15.02.2015 Views

integrator - Instituto de Plasmas e Fusão Nuclear

integrator - Instituto de Plasmas e Fusão Nuclear

integrator - Instituto de Plasmas e Fusão Nuclear

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Magnetics Diagnostics<br />

2 nd Advanced Course on Diagnostics and Data Acquisition<br />

Bernardo Brotas Carvalho<br />

bernardo@ipfn.ist.utl.pt<br />

http://ipfn.ist.utl.pt/EU-PhD/<br />

<strong>Instituto</strong> <strong>de</strong> <strong>Plasmas</strong> e <strong>Fusão</strong> <strong>Nuclear</strong><br />

<strong>Instituto</strong> Superior Técnico<br />

Lisbon, Portugal<br />

http://www.ipfn.ist.utl.pt<br />

B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


General Principles<br />

• Magnetic measurements provi<strong>de</strong> some of the<br />

most fundamental and essential information<br />

about a fusion plasma:<br />

– Iplasma, internal inductance, position and speed of<br />

current centroid, shape of boundary, thermal energy,<br />

currents in the magnet coils, and the strength of the<br />

magnetic fields confining the plasma<br />

– information about the internal characteristics of the<br />

plasma and about asymmetries caused by large-scale<br />

MHD instabilities<br />

– Halo Currents<br />

Author’s name | Place, Month xx, 2007 | Event<br />

2 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


General Principles<br />

• Essential for equilibrium reconstructions<br />

– Post-discharge full equilibrium co<strong>de</strong>s<br />

– Real-time Plasma Shape and position control<br />

• Magnetic diagnostics are external, passive<br />

and ROBUST<br />

– The measurements remain valid and useful<br />

over the full range of plasma <strong>de</strong>nsity and<br />

temperature as well as during large transient<br />

events (disruptions)<br />

Author’s name | Place, Month xx, 2007 | Event<br />

3 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Measurement of Magnetic Fields<br />

in Axisymmetric Configurations<br />

• The axisymmetric magnetic field in a<br />

cylindrical coordinate system (R, Z ,ϕ) can<br />

be expressed in terms of two scalar<br />

functions F and ψ:<br />

• This field can be separated in<br />

• Toroidal Field<br />

• Poloidal Field<br />

Author’s name | Place, Month xx, 2007 | Event<br />

4 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Magnetic and Current<br />

Poloidal Fluxes<br />

• The function ψ , “poloidal<br />

flux” (PF) is related to the<br />

magnetic field flux over<br />

one major circle at (R,Z)<br />

ψ R,Z = Ψ R,Z<br />

B<br />

Ψ R,Z =<br />

2π = R A φ (R, Z)<br />

B ∙ dS<br />

Z<br />

Flux per radian,<br />

also related to the<br />

toroidal component<br />

of the magnetic<br />

vector potential<br />

J pol<br />

• The function F, “poloidal<br />

current function” is related<br />

to the total current crossing<br />

a major circle at (R,Z)<br />

F R,Z = μ I pol R,Z<br />

I pol (R,Z)=<br />

Z<br />

2π = R B φ (R, Z)<br />

J pol<br />

∙ dS<br />

R<br />

R<br />

Author’s name | Place, Month xx, 2007 | Event<br />

5 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Toroidal Magnetic Field<br />

• Ampere’s Law<br />

• Poloidal component:<br />

• In vaccum =0 so Bϕ<br />

varies only with 1/R<br />

(no information from the<br />

plasma with external<br />

measurements)<br />

• Within plasma, Bϕ <strong>de</strong>pends<br />

on poloidal currents internal<br />

to the plasma<br />

– A “diamagnetic loop” can<br />

measure changes in the total<br />

toroidal field<br />

Bϕ = F/R<br />

Diamagnetic<br />

Plasma<br />

Paramagnetic<br />

Plasma<br />

Author’s name | Place, Month xx, 2007 | Event<br />

6 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Poloidal Magnetic Field<br />

• Toroidal Component<br />

• Using Green’s Theorem<br />

∂Ω<br />

Z<br />

x’<br />

r<br />

Plasma<br />

Ω<br />

External<br />

Coils<br />

Author’s name | Place, Month xx, 2007 | Event<br />

7 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Basic restrictions of the magnetic<br />

diagnostics for equilibrium reconstruction<br />

• Green’s Theorem with Ω<br />

boun<strong>de</strong>d by the plasma and<br />

r→∞<br />

1) Currents external to the<br />

plasma in coils or other<br />

conductors.<br />

2) Poloidal flux at the plasma<br />

boundary (constant)<br />

Z<br />

x’<br />

Ω<br />

∂Ω<br />

r<br />

Plasma<br />

r→∞<br />

K φ<br />

⨂<br />

B t<br />

External<br />

Coils<br />

3) Normal <strong>de</strong>rivative of Poloidal<br />

flux at the plasma boundary (B t )<br />

ψ = Cnst<br />

External magnetic<br />

Term “3” is equivalent The surface current K φ measurements can <strong>de</strong>termine<br />

to a given surface<br />

is itself equivalent to<br />

the poloidal flux anywhere in Ω<br />

current distribution K φ<br />

many internal current<br />

and on the equivalent surface<br />

at the plasma<br />

distribution insi<strong>de</strong> the<br />

current K. BUT can NEVER<br />

boundary: μ 0 K φ = B t Plasma J φ (r)<br />

distinguish different internal<br />

current distributions<br />

8 B. Carvalho| Lisbon, February 2, 2010 | Author’s Diagnostics name | Place, & Data Month Acquisition xx, 2007 | Event


Electrostatics Case<br />

The Electric Field outsi<strong>de</strong> the Sphere is the same for a given surface charge <strong>de</strong>nsity<br />

or other infinite volume charge distributions<br />

Plasma<br />

ω<br />

K(ω)<br />

Author’s name | Place, Month xx, 2007 | Event<br />

9 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Grad-Shafranov Equilibrium Equation<br />

• Combining equation for PF with magnetic<br />

force balance gives G-S equation<br />

insi<strong>de</strong> the plasma:<br />

• GS gives additional constraint on the<br />

magnetic field within the plasma but also<br />

introduces another unknown scalar function:<br />

the pressure<br />

• We need to make some assumptions<br />

p(ψ) and F(ψ) to obtain full plasma<br />

equilibrium solution<br />

10 B. Carvalho| Lisbon, February 2, 2010 | Author’s Diagnostics name | Place, & Data Month Acquisition xx, 2007 | Event


Determination of Plasma<br />

Shape and position<br />

• Taking measurements of the Poloidal Flux and poloidal<br />

Magnetic fields near the Wall, plus the currents in external<br />

Coil allows extrapolation of ψ(R,Z) until the plasma<br />

boundary<br />

• Plot the contours of ψ(R,Z)=Cte and then find the Last<br />

Closed Flux Surface (LCFS), or the the separatrix in divertor<br />

tokamaks<br />

Flux Loops<br />

LCFS<br />

Magnetic Probes<br />

Divertor Tokamak<br />

Author’s name | Place, Month xx, 2007 | Event<br />

11 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Other Integral quantities given<br />

from Magnetics measurements<br />

• Total plasma current I p<br />

• Poloidal beta:<br />

– Proportional to the thermal energy of<br />

the plasma!<br />

• Plasma Normalized Internal<br />

inductance:<br />

– related to the first moment of the<br />

current <strong>de</strong>nsity distribution<br />

• “Shafranov shift”<br />

-length of a poloidal<br />

contour at the plasma<br />

surface<br />

Plasma LCFS<br />

“Shafranov Shift”<br />

Author’s name | Place, Month xx, 2007 | Event<br />

12 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Inductive Sensors<br />

(Basic types)<br />

Mag. Flux on the Sensor Loop<br />

Signal on Sensor<br />

Signal from sensor must be integrated<br />

Author’s name | Place, Month xx, 2007 | Event<br />

13 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Axisymetric Poloidal Flux Loops<br />

Bp<br />

In Iron Core Tokamak<br />

with Ohmic Heating most<br />

of the poloidal flux is on<br />

the core itself<br />

To improve the sensivity one loop is<br />

chosen as reference and is subtracted<br />

from other loops: Φ net = 2π(ψ − ψ ref )<br />

The unintegrated voltage<br />

signal from a flux loop<br />

is the local one-turn<br />

loop voltage, V loop , driving<br />

the plasma current<br />

14 B. Carvalho| Lisbon, February 2, 2010 | Author’s Diagnostics name | Place, & Data Month Acquisition xx, 2007 | Event


Magnetic Field Probes<br />

• Probe measures components of the<br />

local magnetic field strength<br />

• Usually solenoidal, with dimensions<br />

small compared to the gradient scale<br />

length of the magnetic field<br />

Probes should be located on the plasmafacing<br />

si<strong>de</strong> of the vacuum vessel wall.<br />

Must be oriented to measure the field<br />

tangential to the wall; otherwise, eddy<br />

currents in the wall will attenuate the<br />

high-frequency part of the signal.<br />

Φ probe<br />

= N A B ∥<br />

Shielding of the tangencial field<br />

by the conductive wall.<br />

is the characteristic time for the<br />

magnetic flux to diffuse through<br />

wall<br />

15 B. Carvalho| Lisbon, February 2, 2010 | Author’s Diagnostics name | Place, & Data Month Acquisition xx, 2007 | Event


Saddle Loops<br />

Legs in toroidal<br />

direction<br />

Legs in poloidal<br />

direction<br />

• Can be viewed as a<br />

large-scale magnetic<br />

probe for the magnetic<br />

field normal to the<br />

surface:<br />

• Or as probes measuring<br />

flux difference:<br />

Often used for <strong>de</strong>tecting nonaxisymmetric<br />

fields caused by nonrotating MHD<br />

instabilities.<br />

This measurement is most sensitive to<br />

instabilities with low frequencies since at<br />

high frequencies the normal component of<br />

the field is shiel<strong>de</strong>d by the wall<br />

• Also used for active<br />

control of MHD plasma<br />

mo<strong>de</strong>s (eg. RFX,<br />

Padova)<br />

Author’s name | Place, Month xx, 2007 | Event<br />

16 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Diamagnetic Loops<br />

At low beta the change in the total<br />

toroidal flux is small.<br />

• A diamagnetic loop measures the<br />

toroidal magnetic flux for the<br />

purpose of estimating the thermal<br />

energy of the plasma.<br />

• Normally located in a poloidal<br />

plane in or<strong>de</strong>r to minimize<br />

coupling to the poloidal field.<br />

A reference signal equal to the vacuum<br />

magnetic flux is usually subtracted,<br />

with<br />

Author’s name | Place, Month xx, 2007 | Event<br />

17 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Rogowski Coil<br />

Ip<br />

The Conducting path from one end of the<br />

coil returns along the axis to the other<br />

end<br />

• The Rogowski coil measures<br />

electric current flowing through<br />

the enclosed surface<br />

(e.g. plasma, plasma + vessel,<br />

external coils, passive<br />

conductors, Halo Currents, etc.)<br />

• The total flux linked by all turns is<br />

proportional to the contour<br />

integral:<br />

Φ Rog ~ B dl = μ 0 I<br />

• Signal is proportional to current<br />

time <strong>de</strong>rivative<br />

V = −Nμ 0 n A dI<br />

dt<br />

Author’s name | Place, Month xx, 2007 | Event<br />

18 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Integration of signals from<br />

inductive sensors<br />

• To obtain the fluxes and magnetic field values<br />

from inductive sensors we must integrate the<br />

signal in time:<br />

V out = − 1 τ<br />

V in dt = − Φ τ<br />

• Typical loop flux values vary from few mV.s to<br />

few V.s (eg. Iron core), so <strong>integrator</strong> circuits are<br />

used with τ equal to 1 ms to 1 s<br />

Simple Passive Integrator<br />

The approximation fails for timescales<br />

comparable to or longer than τ<br />

Author’s name | Place, Month xx, 2007 | Event<br />

19 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Active Integration<br />

V offset<br />

But now a new pratical problem:<br />

“Integrator drift”<br />

Exemple: for RC = 10ms a 100 μV offset<br />

integrates to a 0.1 V after 10 s<br />

The gain is similar to the passive<br />

<strong>integrator</strong> but now the timescale is<br />

increased for ~RC to ~G* RC ( 1 to 10 s)<br />

Feedback<br />

Filter<br />

Basic compensation circuit<br />

Author’s name | Place, Month xx, 2007 | Event<br />

20 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Pick Up Coil<br />

Advanced Analog Integrators<br />

Automatic drift-compensation: Measurement<br />

of drift before integration, store and<br />

compensate offset during integration<br />

Drift can be reduced down to<br />

several 0.1mVs / 1000s<br />

Reset<br />

But worse values if signal<br />

is applied during drift<br />

compensation!<br />

Common mo<strong>de</strong> rejection<br />

Asymmetric input!<br />

-<br />

+<br />

S/H<br />

ADC<br />

Drift achieved in Tore Supra:<br />

< 135 μVs / 1000 s<br />

Auto Offset Correction<br />

Author’s name | Place, Month xx, 2007 | Event<br />

21 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Pick Up Coil<br />

Digital (chopper) <strong>integrator</strong><br />

Clock<br />

ADC<br />

Digital Input<br />

Chopper<br />

Num. Rectifier<br />

+ Integration<br />

Amp<br />

ADC<br />

AC coupling allowed!<br />

• Dynamic range limited by input stage<br />

• Not affected by input stage semiconductors<br />

• No 1/f noise<br />

• Complex offset correction algorithms feasible<br />

• Very simple consumer electronics!<br />

Author’s name | Place, Month xx, 2007 | Event<br />

22 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Pick Up Coil<br />

W-7X prototype Integrator schematic<br />

Low pass<br />

(avoid resistors,<br />

huge thermovoltage)<br />

1<br />

2<br />

Clock<br />

Butterworth low pass,<br />

removes spikes by charge injection<br />

2<br />

1<br />

-<br />

+<br />

+<br />

1<br />

2<br />

+<br />

-<br />

-<br />

Input Chopper<br />

Symmetric chopper stage based<br />

on CMOS switch MAX4644<br />

R on < 3Ω<br />

Instrumentation<br />

Amplifier<br />

Clock<br />

USB Power Supply<br />

Low charge injection<br />

Prototype (still in use)<br />

23 B. Carvalho| Lisbon, February 2, 2010 | Author’s Diagnostics name | Place, & Data Month Acquisition xx, 2007 | Event


W-7X prototype Integrator drift<br />

• 100 s drift<br />

compensation<br />

• 1000 s run<br />

“Cold Integrator”<br />

• Drift:<br />

< 70 μVs / 1000 s<br />

Author’s name | Place, Month xx, 2007 | Event<br />

24 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Diagnostics with non-Integrated<br />

signal from Inductive probes<br />

• Vertical Speed of Plasma current centroid<br />

– Linear combinations of flux and field probes<br />

– Used as controllabe variables for active control<br />

• MHD Instabilities <strong>de</strong>tection and control<br />

– “Mirnov coils”, poloidal or toroidal arrays of<br />

probes oriented to measure poloidal<br />

component, insi<strong>de</strong> the vacuum vessel<br />

Differential connection of<br />

magnetic probes, for<br />

<strong>de</strong>tection of nonrotating<br />

MHD mo<strong>de</strong>s or .<br />

Array of 12 Mirnov Coils in<br />

ISTTOK<br />

Author’s name | Place, Month xx, 2007 | Event<br />

25 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


MHD Instabilities diagnostics<br />

• Analyses Techniques:<br />

– Spectrogram (Fourier analysis of sucessive<br />

short-time windows<br />

Spectrogram of magnetic probe signals in JET, showing the time<br />

evolution of the amplitu<strong>de</strong>s and frequencies of several tearing<br />

mo<strong>de</strong>s.<br />

26 B. Carvalho| Lisbon, February 2, 2010 | Author’s Diagnostics name | Place, & Data Month Acquisition xx, 2007 | Event


MHD Instabilities diagnostics:<br />

Other techniques<br />

• Wavelet analysis<br />

• Hilbert transform<br />

• Singular Value Decomposition (SVD)<br />

Experimental data from T-10 shot no.<br />

21576:<br />

(a) Hilbert spectrum;<br />

(b) Spectrogram<br />

(c) wavelet scalogram.<br />

a)<br />

c)<br />

b)<br />

Author’s name | Place, Month xx, 2007 | Event<br />

27 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


MHD mo<strong>de</strong> <strong>de</strong>tection<br />

• Mo<strong>de</strong> number are <strong>de</strong>termined by the<br />

phase shift, (by Fourier Analysis) between<br />

equally or varied separated Mirnov coils<br />

I<strong>de</strong>ntification of the mo<strong>de</strong> number<br />

and polarization of a compressional<br />

I<strong>de</strong>ntification of poloidal mo<strong>de</strong><br />

Alfvén eigenmo<strong>de</strong> in NSTX,<br />

number m=4 for a tearing<br />

showing phase shift and amplitu<strong>de</strong><br />

mo<strong>de</strong> in TFTR, showing the<br />

versus toroidal angle.<br />

phase shift of Mirnov loop<br />

The phase shift between toroidally<br />

separated coils gives a toroidal<br />

signals versus poloidal angle.<br />

mo<strong>de</strong> number n = 7<br />

28 B. Carvalho| Lisbon, February 2, 2010 | Author’s Diagnostics name | Place, & Data Month Acquisition xx, 2007 | Event


Nonrotating Mo<strong>de</strong>s<br />

• Nonrotating mo<strong>de</strong>s are most<br />

commonly <strong>de</strong>tected with toroidal<br />

arrays of saddle coils (loops<br />

oriented to measure the radial<br />

field)<br />

– Low frequencies involved and the<br />

field perturbation of the mo<strong>de</strong><br />

penetrates the vacuum vessel<br />

Time evolution of an RWM in<br />

JT-60U, showing contours of<br />

the time <strong>de</strong>rivative of the<br />

radial field perturbation<br />

measured with a uniformly<br />

spaced toroidal array of eight<br />

saddle coils<br />

Author’s name | Place, Month xx, 2007 | Event<br />

29 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Non Inductive Sensors<br />

• Hall Probes<br />

– relatively simple and inexpensive<br />

• Resistive Shunts<br />

– measuring “halo” currents flowing between the plasma and<br />

plasma-facing components<br />

• Faraday rotation current measurements<br />

Example of Hall<br />

Probe for ITER<br />

V H = 1 I B<br />

qn a<br />

Schematic overview of a fiber-optic<br />

Schematic figure of a Hall probe in a Hall coefficient, is a Faraday rotation measurement<br />

magnetic field B,<br />

property of the <strong>de</strong>vice, to be used for the<br />

with I the injected current and V H the material<br />

measurement of the plasma current<br />

resulting Hall<br />

in ITER<br />

30 voltage.<br />

B. Carvalho| Lisbon, February 2, 2010 | Author’s Diagnostics name | Place, & Data Month Acquisition xx, 2007 | Event


Burning plasma experiments/ITER<br />

ITER will be the burning plasma experiment where<br />

all the knowledge on burning plasma diagnostics<br />

will converge<br />

Relative to existing machines, on ITER diagnostic<br />

components will be subjected to (relative to JET)<br />

• High neutron and gamma fluxes (up to x10)<br />

•Neutron heating (essentially zero)<br />

•High fluxes of energetic neutral particles<br />

from charge-exchange processes (up to x5)<br />

•Long pulse lengths (up to x100)<br />

•High neutron fluence (>10 6 !)<br />

Author’s name | Place, Month xx, 2007 | Event<br />

31 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


ITER diagnostics<br />

Functional requirements<br />

“to provi<strong>de</strong> accurate measurements of plasma behaviour and<br />

performance.”<br />

3 categories of measurement parameters<br />

• Group 1 Machine protection and Basic machine control<br />

(machine operation unable without this group)<br />

• Group 1b advanced plasma control<br />

(machine advanced operation unable without this group)<br />

• Group 2 evaluation and physics studies<br />

(machine operation able without this group)<br />

Author’s name | Place, Month xx, 2007 | Event<br />

32 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Magnetic Diagnostic Set for ITER<br />

Total :<br />

Location n g Type Number<br />

In-vessel sensors:<br />

Behind blanket<br />

modules, fixed on<br />

VV inner skin<br />

Divertor<br />

Ex-vessel sensors<br />

Fixed on VV outer<br />

skin<br />

Insi<strong>de</strong> TFC case<br />

(T=4K)<br />

Radiation/Dose<br />

(cm -2 s -1 ) / MGy<br />

3. 10 12<br />

Pick-up coils 186<br />

Rogowski<br />

(halo current)<br />

360<br />

Flux loops 220<br />

High freq<br />

coils<br />

>300<br />

Pick-up coils 72<br />

Rogowski<br />

(halo current)<br />

48<br />

Pick-up coils 360<br />

Steady state<br />

sensors<br />

120<br />

Flux loops 5<br />

Author’s name | Place, Month xx, 2007 | Event<br />

33 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition<br />

500<br />

1. 10 13<br />

1700<br />

1. 10 13<br />

1700<br />

1.5 10 10<br />

2.5<br />

1. 10 10<br />

1.7<br />

1. 10 12<br />

340<br />

3. 10 12<br />

1000<br />

3. 10 12<br />

1000<br />

1. 10 10<br />

3.4<br />

2. 10 9<br />

0.7<br />

Optic fibre 12<br />

Rogowski<br />

(I plasma)<br />

3<br />

~ 1700 sensors, 19 types, >300km of cable


ITER Magnetic Poloidal Set<br />

Author’s name | Place, Month xx, 2007 | Event<br />

34 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


MHD saddle loops mounted on<br />

all 9 machine sectors, ma<strong>de</strong> from<br />

mineral insulated (MI) cable<br />

Author’s name | Place, Month xx, 2007 | Event<br />

35 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Main Technogical Chalenges<br />

• Long plasma pulse length (400s – 3000s):<br />

• Integrator Drift and induced EMF Issues<br />

• Radiation Effects- Prompt:<br />

• RIC - Radiation Induced Conductivity<br />

• Loads the signal during the pulse. Can be mitigated by choice of<br />

material<br />

• RIEMF - Radiation induced electromotive force<br />

• Both neutrons and gammas, induces currents between the sensor wire<br />

and its surroundings. The typical magnitu<strong>de</strong> is in the range 0.1-10 V<br />

• RIED- Radiation induced electrical <strong>de</strong>gradation<br />

• The insulator material, including impurity content, is important and even<br />

different samples of the same material can behave differently<br />

• TIEMF - Thermally induced electromotive force<br />

• Produces a non-zero thermo-electric EMF due to manufacturing<br />

imperfections<br />

Author’s name | Place, Month xx, 2007 | Event<br />

36 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Main Technological Chalenges<br />

• Radiation Effects- Long Term:<br />

• RIED- Radiation Induced electrical <strong>de</strong>gradation<br />

• The insulator material, including impurity content, is<br />

important and even different samples of the same<br />

material can behave differently<br />

• RITES - Radiation Induced ThermoElectric Sensivity<br />

• <strong>Nuclear</strong> heating supplies the temperature differences<br />

• Variety of effects can supply the material propety<br />

changes that generate themocouples<br />

• Installation and Integration problems<br />

• Design qualified for the machine lifetime > 20 years<br />

Author’s name | Place, Month xx, 2007 | Event<br />

37 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition


Author’s name | Place, Month xx, 2007 | Event<br />

38 B. Carvalho| Lisbon, February 2, 2010 | Diagnostics & Data Acquisition

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!