16.02.2015 Views

General Principles of HPLC Method Development

General Principles of HPLC Method Development

General Principles of HPLC Method Development

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>General</strong> <strong>Principles</strong><br />

<strong>of</strong> <strong>HPLC</strong> <strong>Method</strong><br />

<strong>Development</strong><br />

Philip J. Koerner, Ph.D.<br />

Thailand<br />

September 2013<br />

Part 1. <strong>General</strong> Chromatographic Theory<br />

Part 2. The Stationary Phase:<br />

An Overview <strong>of</strong> <strong>HPLC</strong> Media<br />

Part 3. Role <strong>of</strong> the Mobile Phase in Selectivity


The Liquid Chromatographic Process<br />

3<br />

Column Chromatography:<br />

The Beginning <strong>of</strong> Liquid<br />

Chromatography<br />

Empty<br />

Column<br />

Adsorbent<br />

particles<br />

added<br />

Sample is<br />

loaded onto<br />

the top <strong>of</strong><br />

the column<br />

Solvent is<br />

added to the<br />

top <strong>of</strong> the<br />

column<br />

Separation<br />

occurs as<br />

the bands<br />

move down<br />

the column<br />

4<br />

Mikhail Tsvet, 1872-1919


Basis <strong>of</strong><br />

Chromatographic Separation<br />

Separation <strong>of</strong> compounds by <strong>HPLC</strong> depends on the interaction <strong>of</strong><br />

analyte molecules with the stationary phase and the mobile phase.<br />

Mobile Phase<br />

Stationary Phase<br />

5<br />

The Liquid<br />

Chromatographic Process<br />

Analytes<br />

Mobile Phase<br />

Stationary Phase<br />

6


The Liquid<br />

Chromatographic Process<br />

Analytes<br />

Mobile Phase<br />

Stationary Phase<br />

7<br />

The Liquid<br />

Chromatographic Process<br />

Polar/Aqueous<br />

Mobile Phase<br />

H<br />

O<br />

N<br />

O H<br />

H<br />

N<br />

N<br />

H<br />

O H<br />

N<br />

O H<br />

H<br />

N<br />

O H<br />

H<br />

H<br />

Benzo(a)pyrene<br />

Ethyl sulfate<br />

Non-Polar Stationary<br />

Phase (e.g. C18)<br />

8


In any separation, almost never get a pure, single mode <strong>of</strong> separation. In RP,<br />

performance will be dictated by mixture <strong>of</strong>:<br />

1. Hydrophobic interactions<br />

2. Polar interactions<br />

3. Ionic interactions<br />

Mechanisms <strong>of</strong> Interaction<br />

In RP Chromatography<br />

<strong>Method</strong> <strong>Development</strong> = modulating stationary phase and mobile phase<br />

conditions to optimize these interactions and achieve a specific separation<br />

goal.<br />

OH<br />

Tapentadol<br />

CH 3<br />

CH 3<br />

N<br />

9<br />

CH 3<br />

CH 3<br />

Hydrophobic Interactions<br />

Hydrophobic<br />

C H 3<br />

C H 3 C H 3 C<br />

OH<br />

• Weak, transient interactions<br />

between a non-polar stationary<br />

phase and the molecules<br />

O<br />

C H 3<br />

H 3<br />

C H 3<br />

• Hydrophobic & van Der<br />

Waals interactions<br />

CH 3<br />

CH 3<br />

N<br />

H3C<br />

CH 3<br />

• Retention will be predicted by<br />

Log P values<br />

S i H 3 C S i<br />

H C S i<br />

H 3 C<br />

S i<br />

C H 3<br />

O C H 3<br />

C H 3<br />

O 3<br />

O - O H C H O H<br />

O O 3<br />

O<br />

C H 3<br />

S i<br />

C H 3<br />

C H 3<br />

S i S i S i S i S i S i S i<br />

O O O O O O<br />

H O O H H O O H O H O H H O<br />

O<br />

S i S i S i<br />

O O O H<br />

O H O H O H<br />

10


Polar Interactions<br />

C H 3<br />

C H 3 C H 3 C<br />

Polar<br />

• Interactions between polar<br />

functions groups <strong>of</strong> analyte<br />

and residual silanols or polar<br />

groups on media<br />

O<br />

C H 3<br />

H 3<br />

C H 3<br />

CH<br />

H C 3<br />

3<br />

N<br />

H 3 C<br />

H 3 C<br />

• Hydrogen bonding, dipoledipole<br />

interactions<br />

• Relatively weak and transient<br />

HO<br />

S i H 3 C S i<br />

H C S i<br />

H 3 C<br />

S i<br />

C H 3<br />

O C H 3<br />

C H 3<br />

O 3<br />

O - O H C H O H<br />

O O 3<br />

O<br />

C H 3<br />

S i<br />

C H 3<br />

C H 3<br />

S i S i S i S i S i S i S i<br />

O O O O O O<br />

H O O H H O O H O H O H H O<br />

O<br />

S i S i S i<br />

O O O H<br />

O H O H O H<br />

11<br />

Ion-exchange Interactions<br />

• Interactions between<br />

ionizable functional groups on<br />

analyte and counter-charged<br />

moiety on stationary phase<br />

Ion-Exchange<br />

• Ion-exchange<br />

C H 3<br />

C H 3 C H 3 C<br />

OH<br />

• Strong, slow interactions<br />

O<br />

C H 3<br />

H 3<br />

C H 3<br />

CH 3<br />

H 3 C<br />

H N<br />

+<br />

H<br />

S i S i<br />

3 C<br />

H C<br />

CH 3<br />

3 H C S i<br />

H 3 C<br />

S i<br />

C H 3<br />

O C H 3<br />

C H 3<br />

O 3<br />

O - O H C H O H<br />

O O 3<br />

O<br />

C H 3<br />

S i<br />

C H 3<br />

C H 3<br />

S i S i S i S i S i S i S i<br />

O O O O O O<br />

H O O H H O O H O H O H H O<br />

O<br />

S i S i S i<br />

O O O H<br />

O H O H O H<br />

12


Chromatographic Measurements<br />

13<br />

Chromatographic<br />

Measurements<br />

14<br />

k’ Asym N α


Void Volume<br />

Analytes which do not interact with the adsorbent elute from the column in a<br />

volume equal to the void volume in the column. The void volume <strong>of</strong> a<br />

column is the amount <strong>of</strong> mobile phase in the column between the adsorbent<br />

particles and in the pores <strong>of</strong> the porous adsorbent particles.<br />

Mobile phase occupies the space<br />

between the particles or the<br />

interstitial volume.<br />

Mobile phase fills the pores <strong>of</strong> the<br />

porous adsorbent particles.<br />

15<br />

Void Volume<br />

A compound which does not interact with the adsorbent at all elutes at<br />

what is termed the void volume or the solvent front. The time that it<br />

takes for non-retained components to elute is the void time or t 0<br />

.<br />

• void volume<br />

• solvent front<br />

• t 0<br />

16


Retention Factor (k’)<br />

The retention factor <strong>of</strong> the eluting compound is its elution volume (time)<br />

relative to the elution volume (time) <strong>of</strong> an unretained compound. The k’<br />

value for a given analytes will be determined by its relative affinity for the<br />

stationary phase and mobile phase.<br />

Retention factor (k’)=<br />

t R – t 0<br />

t 0<br />

t 0<br />

17<br />

Retention Factor (k’)<br />

For any given analyte, the k’ value will be most readily modified by changing<br />

the % <strong>of</strong> strong mobile phase (e.g. methanol or ACN).<br />

Example: The Separation <strong>of</strong> Steroids:<br />

Column used: Phenomenex Luna C18(2) 150 x 4.6 mm<br />

18


Retention Factor (k’):<br />

Effect <strong>of</strong> Changing % ACN<br />

19<br />

Peak Asymmetry (Asym)<br />

The asymmetry value (Asym) for a peak is a measure <strong>of</strong> the divergence <strong>of</strong><br />

the peak from a perfect Gaussian peak shape. Peaks with asymmetry<br />

values > 1.0 are said to be “tailing”, those with asymmetry values < 1.0 are<br />

said to be “fronting”.<br />

Asymmetrical peaks can be<br />

attributed to a number <strong>of</strong> factors:<br />

(1) Strong secondary interactions (e.g.<br />

ionic interactions between basic<br />

compounds and residual silanols)<br />

(2) Sample overloading<br />

(3) Sample solvent incompatibility<br />

(4) Poor packing<br />

20


Peak Tailing due to<br />

Secondary Interactions<br />

Classical peak tailing in reversed-phase methods is most commonly caused<br />

by strong ionic interactions between basic analytes and residual silanols<br />

on the surface <strong>of</strong> the silica.<br />

C H 3<br />

C H 3 C H 3<br />

C<br />

O<br />

C H 3<br />

H 3<br />

C H 3<br />

Ion-Exchange<br />

O H<br />

C H 3<br />

H 3 C<br />

H 3 C<br />

H N<br />

+<br />

C H 3<br />

S i H S i 3 C<br />

S i S i<br />

O C H 3<br />

C H<br />

O 3<br />

O - O H H 3 C<br />

H C C H 3 3<br />

C H O H<br />

O O 3<br />

O<br />

C H 3<br />

S i<br />

C H 3<br />

C H 3<br />

S i S i S i S i S i S i S i<br />

O O O O O O<br />

H O O H H O O H O H O H H O<br />

O<br />

S i S i S i<br />

O O O H<br />

O H O H O H<br />

21<br />

Peak Tailing due to<br />

Secondary Interactions<br />

Example: The Separation <strong>of</strong> Tricyclic Antidepressants:<br />

Column used: Kinetex 2.6µ XB-C18 50 x 2.1 mm<br />

Brand H 2.7µ C18 50 x 2.1mm<br />

Amitriptyline (pKa 9.4) Nortriptyline (pKa 9.7) Protriptyline (pKa 8.2)<br />

22


30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

50<br />

40<br />

30<br />

20<br />

10<br />

100<br />

80<br />

60<br />

40<br />

20<br />

DAD1 C, Sig=254,4 Ref=300,100 (DJ040611\DJGSK 2011-04-06 12-28-48\GSK000006.D)<br />

12 12.5 13 13.5 14 14.5 15 15.5 16 16.5<br />

DAD1 C, Sig=254,4 Ref=300,100 (DJ040611\DJGSK 2011-04-06 12-28-48\GSK000008.D)<br />

12.5 13 13.5 14 14.5 15 15.5 16 16.5<br />

DAD1 C, Sig=254,4 Ref=300,100 (DJ040611\DJGSK 2011-04-06 12-28-48\GSK000010.D)<br />

12.5 13 13.5 14 14.5 15 15.5 16 16.5<br />

min<br />

min<br />

min<br />

Peak Tailing due to<br />

Secondary Interactions<br />

Brand H 2.7µ C18 50x2.1mm<br />

Kinetex 2.6µ XB-C18 50x2.1mm<br />

XIC <strong>of</strong> +MRM (8 pairs): 264.2/191.1 Da ID: Protrip from Sample 28 (Halo C18-50x2, 2.7 um, MeOH:0.1% ... XIC <strong>of</strong> +MRM (8 pairs): 278.2/191.2 Max. Da 1.1e5 ID: Amitrip cps. from Sample 7 (TCA-Kin-XB-C18, 50x2, 2.6, MeOH 0....<br />

1 5<br />

5<br />

5<br />

4<br />

1<br />

1<br />

4<br />

Peak tailing<br />

Max. 1.2e5 cps.<br />

6<br />

6<br />

2 3<br />

7 8<br />

2 3<br />

7 8<br />

3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0<br />

Time, min<br />

Time, min<br />

XIC <strong>of</strong> +MRM (8 pairs): 264.2/191.1 Da ID: Protrip from Sample 28 (Halo C18-50x2, 2.7 um, MeOH:0.1% ... XIC <strong>of</strong> +MRM (8 pairs): 264.2/191.1 Max. Da 1.1e5 ID: Protrip cps. from Sample 13 (Kinetex XB-C18-50x2, 2.6 um, MeO...<br />

Max. 1.2e5 cps.<br />

4<br />

4<br />

6<br />

6<br />

3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0<br />

Time, min<br />

3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0<br />

Time, min<br />

23<br />

Mobile phase: A = 0.1% Formic acid in water, B = 100% Methanol,<br />

Gradient: 15 to 60% B in 5 min, hold for 1 min<br />

Flow rate: 400 µL/min<br />

1. Amoxapine<br />

2. Imipramine<br />

3. Desipramine<br />

4. Protriptyline*<br />

5. Amitriptyline<br />

6. Nortriptyline*<br />

7. Clomipramine<br />

8. Norclomipramine<br />

Peak Tailing due to<br />

Sample Overloading<br />

Strongly basic analytes are very sensitive to sample loading, and will display<br />

peak tailing effects as a function <strong>of</strong> increasing loading (µg on column):<br />

mAU0<br />

2.5 µg on column;<br />

USP Tailing = 1.17<br />

14.208<br />

pKa 9.7<br />

5 µg on column;<br />

USP Tailing = 1.34<br />

14.169<br />

mAU0<br />

12<br />

12 µg on column;<br />

USP Tailing = 1.87<br />

14.157<br />

mAU0<br />

12<br />

24


1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7<br />

25<br />

min<br />

Peak Fronting due to<br />

Sample Overloading<br />

Neutral and acidic compounds will typical show peak fronting when the<br />

column is overloaded.<br />

Detector saturation!<br />

DAD1 A, Sig=240,10 Ref=<strong>of</strong>f (MT042211\DJGSK 2011-04-22 09-12-57\MUPIROCIN000001.D)<br />

2250<br />

2.495<br />

2000<br />

1750<br />

1500<br />

mAU<br />

Fronting due to overload<br />

1250<br />

1000<br />

750<br />

500<br />

250<br />

1.905<br />

1.745 0<br />

2.145<br />

Peak Fronting due to<br />

Sample Solvent Effects<br />

Peak fronting can also be due to sample solvent effects:<br />

(1) Sample insolubility<br />

(2) Sample solvent is too strong:<br />

Sample in 50% Methanol<br />

7.0e4<br />

6.5e4<br />

6.0e4<br />

5.5e4<br />

5.0e4<br />

4.5e4<br />

Hydromorphone<br />

Sample in 100% Methanol<br />

2.2e5<br />

2.0e5<br />

1.8e5<br />

1.6e5<br />

Breakthrough!<br />

1.4e5<br />

4.0e4<br />

3.5e4<br />

3.0e4<br />

1.2e5<br />

1.0e5<br />

0.24<br />

Fronting<br />

2.5e4<br />

8.0e4<br />

2.0e4<br />

1.5e4<br />

1.0e4<br />

5000.0<br />

0.0<br />

Morphine<br />

1.06<br />

1.77<br />

Norhydrocodone<br />

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0<br />

6.0e4<br />

4.0e4<br />

2.0e4<br />

0.0<br />

1.36<br />

0.97<br />

0.51 1.71<br />

1.79<br />

1.85 2.15 3.213.36 3.97<br />

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0<br />

26


Selectivity (α)<br />

Selectivity is a measure <strong>of</strong> the difference in the interactions <strong>of</strong> two compounds<br />

with the stationary phase. Selectivity is a function <strong>of</strong> both the stationary phase<br />

and the mobile phase.<br />

α = k 2 /k 1<br />

27<br />

Selectivity (α)<br />

The choice <strong>of</strong> stationary phase will <strong>of</strong>ten have a dramatic effect on the<br />

selectivity <strong>of</strong> analytes.<br />

O<br />

CH 3<br />

OH<br />

CH 3<br />

H<br />

H<br />

HO<br />

H<br />

H<br />

HO<br />

H<br />

H<br />

Estrone<br />

Estradiol<br />

m A U<br />

1 7 5<br />

C18<br />

Column<br />

1+2<br />

1 5 0<br />

1 2 5<br />

1 0 0<br />

α = 1.0<br />

7 5<br />

5 0<br />

2 5<br />

0<br />

1 2 3 4 5<br />

m<br />

i n<br />

m A U<br />

1 0 0<br />

Phenyl Column 1<br />

8 0<br />

6 0<br />

2<br />

α = 2.3<br />

4 0<br />

2 0<br />

0<br />

28<br />

1 2 3 4 5<br />

m<br />

i n


Selectivity (α)<br />

But mobile phase is also a very powerful tool in modulating selectivity.<br />

Column: Gemini 5 µm C6-Phenyl<br />

150 x 4.6mm<br />

Mobile phase: 20mM KH2PO4, pH 2.5;<br />

% organic as noted<br />

Flow rate: 1.0 mL/min<br />

Detection: UV at 220nm<br />

35% Methanol<br />

1. Saccharin<br />

2. p-Hydroxybenzoic Acid<br />

3. Sorbic Acid<br />

4. Dehydroacetic Acid<br />

5. Methylparaben<br />

20% Acetonitrile<br />

29<br />

Column Efficiency (N)<br />

The amount <strong>of</strong> band (peak) broadening or dispersion that occurs in the column<br />

is measured by calculating the column efficiency (N) expressed as the<br />

number <strong>of</strong> theoretical plates in the column:<br />

tR<br />

W 1/2<br />

• Columns that cause a lot <strong>of</strong> peak<br />

broadening have few theoretical<br />

plates.<br />

• Columns that produce very narrow<br />

peaks (little peak broadening) have<br />

a large number <strong>of</strong> theoretical plates.<br />

W<br />

30<br />

Peak Width (W)


Column Efficiency (N) is a<br />

Function <strong>of</strong> Particle Size<br />

Efficiency <strong>of</strong> a well-packed column will be a function <strong>of</strong> several factors, one <strong>of</strong><br />

which will be particle size. As particle size decreases, efficiency will increase.<br />

In addition, back-pressure also increases as particle size decreases.<br />

10 µm<br />

5 µm<br />

3 µm<br />

Core-Shell<br />

sub-2 µm<br />

50,000 P/m<br />

100,000 P/m<br />

150,000 P/m<br />

300,000 P/m<br />

300,000 P/m<br />

Efficiency<br />

Back-Pressure<br />

31<br />

The Core-Shell Advantage<br />

Fully Porous Particles<br />

Columns packed with core-shell particles will deliver<br />

significantly higher efficiency (N) than columns packed with<br />

fully-porous particles <strong>of</strong> the same diameter.*<br />

Fully Porous Particles<br />

w 1/2<br />

Injected<br />

Sample<br />

Band<br />

* Gritti et al., Journal <strong>of</strong> Chromatography A, 1217 (2010) 1589<br />

t R<br />

6


The Core-Shell Advantage<br />

Core-Shell Particles<br />

Columns packed with core-shell particles will deliver<br />

significantly higher efficiency (N) than columns packed with<br />

fully-porous particles <strong>of</strong> the same diameter.*<br />

Kinetex Core-Shell Particles<br />

w 1/2<br />

5 6<br />

t R<br />

* Gritti et al., Journal <strong>of</strong> Chromatography A, 1217 (2010) 1589<br />

The Core-Shell Advantage<br />

Comparison<br />

Columns packed with core-shell particles will deliver<br />

significantly higher efficiency (N) than columns packed with<br />

fully-porous particles <strong>of</strong> the same diameter.*<br />

Fully Porous 3 µm C18; 150 x 4.6 mm<br />

N = 166,500 p/m<br />

Kinetex 2.6 µm C18; 150 x 4.6 mm<br />

N = 295,340 p/m<br />

78% Increase<br />

in Efficiency!<br />

* Gritti et al., Journal <strong>of</strong> Chromatography A, 1217 (2010) 1589<br />

34


The Core-Shell Advantage<br />

Efficiency vs. Diameter<br />

Columns packed with core-shell particles will deliver<br />

significantly higher efficiency (N) than columns packed with<br />

fully-porous particles <strong>of</strong> the same diameter.*<br />

450<br />

Efficiency( p/m)<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Fully Porous<br />

Core-Shell<br />

0<br />

5 3.5/3.6 2.5/2.6 1.7 1.3<br />

Particle Diameter (µm)<br />

*Farcas et al., <strong>HPLC</strong> 2012 Conference<br />

The van Deemter Equation<br />

The three principle factors that cause band broadening and a decrease in<br />

column efficiency are described by the van Deemter equation:<br />

e<br />

e<br />

*<br />

Simplified version:<br />

H =<br />

A · d p + B/µ + C · d e<br />

2 · µ<br />

Particle size<br />

Particle size<br />

Linear velocity (flow rate)<br />

Mass Transfer<br />

36<br />

Linear velocity (flow rate)<br />

Mobile phase viscosity


The Core-Shell Advantage<br />

A-term<br />

H =<br />

A · d p + B/u + C · d e<br />

2 · u<br />

Eddy Diffusion<br />

Multi-path Effect<br />

w 1/2<br />

t R<br />

6<br />

The Core-Shell Advantage<br />

B-term<br />

H =<br />

A · d p + B/u + C · d e<br />

2 · u<br />

Longitudinal diffusion<br />

w 1/2<br />

t R<br />

6


The Core-Shell Advantage<br />

Fully Porous C-term<br />

H =<br />

A · d p + B/µ + C · d e<br />

2 · µ<br />

Mass Transfer (Kinetics)<br />

Dispersion due to resistance to mass transfer<br />

A<br />

B<br />

39<br />

The Core-Shell Advantage<br />

Core-Shell C-term<br />

H =<br />

A · d p + B/µ + C · d e<br />

2 · µ<br />

Dispersion due to resistance to mass transfer<br />

Mass Transfer (Kinetics)<br />

A<br />

B


The Core-Shell Advantage<br />

h vs. v Comparison<br />

H =<br />

A · d p + B/µ + C · d e<br />

2 · µ<br />

Reduced plate height h<br />

15<br />

10<br />

5<br />

4.6 x 100 mm Luna-C 18<br />

(2)<br />

Eddy dispersion<br />

Longitudinal diffusion<br />

Solid-liquid mass transfer<br />

Reduced plate height h<br />

15<br />

10<br />

5<br />

4.6 x 100 mm Kinetex-C 18<br />

Eddy dispersion<br />

Longitudinal diffusion<br />

Solid-liquid mass transfer<br />

0<br />

0 5 10 15 20<br />

Reduced velocity ν<br />

0<br />

0 5 10 15 20<br />

Reduced velocity ν<br />

*Gritti and Guiochon, 2012. LC-GC 30(7) 586-595.<br />

Effect <strong>of</strong> Column Length<br />

on Efficiency<br />

For a given particle size, column efficiency will be directly proportional to the<br />

length <strong>of</strong> the column. However, pressure and elution time will also be<br />

directly proportional to the column length.<br />

5cm<br />

10cm<br />

15cm<br />

25cm<br />

5,000 Plates<br />

8 min<br />

50 Bar<br />

10,000 Plates<br />

16 min<br />

100 Bar<br />

15,000 Plates<br />

24 min<br />

150 Bar<br />

25,000 Plates<br />

40 min<br />

250 Bar<br />

42


Balancing Column Length<br />

and Particle Size<br />

Column<br />

Length<br />

(mm)<br />

Efficiency dp<br />

5µm<br />

250 25,000<br />

150 15,000<br />

100 10,000<br />

50 5,000<br />

43<br />

Balancing Column Length<br />

and Particle Size<br />

Column<br />

Length<br />

(mm)<br />

Efficiency dp<br />

5µm<br />

Efficiency dp<br />

3µm<br />

250 25,000 37,500<br />

150 15,000 22,500<br />

100 10,000 15,000<br />

50 5,000 7,500<br />

44


Balancing Column Length<br />

and Particle Size<br />

Column<br />

Length<br />

(mm)<br />

Efficiency dp<br />

5µm<br />

Efficiency dp<br />

3µm<br />

Efficiency<br />

sub-2µm /<br />

Core-shell<br />

250 25,000 37,500<br />

150 15,000 22,500 45,000<br />

100 10,000 15,000 30,000<br />

50 5,000 7,500 15,000<br />

45<br />

Balancing Column Length<br />

and Particle Size<br />

Column<br />

Length<br />

(mm)<br />

Efficiency dp<br />

5µm<br />

Efficiency dp<br />

3µm<br />

Efficiency<br />

sub-2µm /<br />

Core-shell<br />

%Reduction in<br />

Analysis Time<br />

250 25,000 37,500<br />

150 15,000 22,500 45,000 33<br />

100 10,000 15,000 30,000 60<br />

50 5,000 7,500 15,000 80<br />

46<br />

Use shorter columns packed with smaller particles<br />

to reduce analysis time while maintaining/improving<br />

efficiency!!


Effect <strong>of</strong> Flow Rate on<br />

Efficiency<br />

Effect <strong>of</strong> Flow Rate on Column Efficiency (100x4.6mm)<br />

35000<br />

30000<br />

Core-Shell ~2 mL/min<br />

Core-Shell 2.6<br />

Luna 3u<br />

N (Plates/column)<br />

25000<br />

20000<br />

15000<br />

3µ ~1.5 mL/min<br />

Luna 5u<br />

10000<br />

5000<br />

5µ ~1 mL/min<br />

47<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5<br />

Flow rate (ml/min)<br />

Quick Review<br />

The chromatographic measurements that we have discussed so far will all play<br />

a significant role in method development.<br />

1. Retention factor (k’) – retention <strong>of</strong> analyte relative to void t 0<br />

• Controlled by modulating % strong mobile phase<br />

2. Peak asymmetry – peak shape (fronting, tailing, symmetrical)<br />

• Result <strong>of</strong> secondary interactions (e.g. Ionic in RP mode)<br />

• Sensitive to sample loading & sample solvent effects<br />

3. Selectivity (α) – difference in the k’ <strong>of</strong> two analytes<br />

• Will be determined by mobile phase composition and nature <strong>of</strong><br />

stationary phase<br />

4. Efficiency (N) – function <strong>of</strong> peak width and retention<br />

• Determined by particle size, column length, flow rate<br />

• Column packing will affect efficiency (vendor)<br />

48


Any Questions?<br />

49<br />

Resolution: The Goal <strong>of</strong> Chromatography<br />

50


Resolution: The Goal <strong>of</strong><br />

Liquid Chromatography<br />

The goal and the purpose <strong>of</strong><br />

liquid chromatography is to<br />

resolve the individual<br />

components <strong>of</strong> a sample from<br />

each other so that they may be<br />

identified and/or quantitated.<br />

51<br />

Resolution: The Goal <strong>of</strong><br />

Liquid Chromatography<br />

Resolution is a measure <strong>of</strong> how well two peaks are<br />

separated from each other.<br />

It is calculated as the difference in retention time <strong>of</strong> two eluting peaks divided by<br />

the average width <strong>of</strong> the two peaks at the baseline.<br />

R (resolution) = RT B - RT A / .5 (width A + width B )<br />

52


Resolution: The Goal <strong>of</strong><br />

Liquid Chromatography<br />

α<br />

(1) Retention time for the two<br />

peaks will be a function <strong>of</strong><br />

retention factor (k’).<br />

k’<br />

(2) The selectivity (α) will also<br />

affect the retention time<br />

values for the two peaks.<br />

(3) Peak width will be a function<br />

<strong>of</strong> column efficiency (N) and<br />

asymmetry (Asym).<br />

53<br />

N, Asym<br />

Resolution: The Goal <strong>of</strong><br />

Liquid Chromatography<br />

The equation below allows us to calculate the relative importance <strong>of</strong> each <strong>of</strong><br />

these three factors in overall resolution:<br />

Efficiency<br />

Retention factor<br />

Selectivity<br />

It is important to note that you (the analyst) have control over each <strong>of</strong> those<br />

factors through your choice <strong>of</strong> <strong>HPLC</strong> column and running conditions:<br />

1. Efficiency (N)→Particle size/morphology and column length<br />

2. Selectivity (α) → Stationary phase and mobile phase<br />

3. Retention factor (k’) → Stationary phase and mobile phase<br />

54


Resolution: The Relative<br />

Effectiveness <strong>of</strong> k’, α, and N<br />

Most important<br />

determinant <strong>of</strong><br />

resolution!!<br />

Constant increase in<br />

resolution<br />

Ineffective after k’ ~10<br />

55<br />

The Impact <strong>of</strong> Efficiency<br />

on Resolution<br />

Modulating column efficiency is a very effective way to optimize resolution.<br />

There is a strong, linear correlation between N and R s<br />

, but it is not a 1:1 ratio.<br />

Column efficiency is a flexible tool because we can easily modify it via changes<br />

in particle size and column length.<br />

Column<br />

Length<br />

(mm) Efficiency 5µm Efficiency 3µm<br />

Efficiency<br />

sub-2µm /<br />

Core-shell<br />

250 25,000 37,500<br />

56<br />

More Pressure<br />

Longer Run<br />

Time<br />

150 15,000 22,500 45,000<br />

100 10,000 15,000 30,000<br />

50 5,000 7,500 15,000<br />

More efficiency/resolution<br />

More Back-Pressure


The Impact <strong>of</strong> Efficiency<br />

on Resolution<br />

Relative Resolution<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

Doubling column<br />

efficiency increases<br />

R s by a factor <strong>of</strong> 1.4x<br />

57<br />

0<br />

0 10000 20000 30000 40000<br />

Column Efficiency (Plates)<br />

mAU<br />

The Impact <strong>of</strong> Efficiency<br />

on Resolution<br />

100<br />

80<br />

60<br />

40<br />

5 µm<br />

80,000 P/m<br />

20<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5<br />

min<br />

mAU<br />

140<br />

120<br />

100<br />

80<br />

3 µm<br />

150,000 P/m<br />

60<br />

40<br />

20<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5<br />

min<br />

58


Optimizing Efficiency for<br />

Maximum Resolution<br />

1. For method development, start with an intermediate column length, packed<br />

with the smallest particle size that system pressure limitations will allow.<br />

• Conventional <strong>HPLC</strong> → 3µm 150x4.6mm or core-shell 100x4.6mm<br />

• UPLC → sub-2µm or core-shell particle<br />

• Work at optimal flow rate for that particle size<br />

2. Fine-tune for maximum productivity:<br />

• Excessive resolution → shorter column, increase flow rate<br />

• Insufficient resolution → longer column; modify flow rate to compensate<br />

for pressure<br />

59<br />

The Impact <strong>of</strong> Retention<br />

Factor on Resolution<br />

Retention factor is the most important, yet limited, factor in determining<br />

resolution. It is crucial to have a reasonable k’ value because analytes must be<br />

retained in order to separate them. The drawback is that at high k’ values,<br />

passive diffusion causes extensive band broadening and loss <strong>of</strong> performance.<br />

60


Optimizing Retention Factor<br />

for Maximum Resolution<br />

1. Adjust k’ value to be between 2 and 10<br />

• In RP, adjust % <strong>of</strong> organic (acetonitrile or methanol)<br />

• Altering nature <strong>of</strong> stationary phase/media can modulate k’ as well<br />

2. At k’ < 2, have sub-optimal resolution<br />

• May also have interference from solvent, non-retained components<br />

3. At k’ values > 10, band broadening due to diffusion limits resolution gain<br />

• In RP, complex mixtures <strong>of</strong> polar and non-polar components will require<br />

gradient for optimal performance/run time balance<br />

• Polar stationary phases can the “total elution window” <strong>of</strong> complex<br />

mixtures in isocratic mode<br />

61<br />

The Impact <strong>of</strong> Selectivity<br />

on Resolution<br />

Small changes in selectivity can have a dramatic effect on retention. This<br />

is one <strong>of</strong> the reason why the same stationary phases from different<br />

manufacturers can sometimes give very different results, and also why<br />

changes to mobile phase composition can alter the results so strongly.<br />

62


<strong>Method</strong> <strong>Development</strong> Exercise 1:<br />

Optimization to Reduce Analysis Time and<br />

Increase Productivity<br />

63<br />

Mupirocin Impurity Pr<strong>of</strong>ile<br />

Column: C8 250 x 4.6mm 5µm<br />

Mobile phase:<br />

Flow rate:<br />

Components:<br />

70 / 30 0.1M Ammonium acetate / THF<br />

1.0 mL/min<br />

1-6 = Impurities A - G<br />

7. Mupirocin<br />

Mupirocin<br />

64


0<br />

mAU<br />

Mupirocin: Original <strong>Method</strong><br />

DAD1 A, Sig=240,10 Ref=<strong>of</strong>f (Z:\1\DATA\MT050211\DJGSK 2011-05-02 15-34-44\MUPIROCIN000001.D)<br />

175<br />

7<br />

150<br />

125<br />

100<br />

75<br />

50<br />

25<br />

5<br />

R s<br />

3/4 = 0.63; k’ = 2.3<br />

1<br />

2 3 6<br />

4<br />

~16 min<br />

min<br />

0 2 4 6 8 10 12 14 16<br />

Column:<br />

Luna 5µ C8(2) 250 x 4.6mm<br />

Mobile phase: 70/30 0.1M Ammonium acetate pH 5.7/THF<br />

Flow rate:<br />

1.0 mL/min<br />

65<br />

Step 1. Adjust k’ for better<br />

Resolution<br />

66<br />

Step 1. Reduce % organic to increase k’:<br />

• Increases R s<br />

• Increases run time


Step 2. Optimize Efficiency<br />

and Length<br />

Column<br />

Length<br />

(mm)<br />

Efficiency dp<br />

5µm<br />

Efficiency dp<br />

3µm<br />

Efficiency<br />

sub-2µm /<br />

Core-shell<br />

%Reduction in<br />

Analysis Time<br />

250 25,000 37,500<br />

150 15,000 22,500 45,000 33<br />

100 10,000 15,000 30,000 60<br />

50 5,000 7,500 15,000 80<br />

67<br />

Step 2. Switch to 150x4.6mm 3 µm media:<br />

• Reduces analysis time<br />

• Maintains efficiency<br />

Step 3. Optimize the Flow<br />

Rate<br />

35000<br />

30000<br />

25000<br />

Core-Shell 2.6<br />

Luna 3u<br />

Luna 5u<br />

N (Plates/column)<br />

20000<br />

15000<br />

10000<br />

5000<br />

68<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5<br />

Flow rate (ml/min)<br />

Step 3. Increase flow rate to 1.5 mL/min:<br />

• Optimizes efficiency for 3 µm


mAU<br />

80<br />

VWD1 A, Wavelength=240 nm (JL050211\MUPI0003.D)<br />

Mupirocin: Intermediate<br />

<strong>Method</strong><br />

5<br />

7<br />

60<br />

40<br />

1<br />

k’ = 9; R s<br />

3/4 = 1.6<br />

20<br />

2 3 4<br />

6<br />

20 min<br />

0<br />

0 2 4 6 8 10 12 14 16 18<br />

min<br />

Column: Luna 3µ C8(2) 150 x 4.6mm<br />

Mobile phase: 80/20 0.1M Ammonium acetate pH 5.7/THF<br />

Flow rate: 1.5 mL/min<br />

69<br />

R s increased from 0.63 to 1.6<br />

Run time increased from 16 to 20 minutes<br />

Step 4. Switch to Core-Shell Media<br />

Column<br />

Length<br />

(mm)<br />

Efficiency dp<br />

5µm<br />

Efficiency dp<br />

3µm<br />

Efficiency<br />

sub-2µm /<br />

Core-shell<br />

%Reduction in<br />

Analysis Time<br />

250 25,000 37,500<br />

150 15,000 22,500 45,000 33<br />

100 10,000 15,000 30,000 60<br />

50 5,000 7,500 15,000 80<br />

70<br />

Step 4. Switch to 100x4.6mm Core-Shell media:<br />

• Reduce analysis time<br />

• Increase efficiency


0<br />

mAU<br />

Mupirocin: Final Optimized <strong>Method</strong><br />

mAU<br />

250<br />

VWD1 A, Wavelength=240 nm (JL050211\MUPI0006.D)<br />

5<br />

7<br />

200<br />

150<br />

1<br />

R s<br />

3/4 = 2.3<br />

100<br />

8 min<br />

50<br />

2 3 4<br />

6<br />

0<br />

0 1 2 3 4 5 6 7 8 9<br />

min<br />

Column: Kinetex 2.6µ C8 100 x 4.6mm<br />

Mobile phase: 80/20 0.1M Ammonium acetate pH 5.7:THF<br />

Flow rate: 1.5 mL/min (2mL/min if pressure allows)<br />

R s<br />

increased from 1.6 to 2.3<br />

Run time decreased from 20 to 8 minutes<br />

71<br />

Initial <strong>Method</strong>:<br />

Mupirocin: Final Optimized <strong>Method</strong><br />

D AD 1 A, Sig= 240,1 0 R ef=o ff ( Z:\1 \DAT A\MT 050 211\ DJ G SK 201 1-0 5-0 2 15 -34 -44 \MU PIRO C IN00 0001 .D)<br />

1 75<br />

1 50<br />

1 25<br />

1 00<br />

75<br />

50<br />

25<br />

1<br />

5<br />

R s<br />

3/4 = 0.63<br />

2 3 4<br />

6<br />

7<br />

16 min<br />

0 2 4 6 8 1 0 12 14 16<br />

Final Optimized <strong>Method</strong>:<br />

VWD1 A, Wavelength=240 nm (JL050211\MUPI0006.D)<br />

mAU<br />

250<br />

5<br />

7<br />

200<br />

150<br />

100<br />

1<br />

R s<br />

3/4 = 2.3<br />

8 min<br />

50<br />

2 3 4<br />

6<br />

72<br />

0<br />

0 1 2 3 4 5 6 7 8 9<br />

min<br />

min


Any Questions?<br />

73<br />

Part 1. <strong>General</strong> Chromatographic Theory<br />

Part 2. The Stationary Phase:<br />

An Overview <strong>of</strong> <strong>HPLC</strong> Media<br />

Part 3. Role <strong>of</strong> the Mobile Phase in Selectivity<br />

74


Fully Porous Silica<br />

Polymerization<br />

Alkaline<br />

Tetraethoxysilane<br />

Silica Sol-Gel<br />

99.9% <strong>of</strong> reactive<br />

surface area is<br />

internal<br />

75<br />

Fully Porous Silica<br />

Advantages:<br />

• Ability to derivatize with numerous<br />

bonded phases<br />

• High mechanical strength<br />

• Excellent efficiency<br />

• Highly amenable to modulation <strong>of</strong><br />

material characteristics (pore size,<br />

surface area, etc.)<br />

Disadvantages:<br />

• Dissolution <strong>of</strong> silica at pH > ~7.5 (may<br />

extend with bonded phase)<br />

• Hydrolysis <strong>of</strong> bonded phase at pH


Organosilica Hybrid Particle<br />

Conventional Silica Particle<br />

Organosilica Hybrid Particle<br />

Siloxane<br />

Bridge<br />

Ethane<br />

linkage<br />

Dissolution at pH > 7.5 Stable to pH ~12<br />

77<br />

Organosilica Hybrid Particle<br />

Advantages:<br />

• Extended pH range from 1-12<br />

• Performance and strength <strong>of</strong><br />

conventional silica particle<br />

• Unique selectivity<br />

Disadvantages:<br />

• Fewer stationary phases available<br />

compared to conventional silica (e.g.<br />

cyano, amino)<br />

78


Core-Shell Particle<br />

0.35 µm Porous Shell<br />

2.6 µm Core-Shell<br />

Particle<br />

1.9 µm Solid Core<br />

79<br />

Core-Shell Particle<br />

Advantages:<br />

• 3x the efficiency <strong>of</strong> 5 µm fullyporous<br />

media & 2x the efficiency <strong>of</strong><br />

3 µm media<br />

• Pressures compatible with<br />

conventional <strong>HPLC</strong> systems*<br />

Disadvantages:<br />

• Pressure is still higher than 3 µm<br />

media<br />

• More sensitive to system extracolumn<br />

volumes<br />

• More sensitive to overload in<br />

some cases<br />

80


RP Stationary Phase Classes<br />

Alkyl bonded phases (C18, C8, C4):<br />

Polar-embedded phases:<br />

Fusion<br />

Phenyl phases (Phenyl, PFP):<br />

Polar-endcapped phases:<br />

F<br />

F<br />

F<br />

F<br />

F<br />

Hydro<br />

81<br />

Methylene Selectivity<br />

We use the methylene selectivity test to determine the ability <strong>of</strong> stationary<br />

phase to separate molecules based upon differences in their hydrophobic<br />

character. In general, very hydrophobic bonded phases (e.g. C18) will display<br />

higher levels <strong>of</strong> methylene selectivity than less hydrophobic phases.<br />

m A U<br />

2 5 0<br />

C18<br />

2 0 0<br />

1 5 0<br />

1 0 0<br />

5 0<br />

0<br />

m A U<br />

2 4 6 8 1 0<br />

m i n<br />

4 0 0<br />

Phenyl<br />

3 0 0<br />

2 0 0<br />

1 0 0<br />

0<br />

2 4 6 8 1 0<br />

m i n<br />

82


Methylene Selectivity<br />

0.200<br />

C18 > C8 > C5 ≥ Phenyl > CN > Amino<br />

0.180<br />

0.160<br />

Slope <strong>of</strong> log k vs. # -CH2- units<br />

0.140<br />

0.120<br />

0.100<br />

0.080<br />

0.060<br />

0.040<br />

0.020<br />

0.000<br />

Luna<br />

C18(2)<br />

Synergi<br />

Hydro-RP<br />

Jupiter<br />

C18<br />

Synergi<br />

Max-RP<br />

Luna<br />

C8(2)<br />

Luna C5<br />

Luna<br />

Phe-Hex<br />

Jupiter<br />

C4<br />

Synergi<br />

Polar-RP<br />

Prodigy<br />

Phenyl<br />

Luna<br />

Cyano<br />

Luna<br />

Amino<br />

83<br />

Methylene Selectivity<br />

Columns:<br />

Mobile phase:<br />

Flow rate:<br />

Components:<br />

5µm C18 150x4.6mm<br />

5µm C8 150x4.6mm<br />

5µm Phenyl 150x4.6mm<br />

65:35 Acetonitrile:Water<br />

1 mL/min<br />

Two steroids:<br />

1. Testosterone<br />

2. Methyltestosterone<br />

CH 3<br />

OH<br />

CH 3<br />

H<br />

CH 3<br />

H<br />

CH 3<br />

OH<br />

CH 3<br />

O<br />

H<br />

H<br />

O<br />

H<br />

H<br />

84<br />

Testosterone<br />

Methyltestosterone


Phenyl Selectivity<br />

Columns:<br />

Dimensions:<br />

Mobile phase:<br />

Flow rate:<br />

C18<br />

Phenyl<br />

150 x 4.6 mm<br />

75:25 Methanol:water<br />

1 mL/min<br />

OH<br />

CH 3<br />

O<br />

CH 3<br />

Components:<br />

1. Estrone<br />

2. Estradiol<br />

HO<br />

H<br />

H<br />

H<br />

HO<br />

H<br />

H<br />

H<br />

Estradiol<br />

Estrone<br />

85<br />

Phenyl Selectivity<br />

OH<br />

CH 3<br />

CH 3<br />

O<br />

H<br />

H<br />

C18<br />

m A U<br />

1 7 5<br />

1 5 0<br />

C18<br />

HO<br />

H<br />

Estradiol<br />

H<br />

HO<br />

H H<br />

Estrone<br />

1+2<br />

1 2 5<br />

1 0 0<br />

7 5<br />

5 0<br />

2 5<br />

0<br />

1 2 3 4 5<br />

m in<br />

Phenyl<br />

m A U<br />

1 0 0<br />

Phenyl<br />

1<br />

8 0<br />

2<br />

6 0<br />

4 0<br />

2 0<br />

0<br />

1 2 3 4 5<br />

m in<br />

86


Aqueous Stability <strong>of</strong><br />

Embedded Phases<br />

Nucleic Acid Bases:<br />

Luna C18(2)<br />

Day 1<br />

Polar-Endcapped C18<br />

Day 1<br />

0<br />

2 4 6 8 10 12<br />

Day 2<br />

0<br />

0 2 4 6 8 10 12<br />

Day 6<br />

Phase Collapse!<br />

0<br />

2 4 6 8 10 12 14<br />

min<br />

0<br />

2 4 6 8 10 12 14<br />

87<br />

Aqueous Stability <strong>of</strong><br />

Embedded Phases<br />

LC/MS/MS Analysis <strong>of</strong> ETG & ETS in Urine:<br />

Polar-Endcapped 2.5 µm C18<br />

100x3.0mm<br />

XIC <strong>of</strong> -MRM (6 pairs): 221.200/75.000 Da ID: ETG-1 from Sample 6 (P-2_Hyro-RP_100x4.6_4u_FR600...<br />

1.00e5<br />

9.50e4<br />

9.00e4<br />

8.50e4<br />

Max. 9020.0 cps.<br />

10mM Ammonium formate<br />

8.00e4<br />

7.50e4<br />

7.00e4<br />

6.50e4<br />

ETG<br />

ETS<br />

6.00e4<br />

1. Ethyl glucuronide<br />

2. Ethyl sulfate<br />

Intensity, cps<br />

5.50e4<br />

5.00e4<br />

4.50e4<br />

4.00e4<br />

3.50e4<br />

3.00e4<br />

2.50e4<br />

2.00e4<br />

1.50e4<br />

1.00e4<br />

5000.00<br />

0.00<br />

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5<br />

49 96 144 191 239 287 334 382 429 477 525 572 620<br />

Time, min<br />

XIC <strong>of</strong> -MRM (6 pairs): 221.200/75.000 Da ID: ETG-1 from Sample 6 (P-2_Hyro-RP_100x4.6_4u_FR600...<br />

Max. 9020.0 cps.<br />

1.10e4<br />

ETG<br />

1.00e4<br />

9000.00<br />

ETG<br />

ETS<br />

8000.00<br />

7000.00<br />

Intensity, cps<br />

6000.00<br />

5000.00<br />

4000.00<br />

ETS<br />

3000.00<br />

2000.00<br />

1000.00<br />

0.00<br />

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5<br />

49 96 144 191 239 287 334 382 429 477 525 572 620<br />

Time, min<br />

88


Part 1. <strong>General</strong> Chromatographic Theory<br />

Part 2. Overview <strong>of</strong> <strong>HPLC</strong> Media<br />

Part 3. Role <strong>of</strong> the Mobile Phase in Selectivity<br />

Solvents for RP<br />

Chromatography<br />

Mobile phase selection is much more challenging that stationary phase<br />

selection because the options are limitless. However, in practical method<br />

development, we can dramatically narrow down the options to focus on those<br />

conditions which will give us the highest likelihood <strong>of</strong> success.<br />

Typical RP Solvents:<br />

Weak Solvent:<br />

Water/Buffer<br />

Strong Solvent: Acetonitrile (64)<br />

Methanol (34)<br />

Composite mixtures (1)<br />

THF (1)<br />

Frequency <strong>of</strong> use


Solvent Selectivity<br />

The elution strength <strong>of</strong> a given solvent is determined by its hydrophobicity (e.g.<br />

heptane would be stronger than hexane because it is more hydrophobic). The<br />

selectivity <strong>of</strong> a solvent, however, is determined by its polar characteristics<br />

(e.g. heptane and hexane would have the same solvent selectivity).<br />

Methanol is a strong proton<br />

donor and a strong proton<br />

acceptor in hydrogen bonding.<br />

C H 3<br />

OH<br />

Acetonitrile has a dipole<br />

moment but is only a very weak<br />

proton acceptor in hydrogen<br />

bonding.<br />

N CH 3<br />

δ − δ +<br />

Tetrahyr<strong>of</strong>uran is able to<br />

accept a proton in hydrogen<br />

bonding but cannot donate a<br />

proton.<br />

O<br />

Solvent Selectivity<br />

Optimum Separation <strong>of</strong> 4 Steroids in Different Solvents:


Solvent Screening for<br />

Isocratic <strong>Method</strong>s<br />

1. Start at high % acetonitrile and work backwards until k’ is 2-10 (if possible)<br />

80% ACN<br />

40% ACN<br />

25% ACN<br />

21% ACN<br />

k’ = 0<br />

k’ ~ 0.8<br />

k’ ~ 6<br />

k’ ~ 11<br />

Solvent Screening for<br />

Isocratic <strong>Method</strong>s<br />

2. Repeat with alternative solvent:


Buffer Selection for<br />

RP-<strong>HPLC</strong><br />

= Typical for LC/UV<br />

= Typical for LC/MS<br />

Effect <strong>of</strong> pH on<br />

Base Silica<br />

Any silica-based RP material will have some residual silanols left after<br />

bonding and end-capping. These Si-OH groups can be deprotonated at<br />

values above pH ~3.5. The deprotonated silanols are more likely to engage in<br />

ion-exchange with basic analytes, leading to peak tailing.<br />

pH 3.5<br />

Si<br />

Si<br />

Si<br />

O<br />

O<br />

Si<br />

O<br />

O Si<br />

O<br />

O Si<br />

OH<br />

OH<br />

OH<br />

Si<br />

Si<br />

Si<br />

O<br />

O<br />

Si<br />

O<br />

O Si<br />

O<br />

O Si<br />

O<br />

OH<br />

O<br />

• Silanols protonated<br />

• Less ion-exchange<br />

• Less peak tailing<br />

• Silanols deprotonated<br />

• Increased ion-exchange<br />

• Increased peak tailing


Effect <strong>of</strong> pH on Analyte<br />

Ionization<br />

The primary mechanism <strong>of</strong> retention in RP chromatography is hydrophobic<br />

interaction. Ionizing compounds will cause them to behave as more polar<br />

species, and reduce their hydrophobic interaction with the stationary phase,<br />

leading to decreased retention.<br />

• More hydrophobic<br />

• More strongly retained<br />

• Less hydrophobic<br />

• Less strongly retained<br />

• More hydrophobic<br />

• More strongly retained<br />

• Less hydrophobic<br />

• Less strongly retained<br />

The ionization state <strong>of</strong> a molecule will be determined by the pH <strong>of</strong> the mobile<br />

phase. Therefore, mobile phase pH will dictate retention behavior <strong>of</strong><br />

analytes with ionizable functional groups.<br />

Effect <strong>of</strong> pH on Analyte<br />

Ionization<br />

Acidic Compounds:<br />

Basic Compounds:<br />

Retention Factor (k’)<br />

Retention Factor (k’)


Effect <strong>of</strong> pH on Analyte<br />

Ionization<br />

Alkaline<br />

H +<br />

Acidic<br />

Alkyl Stationary Phase<br />

Aqueous Mobile Phase<br />

Effect <strong>of</strong> pH on Analyte<br />

Ionization<br />

Alkaline<br />

H +<br />

Acidic<br />

H +<br />

Alkyl Stationary Phase<br />

Aqueous Mobile Phase


Effect <strong>of</strong> pH on Analyte<br />

Retention<br />

Amitriptyline (pKa 9.4) = (B)ase Toluene = (N)eutral Naproxen (pKa 4.5) = (A)cid<br />

B<br />

A<br />

A<br />

B<br />

A<br />

B<br />

N<br />

N<br />

N<br />

Gradient Analysis<br />

The gradient slope is analogous to solvent strength in isocratic elution.<br />

Isocratic Solvent Strength:<br />

Increasing the solvent strength<br />

reduces analysis time but also<br />

reduces resolution.<br />

Decreasing the solvent strength<br />

increases resolution at the cost<br />

<strong>of</strong> increased analysis time.<br />

Solvent strength sometimes<br />

affects selectivity<br />

Gradient Slope:<br />

Increasing the gradient slope<br />

reduces analysis time but also<br />

reduces resolution.<br />

Decreasing the gradient slope<br />

increases the resolution at the<br />

cost <strong>of</strong> increased analysis time.<br />

Gradient slope sometimes<br />

affects selectivity<br />

The goal <strong>of</strong> gradient elution is to optimize resolution while<br />

minimizing analysis time.


Temperature in<br />

<strong>HPLC</strong> <strong>Method</strong>s<br />

The use <strong>of</strong> temperature in <strong>HPLC</strong> method development presents a challenge<br />

because it can have unpredictable effects on selectivity.<br />

The use <strong>of</strong> elevated temperatures will:<br />

1. Reduce mobile phase viscosity and back-pressure. This can allow you to<br />

operate at higher flow rates, or to use longer columns/smaller particle sizes.<br />

2. Reduce elution time.<br />

3. Improve method reproducibility (as opposed to operating at room<br />

temperature).<br />

However, it is impossible to determine if the use <strong>of</strong> elevated temperatures will<br />

help or hinder a specific separation. For complex separations, improvements<br />

in one portion <strong>of</strong> the chromatogram are almost always accompanied by<br />

decreases in another part <strong>of</strong> the same chromatogram.<br />

End <strong>of</strong> Section II<br />

Any Questions?<br />

104


End <strong>of</strong> the <strong>HPLC</strong> <strong>Method</strong> <strong>Development</strong> Portion

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!