17.02.2015 Views

Updates on the Edition4 Angular Distribution Models - ceres

Updates on the Edition4 Angular Distribution Models - ceres

Updates on the Edition4 Angular Distribution Models - ceres

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Outline<br />

• Ed4 <strong>Angular</strong> Distributi<strong>on</strong> <strong>Models</strong><br />

• Cloud property differences between Ed2 and Ed4<br />

• Flux differences due to changes in cloud properties<br />

and ADMs<br />

• Separate Terra/Aqua ADM or combined Terra+Aqua<br />

ADM<br />

• Validati<strong>on</strong>: shortwave direct integrati<strong>on</strong><br />

5/7/13 CERES STM <br />

1


Normalize predicted and observed radiance<br />

R(θ 0 , θ, φ) = πÎ(θ 0, θ, φ)<br />

ˆF (θ 0 )<br />

F (θ 0 )= πI o(θ 0 , θ, φ)<br />

R(θ 0 , θ, φ)<br />

F (θ 0 )= I o(θ 0 , θ, φ)<br />

Î(θ 0 , θ, φ)<br />

ˆF (θ 0 )<br />

1°<br />

Observed radiance:<br />

I o j ,<br />

Predicted radiance:<br />

Î j ,<br />

j =1, ···,n<br />

j =1, ···,n<br />

1°<br />

I o = 1 n<br />

RMS =<br />

n<br />

j=1<br />

I o j<br />

1 n<br />

n<br />

j=1<br />

Îj<br />

Î<br />

Î = 1 n<br />

n<br />

j=1<br />

Î j<br />

− Io j<br />

I o 2<br />

• RMS error between normalized predicted radiance and normalized<br />

observed radiance is used to assess <strong>the</strong> ADM error<br />

5/7/13 CERES STM <br />

2


SW angular distributi<strong>on</strong> model over clear land: Modified RossLi<br />

• Collect clear-sky reflectance over 1°✕1° regi<strong>on</strong>s for every<br />

calendar m<strong>on</strong>th;<br />

• Stratify reflectance within each 1°✕1° regi<strong>on</strong> by NDVI (0.1) and<br />

cosθ 0 (0.2);<br />

• Apply modified RossLi fit to produce BRDF and ADM for each<br />

NDVI and cosθ 0 intervals within each 1°✕1° regi<strong>on</strong>.<br />

ρ(µ 0 ,µ,φ) =k 0 + k 1 · B 1 (µ 0 ,µ,φ)+k 2 · B 2 (µ 0 ,µ,φ)<br />

from Maignan et al., 2004<br />

Evergreen broadleaf forest<br />

Woody Savannas<br />

5/7/13 CERES STM <br />

3


Ed4 clear land ADM reduces <strong>the</strong> RMS error<br />

• Apply Ed4 ADM to Ed4 SSF<br />

RMS = 1 n Îj<br />

n<br />

j=1 Î<br />

− Io j<br />

I o 2<br />

%<br />

5/7/13 CERES STM <br />

4


Ed4 clear land ADM reduces <strong>the</strong> RMS error<br />

• Apply Ed2 ADM to Ed3 SSF<br />

%<br />

5/7/13 CERES STM 5


RMS error as a functi<strong>on</strong> of AOD<br />

%<br />

%<br />

5/7/13 CERES STM <br />

6


Ed4ADM over clear ocean accounts for aerosol loading and type<br />

• AOD retrieval based<br />

up<strong>on</strong> a fine-mode aerosol<br />

look-up table (urban) and<br />

a coarse-mode aerosol<br />

look up table (maritime);<br />

Ilut j (τ c k)<br />

Ij<br />

obs<br />

SZA=30-32<br />

C1 C2<br />

C3<br />

I lut<br />

f1 f2 f3<br />

j (τ f k )<br />

coarse<br />

fine<br />

• Stratify fine-mode<br />

aerosols into 3 AOD bins<br />

c =<br />

and coarse-mode<br />

aerosols into 3 AOD bins;<br />

6<br />

j=1<br />

I<br />

obs<br />

j − Ij lut (τk c ) <br />

Ij obs +0.01<br />

2<br />

f =<br />

6<br />

j=1<br />

I<br />

obs<br />

j − Ij lut (τ f k<br />

) <br />

Ij obs +0.01<br />

2<br />

• Build ADM for each AOD<br />

bin and type separately<br />

(6 ADMs).<br />

c < f<br />

Y<br />

n<br />

τ = τ c k <br />

τ = τ f k <br />

5/7/13 CERES STM <br />

7


Ed4ADM reduces <strong>the</strong> RMS error over clear ocean<br />

Clear ocean with AOD retrieval 2002 Ed4SSF/Ed4ADM: Ed4SSF/UpEd2ADM: RMS RMS =4.3% =6.4%<br />

5/7/13 CERES STM 8


RMS error increases for <strong>the</strong> largest coarse mode AOD bin<br />

coarse-mode-like<br />

fine-mode-like<br />

ΔRMS=-0.9%<br />

ΔRMS=-0.5%<br />

0-33%<br />

ΔRMS=-0.3%<br />

ΔRMS=-0.3%<br />

33-66%<br />

ΔRMS=0.2%<br />

ΔRMS=-0.4%<br />

66-100%<br />

5/7/13 CERES STM <br />

(Terra 2002 cross-track) 9


Is <strong>the</strong> largest coarse mode AOD bin c<strong>on</strong>taminated by clouds?<br />

• Use cloud mask clear_Str<strong>on</strong>g percentage to eliminate<br />

footprints that are possibly c<strong>on</strong>taminated by clouds<br />

% of samples with Clr_str<strong>on</strong>g < 1%<br />

%<br />

5/7/13 CERES STM <br />

10


Develop clear-ocean ADM excluding questi<strong>on</strong>able clear FOVs<br />

• Ed4ADMc: including all clear FOVs;<br />

• Ed4ADM1: excluding clear FOVs with clear_str<strong>on</strong>g < 1%;<br />

• Ed4ADM50: excluding clear FOVs with clear_str<strong>on</strong>g < 50%;<br />

• Ed4ADM99: excluding clear FOVs with clear_str<strong>on</strong>g < 99%;<br />

5/7/13 CERES STM <br />

11


<strong>Angular</strong> distributi<strong>on</strong> model over cloudy ocean<br />

• For glint angle > 20°, or glint angle < 20° and ln(f)> 6:<br />

– Average instantaneous radiances into 775 intervals of ln(f) for<br />

each angular bin (2°) separately for liquid, mixed, and ice clouds;<br />

– Apply a five-parameter sigmoidal fit to mean radiance and ln(f);<br />

I = I 0 +<br />

a<br />

[1 + e −(x−x 0)/b<br />

] c<br />

• For glint angle < 20° and ln(f) < 6:<br />

– Calculate mean radiance for 6 wind speed bins and 4 ln(f) bins;<br />

– Use mean radiance to build ADM<br />

5/7/13 CERES STM <br />

12


Ed4SSF produces tighter sigmoidal fit over ocean: liquid<br />

5/7/13 CERES STM <br />

13


Ed4SSF produces tighter sigmoidal fit over ocean: ice<br />

5/7/13 CERES STM <br />

14


Ed4 ADM decreases <strong>the</strong> RMS error over cloudy ocean:<br />

Terra FM1<br />

5/7/13 CERES STM <br />

15


Ed4 ADM decreases <strong>the</strong> RMS error over cloudy ocean:<br />

Auua FM4<br />

5/7/13 CERES STM <br />

16


<strong>Angular</strong> distributi<strong>on</strong> model over cloudy land/desert<br />

• Derive cloudy area c<strong>on</strong>tributi<strong>on</strong> from observed radiance:<br />

fI cld (µ 0 ,µ,φ) =I(µ 0 ,µ,φ) − (1 − f) µ 0E 0<br />

π<br />

ρclr (µ 0 ,µ,φ)−<br />

f µ 0E 0<br />

π<br />

<br />

ρ clr (µ 0 ,µ,φ)e −τ<br />

µ 0 e −τ<br />

µ + α<br />

clr tcld (τ,µ 0 )t cld (τ,µ)<br />

1 − α clr α cld (τ)<br />

• Average instantaneous fI cld into 380 intervals of ln(f)<br />

for each angular bin (5°) for three cloud phases;<br />

• Apply a five-parameter sigmoidal fit to mean fI cld and<br />

ln(f);<br />

I = I 0 +<br />

a<br />

[1 + e −(x−x 0)/b<br />

] c<br />

• Ed4 ADM reduces <strong>the</strong> RMS error over cloudy land.<br />

<br />

5/7/13 CERES STM <br />

17


Sea ice index to quantify <strong>the</strong> brightness of sea ice surface<br />

η =1− ρ 0.47 − ρ 0.86<br />

ρ 0.47 + ρ 0.86<br />

High sea ice index<br />

Snow<br />

Bare ice<br />

~0.8-1.0<br />

Wet snow<br />

Melting first year ice<br />

Young melting p<strong>on</strong>d<br />

Melting p<strong>on</strong>ds<br />

~0.1-0.5<br />

Open water<br />

Rosel et al 2012, surface values<br />

Low sea ice index<br />

5/7/13 CERES STM <br />

18


Sea ice index decreases as ice starts melting<br />

5/7/13 CERES STM <br />

19


• Clear-sky<br />

Shortwave Ed4ADMs over sea ice<br />

– 6 sea ice fracti<strong>on</strong> bins<br />

– 3 sea ice index bins for scenes with sea ice fracti<strong>on</strong> >99%<br />

• Partly cloudy<br />

– 4 cloud fracti<strong>on</strong> bins<br />

– 2 ln(τ) bins<br />

– 6 sea ice fracti<strong>on</strong> bins<br />

– 3 sea ice index bins for scenes with sea ice fracti<strong>on</strong> >99%<br />

• Overcast<br />

– Linear fit between mean reflectance and ln(τ), separately for<br />

liquid and ice clouds and 5 sea ice index ranges derived from<br />

m<strong>on</strong>thly maps<br />

5/7/13 CERES STM <br />

20


RMS error for sea ice<br />

July 2003 all-sky<br />

Jan 2003 all-sky<br />

5/7/13 CERES STM 21


Clear-sky l<strong>on</strong>gwave/window angular distributi<strong>on</strong> models<br />

• Over clear land/ocean/snow/ice:<br />

– Ed4 ADMs increased <strong>the</strong> surface skin temperature (Ts) bins and<br />

interpolati<strong>on</strong> between <strong>the</strong> Ts bins;<br />

5/7/13 CERES STM <br />

22


Cloudy-sky LW/WN angular distributi<strong>on</strong> models<br />

• Ed2 ADM uses third-order polynomial fits between<br />

radiance and pseudoradiance () to determine anisotropic<br />

factor;<br />

• Ed4 ADM uses mean radiance for each 1 Wm -2 sr -1 bin,<br />

and interpolates between <strong>the</strong> bins. Third-order<br />

polynomial fits are used as backup;<br />

• Will evaluate if more bins are needed.<br />

Ψ(w, T s ,T c ,f, s , c )=<br />

2<br />

<br />

<br />

(1 − f) s B(T s )+ s B(T s )(1 − cj )+ cj B(T cj )<br />

j=1<br />

f j<br />

5/7/13 CERES STM <br />

23


LW RMS error comparis<strong>on</strong> between Ed2ADM and Ed4ADM:<br />

Jan 2001 daytime Terra<br />

5/7/13 CERES STM <br />

24


LW RMS error comparis<strong>on</strong> between Ed2ADM and Ed4ADM:<br />

Jan 2001 nighttime Terra<br />

5/7/13 CERES STM <br />

25


Daytime Cloud property difference between Ed3 and Ed4<br />

% %<br />

f<br />

<br />

<br />

<br />

<br />

<br />

<br />

5/7/13 CERES STM <br />

26


SW flux change between Ed3 and Ed4<br />

Ed4ADM: clear land, cloudy ocean, cloudy land, and sea ice<br />

5/7/13 CERES STM <br />

27


Daytime LW flux change between Ed3 and Ed4<br />

Ed4ADM: clear ocean/land/desert, cloudy ocean/land/desert<br />

5/7/13 CERES STM <br />

28


Nighttime Cloud property difference between Ed3 and Ed4<br />

% %<br />

f<br />

<br />

<br />

<br />

<br />

<br />

<br />

5/7/13 CERES STM <br />

29


Nighttime LW flux change between Ed3 and Ed4<br />

Ed4ADM: clear ocean/land/desert, cloudy ocean/land/desert<br />

5/7/13 CERES STM 30


Terra ADM vs. combined Terra+Aqua ADM<br />

5/7/13 CERES STM <br />

31


Aqua ADM vs. combined Terra+Aqua ADM<br />

5/7/13 CERES STM <br />

32


Direct integrati<strong>on</strong> for SW flux<br />

I o<br />

• Use observed ( ) and ADM-predicted ( ) radiances to<br />

c<strong>on</strong>struct two sets of regi<strong>on</strong>al (10 ° X 10 ° ) all-sky ADMs<br />

for each seas<strong>on</strong><br />

F (θ 0 )= πI o(θ 0 , θ, φ)<br />

R(θ 0 , θ, φ)<br />

R(θ 0 , θ, φ) = πÎ(θ 0, θ, φ)<br />

ˆF (θ 0 )<br />

• Both sets of regi<strong>on</strong>al all-sky ADMs have <strong>the</strong> same<br />

sampling<br />

Î<br />

• Compare fluxes derived from <strong>the</strong>se two sets of ADMs<br />

5/7/13 CERES STM <br />

33


Direct integrati<strong>on</strong> flux error for 2002 Terra FM1<br />

(flux from predicted radiance ADM – flux from observed radiance ADM)<br />

Wm -2<br />

5/7/13 CERES STM <br />

34


Z<strong>on</strong>al mean flux error for 2002 Terra FM1<br />

Jan.<br />

Apr.<br />

July<br />

Oct.<br />

5/7/13 CERES STM <br />

35


Summary<br />

• We have worked through most scene types and have seen some<br />

improvement in <strong>the</strong> new Ed4 ADMs<br />

• Ed4 cloud algorithm produces higher cloud fracti<strong>on</strong> and more liquid<br />

clouds than Ed2 cloud algorithm<br />

• Initial assessment indicates m<strong>on</strong>thly global mean instantaneous SW<br />

flux will increase (~1.0 Wm-2) due to changes in cloud properties and<br />

ADMs. Changes in LW flux are small (~0.1 Wm-2)<br />

• Combined Terra/Aqua ADMs (clear land, cloudy land, cloudy ocean)<br />

increase <strong>the</strong> m<strong>on</strong>thly global mean fluxes from Terra (up to 0.3<br />

Wm -2 ), but decrease <strong>the</strong> m<strong>on</strong>thly global mean fluxes from Aqua (up<br />

to 0.8 Wm -2 ).<br />

• Direct integrati<strong>on</strong> of SW indicates that z<strong>on</strong>al mean flux error is less<br />

than 0.5 Wm-2 over most n<strong>on</strong>e-polar regi<strong>on</strong>s.<br />

5/7/13 CERES STM <br />

36

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!