed SW flux = ¼ ( S 0 /a 2 ) ( 1 – A )<br />

Bond Albedo A =<br />

mean reflected SW flux<br />

mean incident SW flux<br />

(Means over planet’s entire surface)<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

3


Z<br />

q S<br />

q v<br />

f v<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

4


Each radiance measured<br />

(e.g. from A or N)<br />

is a single sample of<br />

directions (q S ; q v , f v )<br />

contributing to the fluxes<br />

emerging at those points.<br />

P<br />

A<br />

N<br />

P’<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

5


Each radiance measured (e.g. from A or N) is a<br />

single sample of directions (q S ; q v , f v ) contributing to<br />

the fluxes emerging at those points.<br />

The flux measured<br />

with WFOV results<br />

from radiances from<br />

points N, A, P, P’, etc.<br />

each with its set of<br />

angles, each more or<br />

less representative of<br />

the flux emerging at<br />

those points.<br />

P<br />

A<br />

CERES STM<br />

23-25 Sept. 2003<br />

N<br />

P’<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

6<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

6


Replacing the satellite by a much<br />

more remote observer, say on<br />

another planet –<br />

It’s the same problem<br />

Observer<br />

P<br />

A<br />

N<br />

Observed<br />

planet<br />

CERES STM<br />

23-25 Sept. 2003<br />

P’<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

6<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

7


CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

8


VENUS<br />

b V<br />

EARTH<br />

SUN<br />

b M<br />

CERES STM<br />

23-25 Sept. 2003<br />

MARS<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

9


Bond Albedo Estimates Old and New<br />

Allen Chamberlain<br />

PLANET<br />

1955<br />

1979<br />

1999<br />

2002<br />

TCAEP<br />

NSSDC<br />

Mercury<br />

0.060<br />

0.056<br />

0.06<br />

0.06<br />

0.119<br />

0.119<br />

Venus<br />

0.61<br />

0.72<br />

0.72<br />

0.76<br />

0.750<br />

0.750<br />

EARTH<br />

0.34<br />

0.39<br />

0.39<br />

0.40<br />

0.304<br />

0.304<br />

Mars<br />

0.15<br />

0.16<br />

0.16<br />

0.16<br />

0.16<br />

0.250<br />

Jupiter<br />

0.41<br />

0.45<br />

0.70<br />

0.51<br />

0.70<br />

0.343<br />

Saturn<br />

0.42<br />

0.75<br />

0.75<br />

0.50<br />

0.75<br />

0.342<br />

Uranus<br />

0.45<br />

0.90<br />

0.90<br />

0.66<br />

0.90<br />

0.30<br />

Neptune<br />

0.54<br />

0.82<br />

0.82<br />

0.62<br />

0.82<br />

0.29<br />

Pluto<br />

0.16<br />

0.15<br />

0.15<br />

0.50<br />

0.145<br />

0.4-6<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

10


PLANET<br />

Mercury<br />

Venus<br />

EARTH<br />

Mars<br />

Jupiter<br />

Saturn<br />

Uranus<br />

Neptune<br />

Pluto<br />

Bond Albedo Estimates Old and New<br />

1955<br />

0.060<br />

0.61<br />

0.34<br />

0.150<br />

0.41<br />

0.42<br />

0.45<br />

0.54<br />

0.16<br />

1979<br />

0.056<br />

0.72<br />

0.39<br />

0.16<br />

0.45<br />

0.75<br />

0.90<br />

0.82<br />

0.15<br />

Astronomy<br />

textbook Univ. Website 2003 ?!?<br />

1999<br />

0.06<br />

0.72<br />

0.39<br />

0.16<br />

0.70<br />

0.75<br />

0.90<br />

0.82<br />

0.15<br />

2002<br />

0.06<br />

0.76<br />

0.40<br />

0.16<br />

0.51<br />

0.50<br />

0.66<br />

0.62<br />

0.50<br />

TCAEP<br />

0.119<br />

0.750<br />

0.304<br />

0.16<br />

0.70<br />

0.75<br />

0.90<br />

0.82<br />

0.145<br />

NSSDC<br />

0.119<br />

0.750<br />

0.304<br />

0.250<br />

0.343<br />

0.342<br />

0.30<br />

0.29<br />

0.4-6<br />

?!<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

11


Bond albedo A = p q<br />

both geometric albedo p and phase integral q have changed<br />

geometric albedo p =<br />

planet’s brightness at Sun angle β = 0<br />

brightness of a perfectly diffusing disk of same size<br />

VENUS<br />

b V<br />

EARTH<br />

SUN<br />

b M<br />

phase integral<br />

q<br />

=<br />

2<br />

π<br />

∫<br />

0<br />

[ L( β )/<br />

L(0)<br />

] sin β dβ<br />

MARS<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

9<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

12


Bond albedo A = p q<br />

both geometric albedo p and phase integral q have changed<br />

Allen 1955<br />

NSSDC 2003<br />

Planet<br />

p<br />

q<br />

A<br />

p<br />

q<br />

A<br />

Mercury<br />

0.093<br />

0.65<br />

0.060<br />

0.106<br />

1.12<br />

0.119<br />

Venus<br />

0.49<br />

1.24<br />

0.61<br />

0.65<br />

1.15<br />

0.750<br />

EARTH<br />

0.34<br />

1.00<br />

0.34<br />

0.367<br />

0.83<br />

0.306<br />

Mars<br />

0.136<br />

1.10<br />

0.150<br />

0.150<br />

1.67<br />

0.250<br />

Jupiter<br />

0.37<br />

1.11<br />

0.41<br />

0.52<br />

0.66<br />

0.343<br />

Saturn<br />

0.42<br />

1.00<br />

0.42<br />

0.47<br />

0.73<br />

0.342<br />

Uranus<br />

0.41<br />

1.10<br />

0.45<br />

0.51<br />

0.59<br />

0.300<br />

Neptune<br />

0.50<br />

1.08<br />

0.54<br />

0.41<br />

0.71<br />

0.290<br />

Pluto<br />

0.16<br />

1.00<br />

0.16<br />

0.5-<br />

0.7<br />

0.8<br />

0.4-<br />

0.6<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

13


Ground-based Earth albedo ?<br />

Replacing the satellite by an<br />

observer, on the Moon –<br />

It’s still the same problem,<br />

but worse<br />

Moon<br />

P<br />

A<br />

N<br />

P’<br />

Earth<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

6<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

14


Bond albedo A = p q<br />

both geometric albedo p and phase integral q have changed<br />

Allen 1955<br />

NSSDC 2003<br />

Planet<br />

p<br />

q<br />

A<br />

p<br />

q<br />

A<br />

Mercury<br />

0.093<br />

0.65<br />

0.060<br />

0.106<br />

1.12<br />

0.119<br />

Venus<br />

0.49<br />

1.24<br />

0.61<br />

0.65<br />

1.15<br />

0.750<br />

EARTH<br />

0.34<br />

1.00<br />

0.34<br />

0.367<br />

0.83<br />

0.306<br />

Mars<br />

0.136<br />

1.10<br />

0.150<br />

0.150<br />

1.67<br />

0.250<br />

Jupiter<br />

0.37<br />

1.11<br />

0.41<br />

0.52<br />

0.66<br />

0.343<br />

Saturn<br />

0.42<br />

1.00<br />

0.42<br />

0.47<br />

0.73<br />

0.342<br />

Uranus<br />

0.41<br />

1.10<br />

0.45<br />

0.51<br />

0.59<br />

0.300<br />

Neptune<br />

0.50<br />

1.08<br />

0.54<br />

0.41<br />

0.71<br />

0.290<br />

Pluto<br />

0.16<br />

1.00<br />

0.16<br />

0.5-<br />

0.7<br />

0.8<br />

0.4-<br />

0.6<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

15


<strong>Radiation</strong> Balance<br />

R N = absorbed SW flux – emitted LW flux<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

16


<strong>Radiation</strong> Balance<br />

R N = absorbed SW flux – emitted LW flux<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

17


Earth’s Energy Balance :<br />

342 incident SW flux<br />

102 reflected<br />

SW flux<br />

NOT 137<br />

R N - P = 0<br />

240 LW flux<br />

to space<br />

absorbed SW flux<br />

Energy Balance = 240 : R N - P = 0<br />

P = 0.086<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

618


Jupiter’s Energy Balance :<br />

12.6 incident SW flux<br />

4.3 reflected<br />

SW flux<br />

or 8.8 ?!<br />

R N - P = 0<br />

13.6 LW flux<br />

to space<br />

absorbed SW flux<br />

= 8.3<br />

Energy<br />

or is<br />

Balance<br />

it 3.8 ?!<br />

: R N - P = 0<br />

P = 5.3… or 9.8 ?!<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

719


What we need : Bond albedo, M LW , R N<br />

with error bars and discussion<br />

PLANET<br />

1955<br />

A<br />

1979<br />

1999<br />

2002<br />

TCAEP<br />

NSSDC<br />

Mercury<br />

0.060<br />

0.119 0.056<br />

0.06<br />

0.06<br />

0.119<br />

0.119<br />

Venus<br />

0.61<br />

0.750 0.72<br />

0.72<br />

0.76<br />

0.750<br />

0.750<br />

EARTH<br />

0.34<br />

0.304 0.39<br />

0.39<br />

0.40<br />

0.304<br />

0.304<br />

Mars<br />

0.15<br />

0.250 0.16<br />

0.16<br />

0.16<br />

0.16<br />

0.250<br />

Jupiter<br />

0.41<br />

0.343 0.45<br />

0.70<br />

0.51<br />

0.70<br />

0.343<br />

Saturn<br />

0.42<br />

0.342 0.75<br />

0.75<br />

0.50<br />

0.75<br />

0.342<br />

Uranus<br />

0.45<br />

0.30<br />

0.90<br />

0.90<br />

0.66<br />

0.90<br />

0.30<br />

Neptune<br />

0.54<br />

0.20<br />

0.82<br />

0.82<br />

0.62<br />

0.82<br />

0.29<br />

Pluto<br />

0.16<br />

0.4-0.6 0.15<br />

0.15<br />

0.50<br />

0.145<br />

0.4-6<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

20


Error bars also needed<br />

for planetary LW flux (or T e ) and P<br />

And we need to make astronomers better aware of<br />

what we have learned about planet Earth !<br />

not just global annual means,<br />

also the annual cycle of global means,<br />

and much more !<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

21


Example : Global mean reflected SW flux<br />

SW GLOBAL MEANS<br />

SW FLUX Wm -2<br />

115<br />

110<br />

105<br />

100<br />

95<br />

90<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

MONTH<br />

1985<br />

1986<br />

1987<br />

1988<br />

1989<br />

1994<br />

1995<br />

1998<br />

1999<br />

2000<br />

2001<br />

2002<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

22


100 x ALBEDO<br />

32<br />

30<br />

28<br />

26<br />

Example ALBEDO : Global GLOBAL mean MEANSalbedo<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

MONTH<br />

1985<br />

1986<br />

1987<br />

1988<br />

1989<br />

1994<br />

1995<br />

1998<br />

1999<br />

2000<br />

2001<br />

2002<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

23


LW FLUX Wm -2<br />

245<br />

240<br />

235<br />

230<br />

225<br />

Example LW : Global GLOBAL mean MEANS LW flux<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

MONTH<br />

1985<br />

1986<br />

1987<br />

1988<br />

1989<br />

1994<br />

1995<br />

1998<br />

1999<br />

2000<br />

2001<br />

2002<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

24


NET GLOBAL MEANS<br />

Example : Global radiation balance<br />

NET FLUX Wm -2<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

MONTH<br />

1985<br />

1986<br />

1987<br />

1988<br />

1989<br />

1994<br />

1995<br />

1998<br />

1999<br />

2000<br />

2001<br />

2002<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

25


Some things are settled, others not<br />

We need to make astronomers better<br />

aware of what we have learned about<br />

planet Earth !<br />

CERES STM<br />

23-25 Sept. 2003<br />

R. Kandel & M. Viollier<br />

<strong>Planetary</strong> <strong>Radiation</strong> <strong>Budgets</strong><br />

26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!