14.11.2012 Views

Seed priming to improve germination and seedling growth of ...

Seed priming to improve germination and seedling growth of ...

Seed priming to improve germination and seedling growth of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

INTRODUCTION<br />

EurAsian Journal <strong>of</strong> BioSciences<br />

Eurasia J Biosci 6, 76-84 (2012)<br />

DOI:10.5053/ejobios.2012.6.0.9<br />

<strong>Seed</strong> <strong>priming</strong> <strong>to</strong> <strong>improve</strong> <strong>germination</strong> <strong>and</strong> <strong>seedling</strong><br />

<strong>growth</strong> <strong>of</strong> safflower (Carthamus tinc<strong>to</strong>rius) under<br />

salt stress<br />

Mohamed Aymen Elouaer*, Cherif Hannachi<br />

Department <strong>of</strong> Horticultural Sciences, High Institute <strong>of</strong> Agronomy, 4042 Chott-Mariem, Tunisia<br />

*Corresponding author: aymenouaer@gmail.com<br />

Abstract<br />

Background: Salinity affect <strong>germination</strong> <strong>and</strong> <strong>seedling</strong> <strong>growth</strong> <strong>of</strong> several crop species, many<br />

techniques are used <strong>to</strong> <strong>improve</strong> <strong>to</strong>lerance <strong>and</strong> development <strong>of</strong> plants. Priming is an effective<br />

technique that <strong>improve</strong>s <strong>germination</strong> <strong>of</strong> several vegetables crop under saline condition. That’s why,<br />

this experiment was carried <strong>to</strong> study the effect <strong>of</strong> seed <strong>priming</strong> with 5 g/L NaCl <strong>and</strong> KCl on<br />

<strong>germination</strong> <strong>and</strong> <strong>seedling</strong>s <strong>growth</strong> <strong>of</strong> safflower (Carthamus tinc<strong>to</strong>rius) exposed <strong>to</strong> five levels <strong>of</strong><br />

salinity (0, 5, 10, 15 <strong>and</strong> 20 g/L).<br />

Materials <strong>and</strong> Methods: Safflower seeds were soaked in solutions <strong>of</strong> NaCl (5 g/L for 12 h) <strong>and</strong> KCl<br />

(5 g/L for 24 h) at 20°C. Primed <strong>and</strong> non primed seeds were put <strong>to</strong> germinate in petri dishes <strong>and</strong><br />

irrigated with saline solutions <strong>of</strong> five concentrations <strong>of</strong> NaCl (0, 5, 10, 15 <strong>and</strong> 20 g/L).<br />

Results: NaCl <strong>and</strong> KCl <strong>priming</strong> have <strong>improve</strong>d <strong>germination</strong> parameters (<strong>germination</strong> percentage,<br />

mean <strong>germination</strong> time, <strong>germination</strong> index <strong>and</strong> coefficient <strong>of</strong> velocity) <strong>and</strong> <strong>growth</strong> parameters<br />

(radicle <strong>and</strong> <strong>seedling</strong> length, <strong>seedling</strong> fresh <strong>and</strong> dry weight <strong>and</strong> Vigour Index) <strong>of</strong> safflower under<br />

saline condition.<br />

Conclusions: The present study revealed that, under salt stress, NaCl <strong>and</strong> KCl <strong>priming</strong> could be used<br />

as a method <strong>to</strong> <strong>improve</strong> safflower seed <strong>germination</strong>. However, further studies are needed <strong>to</strong><br />

highlight effects <strong>of</strong> NaCl <strong>and</strong> KCl seed <strong>priming</strong> on future <strong>growth</strong> <strong>and</strong> development <strong>of</strong> the culture.<br />

Keywords: Carthamus tinc<strong>to</strong>rius, <strong>germination</strong>, <strong>priming</strong>, salinity, <strong>seedling</strong> <strong>growth</strong>.<br />

Abbreviations: CV, Coefficient <strong>of</strong> Velocity; GI, Germination Index; MGT, Mean Germination Time; RL, Radicle<br />

Length; SDW, <strong>Seed</strong>ling Dry Weight; SFW, <strong>Seed</strong>ling Fresh Weight; SL, <strong>Seed</strong>ling Length; TG, Total Germination; VI,<br />

Vigor Index.<br />

Elouaer MA, Hannachi C (2012) <strong>Seed</strong> <strong>priming</strong> <strong>to</strong> <strong>improve</strong> <strong>germination</strong> <strong>and</strong> <strong>seedling</strong> <strong>growth</strong> <strong>of</strong><br />

safflower (Carthamus tinc<strong>to</strong>rius) under salt stress. Eurasia J Biosci 6: 76-84.<br />

DOI:10.5053/ejobios.2012.6.0.9<br />

Salinity has an adverse effect on seed<br />

<strong>germination</strong> <strong>of</strong> several vegetables crops, by creating<br />

an osmotic potential outside the seed inhibiting the<br />

absorption <strong>of</strong> water, or by the <strong>to</strong>xic effect <strong>of</strong> Na + <strong>and</strong><br />

Cl- (Khajeh-Hosseini et al. 2003). Osmotic <strong>and</strong> saline<br />

stresses are responsible <strong>of</strong> the inhibition <strong>and</strong> delay<br />

<strong>of</strong> <strong>germination</strong> <strong>and</strong> plant <strong>growth</strong> (Almansouri et al.<br />

2001). Water uptake during the imbibition’s phase<br />

decreases <strong>and</strong> salinity induces an excessive<br />

absorption <strong>of</strong> <strong>to</strong>xic ions in the seed (Murillo-Amador<br />

et al. 2002). Priming <strong>improve</strong>s <strong>germination</strong> <strong>and</strong><br />

emergence <strong>of</strong> several seed species (Singh 1995). This<br />

approach has proven it’s effectiveness <strong>to</strong> <strong>improve</strong><br />

crop establishment on saline soil (Ashraf et al. 2001,<br />

Basra et al. 2005). Cayuela et al. (1996) working on<br />

<strong>to</strong>ma<strong>to</strong>es, Pill et al. (1991) working on asparagus <strong>and</strong><br />

<strong>to</strong>ma<strong>to</strong>es, Passam <strong>and</strong> Kakouriotis (1994) working<br />

© EurAsian Journal <strong>of</strong> BioSciences<br />

on cucumber have concluded that <strong>priming</strong> <strong>improve</strong>s<br />

seed <strong>germination</strong> <strong>and</strong> plant <strong>growth</strong> under saline<br />

condition. Sivritepe et al. (2003) have reported that<br />

NaCl seed <strong>priming</strong> <strong>of</strong> melon increases the<br />

emergence level <strong>and</strong> dry weight <strong>of</strong> plants under<br />

saline condition. Safflower is a moderately <strong>to</strong>lerant<br />

species <strong>to</strong> salinity (Maas 1986), however, it was<br />

reported that the crop is sensitive <strong>to</strong> salinity during<br />

<strong>germination</strong> phases affecting its <strong>growth</strong> <strong>and</strong> future<br />

development (François <strong>and</strong> Bernstein 1964). For this<br />

reason, this study attempt <strong>to</strong> investigate the<br />

<strong>germination</strong> behaviour <strong>of</strong> safflower seed <strong>and</strong> <strong>to</strong><br />

highlight the effect <strong>of</strong> <strong>priming</strong> on <strong>germination</strong> <strong>and</strong><br />

<strong>seedling</strong> <strong>growth</strong> under salt stress.<br />

Received: February 2012<br />

Accepted: July 2012<br />

Printed: August 2012<br />

76


EurAsian Journal <strong>of</strong> BioSciences 6: 76-84 (2012)<br />

Germination experiment was conducted in the<br />

labora<strong>to</strong>ry <strong>of</strong> High Institute <strong>of</strong> Agriculture Chatt<br />

Mariem, Tunisia. Safflower seeds were primed with 5<br />

g/L NaCl <strong>and</strong> KCl solutions for 12 <strong>and</strong> 24 h<br />

respectively, at 20°C. After <strong>priming</strong>, seeds were<br />

washed with distilled water <strong>and</strong> than left <strong>to</strong> dry in air<br />

between two filter papers. Primed <strong>and</strong> non-primed<br />

seeds were placed in 9 cm petri dishes on a layer <strong>of</strong><br />

filter paper (Whatman # 41). Twenty seeds were<br />

placed in each Petri dish. Petri dishes were irrigated<br />

with five different saline solutions consisted <strong>of</strong> 0, 5,<br />

10, 15 <strong>and</strong> 20 g/L concentrations <strong>of</strong> NaCl. The Petri<br />

dishes were placed in germina<strong>to</strong>r at 20°C. The<br />

experiment was a fac<strong>to</strong>rial with two fac<strong>to</strong>rs which<br />

are salinity at 5 levels (0, 5, 10, 15 <strong>and</strong> 20 g/L) <strong>and</strong><br />

<strong>priming</strong> with 3 levels (non primed seeds (control),<br />

NaCl <strong>priming</strong>, KCl <strong>priming</strong>), arranged in a completely<br />

r<strong>and</strong>omized design with five replications <strong>and</strong> 20<br />

seeds per replicate. <strong>Seed</strong> <strong>germination</strong> was recorded<br />

daily up <strong>to</strong> day 7 after the start <strong>of</strong> the experiment. A<br />

seed was considered germinated when the radicle<br />

emerged by about 2 mm in length.<br />

Parameters measured in this experiment were:<br />

• Total <strong>germination</strong> (TG) measured in the seventh<br />

day using the formula TG (%)= (<strong>to</strong>tal number <strong>of</strong><br />

germinated seeds/ <strong>to</strong>tal seed) x 100.<br />

• Mean <strong>germination</strong> time (MGT) calculated<br />

according the formula <strong>of</strong> Ellis <strong>and</strong> Roberts (1981).<br />

MGT= ∑ (ni/di). With ni: number <strong>of</strong> germinated seeds<br />

<strong>and</strong> di: day <strong>of</strong> counting.<br />

• Germination index (GI) according <strong>to</strong> the<br />

equation <strong>of</strong> Kader <strong>and</strong> Jutzi (2004). GI= ∑(TiNi). Ti:<br />

number <strong>of</strong> day after sowing <strong>and</strong> Ni: number <strong>of</strong><br />

germinated seeds in the day.<br />

• Coefficient <strong>of</strong> velocity (CV)= (number <strong>of</strong><br />

germinated seeds per day) according <strong>to</strong> Kader <strong>and</strong><br />

Jutzi (2004) formula. CV= (∑Ni /100) x (∑ Ti Ni).<br />

• <strong>Seed</strong>ling length (SL) in (mm), Radicle length (RL)<br />

in (mm), <strong>Seed</strong>ling fresh weight (SFW), <strong>Seed</strong>ling dry<br />

weight (SDW). <strong>Seed</strong>ling dry weight was determined<br />

after placing <strong>seedling</strong>s, after the 7th day, in oven <strong>to</strong><br />

dry at 70°C for 48 h.<br />

• Vigour Index (VI) using the formula <strong>of</strong> Abdul-<br />

Baki <strong>and</strong> Anderson (1970). VI= [TG (%) x <strong>seedling</strong>s<br />

length (mm)]/100.<br />

77<br />

MATERIALS AND METHODS<br />

Elouaer <strong>and</strong> Hannachi<br />

All the data were subjected <strong>to</strong> an analysis <strong>of</strong><br />

variance, using SPSS 13.0 s<strong>of</strong>tware <strong>and</strong> the<br />

difference between means were compared by<br />

Duncan tests (P


EurAsian Journal <strong>of</strong> BioSciences 6: 76-84 (2012)<br />

Table 1. Analyses <strong>of</strong> variance <strong>of</strong> different parameters.<br />

*Significant at 0.05 according <strong>to</strong> Duncan test<br />

Table 2. Means comparison <strong>of</strong> the traits for primed <strong>and</strong> non-primed seeds <strong>of</strong> safflower.<br />

*Means with the same letters in each column are not significantly different at 0.05 according <strong>to</strong> Duncan test<br />

Table 3. Means comparison <strong>of</strong> the traits under different salinity levels.<br />

*Means with the same letters in each column are not significantly different at 0.05 according <strong>to</strong> Duncan test<br />

Results showed that salinity significantly (P


EurAsian Journal <strong>of</strong> BioSciences 6: 76-84 (2012)<br />

Fig. 1. Effect <strong>of</strong> different salinity levels on <strong>germination</strong><br />

percentage (a) <strong>and</strong> mean <strong>germination</strong> time (b) <strong>of</strong> primed<br />

(NaCl <strong>and</strong> KCl) <strong>and</strong> non-primed (control) seeds <strong>of</strong> safflower.<br />

seeds, when exposed <strong>to</strong> salinity stress.<br />

Increasing salinity causes a significant decrease<br />

(P


EurAsian Journal <strong>of</strong> BioSciences 6: 76-84 (2012)<br />

Fig. 3. Effect <strong>of</strong> different salinity levels on <strong>seedling</strong> <strong>and</strong><br />

radicle length <strong>of</strong> primed (NaCl <strong>and</strong> KCl) <strong>and</strong> non-primed<br />

(control) seeds <strong>of</strong> safflower.<br />

g/L <strong>to</strong> reach 0.84 g at 20 g/L (Table 2). However, primed<br />

seed showed the better performance than nonprimed<br />

seeds. Data in Table 3 shows that NaCl seed<br />

<strong>priming</strong> enhanced safflower <strong>seedling</strong> fresh <strong>and</strong> dry<br />

weight <strong>of</strong> about 83.38% <strong>and</strong> 71.42% respectively as<br />

compared <strong>to</strong> control (Fig. 4). This value was significantly<br />

higher for NaCl seed <strong>priming</strong> (2.09 g) <strong>and</strong> KCl<br />

seed <strong>priming</strong> (1.89 g) than control seeds (1.68 g).<br />

DISCUSSION<br />

The present study has investigated the effect <strong>of</strong><br />

salinity <strong>and</strong> seed <strong>priming</strong> on <strong>germination</strong> <strong>and</strong><br />

<strong>seedling</strong> <strong>growth</strong> <strong>of</strong> safflower. Data showed that<br />

salinity had significantly affected safflower<br />

<strong>germination</strong>. This study demonstrated that<br />

<strong>germination</strong> recorded from primed seeds were<br />

significantly different from un-primed seeds when<br />

exposed <strong>to</strong> different salinity levels. Similar findings<br />

Elouaer <strong>and</strong> Hannachi<br />

Fig. 4. Effect <strong>of</strong> different salinity levels on <strong>seedling</strong> fresh<br />

<strong>and</strong> dry weight <strong>of</strong> primed (NaCl <strong>and</strong> KCl) <strong>and</strong> non-primed<br />

(control) seeds <strong>of</strong> safflower.<br />

were reported by Kaya et al. (2006). Primed seeds<br />

had better efficiency for water absorption from<br />

growing media, that’s why metabolic activities in<br />

seed during <strong>germination</strong> process commence much<br />

earlier than radicle <strong>and</strong> plumule appearance (Hopper<br />

et al. 1979). In general, increasing salinity causes a<br />

decrease in safflower <strong>germination</strong>; this may be due<br />

<strong>to</strong> the <strong>to</strong>xic effects <strong>of</strong> Na + <strong>and</strong> Cl - in the process <strong>of</strong><br />

<strong>germination</strong> (Khajeh-Hosseini et al. 2003). It seems<br />

also that, salinity stress affects seed <strong>germination</strong> via<br />

the limitation <strong>of</strong> seed water absorption (Dodd <strong>and</strong><br />

Donovan 1999), excessive use <strong>of</strong> nutrient pool<br />

(Bouaziz <strong>and</strong> Hicks 1990) <strong>and</strong> creation <strong>of</strong> disorders in<br />

protein synthesis. Mean <strong>germination</strong> time increased<br />

significantly with increasing salinity. NaCl <strong>and</strong> KCl<br />

primed safflower seeds germinated earlier than unprimed<br />

ones as it has been reported by Ashraf <strong>and</strong><br />

Rauf (2001) working with other <strong>priming</strong> treatments,<br />

such as polyethylene glycol (PEG), inorganic salts or<br />

80


EurAsian Journal <strong>of</strong> BioSciences 6: 76-84 (2012)<br />

even ABA. According <strong>to</strong> Bewley <strong>and</strong> Black (1982),<br />

seed <strong>priming</strong> leads <strong>to</strong> the initiation <strong>of</strong> primary<br />

metabolic processes, so the time required for<br />

<strong>germination</strong> is reduced. This positive effect is<br />

probably due <strong>to</strong> the stimula<strong>to</strong>ry effect <strong>of</strong> <strong>priming</strong> on<br />

later stages <strong>of</strong> the <strong>germination</strong> process through the<br />

mediation <strong>of</strong> cell division in germinated seeds<br />

(Sivritepe et al. 2003). Argerich <strong>and</strong> Bradford (1989)<br />

found that the swelling <strong>of</strong> the embryo inside primed<br />

<strong>to</strong>ma<strong>to</strong> seed may speed up <strong>germination</strong> by<br />

facilitating water absorption. Indeed, the <strong>priming</strong> is<br />

an effective technique that increases seed vigor <strong>and</strong><br />

<strong>improve</strong>s <strong>germination</strong> <strong>and</strong> <strong>seedling</strong> <strong>growth</strong><br />

(Jumsoon et al. 1996). Results found in our trial were<br />

consistent with the research work in this area.<br />

Several studies have shown that seed <strong>priming</strong><br />

homogenized seed <strong>germination</strong> in a short period <strong>of</strong><br />

time (Khajeh-Hosseini et al. 2003). The maximum<br />

coefficient <strong>of</strong> velocity <strong>of</strong> <strong>germination</strong> were found in<br />

the low salinity treatment <strong>and</strong> decreased with<br />

increasing salinity. Similar results were reported by<br />

Okcu et al. (2005).<br />

The findings <strong>of</strong> Ruan et al. (2002a) demonstrated<br />

that <strong>priming</strong> the rice seed with KCl <strong>and</strong> CaCl2 had<br />

<strong>improve</strong>d results for <strong>germination</strong> index. Greater<br />

efficiency <strong>of</strong> seed <strong>priming</strong> with KCl is possibly<br />

related <strong>to</strong> the osmotic advantage that K + has in<br />

improving cell water saturation, <strong>and</strong> that they act as<br />

co-fac<strong>to</strong>rs in the activities <strong>of</strong> numerous enzymes<br />

(Taiz <strong>and</strong> Zeiger 2002).<br />

In the present study, salt stress causes a<br />

significant reduction in <strong>seedling</strong> <strong>and</strong> radicle length,<br />

<strong>seedling</strong>s fresh <strong>and</strong> dry weight <strong>and</strong> vigor index.<br />

Reduction in <strong>seedling</strong> <strong>growth</strong> as a result <strong>of</strong> salt<br />

stress has been reported in several others species<br />

(Achakzai et al. 2010, Akram et al. 2010). Salinity has<br />

both osmotic <strong>and</strong> specific ionic effects on <strong>seedling</strong>s<br />

<strong>growth</strong> (Dioniso-Sese <strong>and</strong> Tobita 2000). Similarly,<br />

<strong>to</strong>xic ion accumulation (Na + <strong>and</strong> Cl - ) negatively affect<br />

plant metabolism (Grieve <strong>and</strong> Fujiyama 1987). It has<br />

also been reported that salinity suppresses the<br />

uptake <strong>of</strong> essential nutrients like P <strong>and</strong> K (Nasim et<br />

al. 2008), which could adversely affect <strong>seedling</strong>s<br />

<strong>growth</strong>. Cicek <strong>and</strong> Cakirlar (2002) have reported that<br />

salinity reduced shoot length, fresh <strong>and</strong> dry weight<br />

<strong>of</strong> maize <strong>seedling</strong>s. Result indicated that seed<br />

81<br />

Elouaer <strong>and</strong> Hannachi<br />

<strong>priming</strong> significantly <strong>improve</strong>d safflower <strong>seedling</strong><br />

<strong>growth</strong> at different salinity level. Similarly, Katembe<br />

et al. (1998) investigated the effect <strong>of</strong> seed <strong>priming</strong><br />

as a method <strong>to</strong> <strong>improve</strong> <strong>seedling</strong> <strong>growth</strong> <strong>of</strong> two<br />

Atriplex species under salt stress. Significant<br />

<strong>improve</strong>ment in root <strong>and</strong> shoot length may be<br />

attributed <strong>to</strong> earlier <strong>germination</strong> induced by primed<br />

over un-primed seeds (Farooq et al. 2005), which<br />

resulted in vigorous <strong>seedling</strong>s with more root <strong>and</strong><br />

shoot length than the <strong>seedling</strong>s from un-primed<br />

seeds. Our results confirm the findings <strong>of</strong> S<strong>to</strong>fella et<br />

al. (1992), who reported that <strong>priming</strong> <strong>of</strong> pepper<br />

seeds significantly <strong>improve</strong>d radicle length.<br />

In our study, <strong>seedling</strong> fresh <strong>and</strong> dry weights<br />

decreased linearly with increasing salinity. The same<br />

results were also obtained by other researchers<br />

(Mansour et al. 2005). Increased <strong>seedling</strong> fresh <strong>and</strong><br />

dry weight in primed seeds over the un-primed<br />

seeds were also observed by Sivritepe et al. (2003)<br />

who reported an increase in <strong>seedling</strong> dry weight in<br />

NaCl primed melons seeds under saline conditions as<br />

compared <strong>to</strong> the un-primed seeds. <strong>Seed</strong> <strong>priming</strong><br />

<strong>improve</strong> significantly safflower vigor index under<br />

saline conditions. Similar results were found by Ruan<br />

et al. (2002b) who reported that primed rice seeds<br />

showed higher vigor index than non-primed ones.<br />

It is clear from these results that <strong>priming</strong> <strong>improve</strong>s<br />

<strong>germination</strong> <strong>and</strong> <strong>growth</strong> <strong>of</strong> many crops. In this<br />

present study, safflower seed showed differential<br />

response <strong>to</strong> salinity <strong>and</strong> <strong>priming</strong> treatments. Reduction<br />

in <strong>germination</strong> parameters <strong>and</strong> <strong>seedling</strong> <strong>growth</strong><br />

was more pr<strong>of</strong>ound in control seeds than primed<br />

seeds. NaCl <strong>and</strong> KCl seed <strong>priming</strong> increase <strong>germination</strong><br />

<strong>of</strong> safflower seeds. Thus, the <strong>priming</strong> may be an<br />

effective method <strong>to</strong> meet the dem<strong>and</strong>s <strong>of</strong> farmers<br />

during the installation <strong>of</strong> the culture in the field <strong>and</strong><br />

especially in conditions <strong>of</strong> salt stress. For this reason,<br />

further studies are needed <strong>to</strong> assess the efficacity <strong>of</strong><br />

seed <strong>priming</strong> during the later stages <strong>of</strong> the culture.<br />

ACKNOWLEDGEMENTS<br />

This work was supported by the High Institute <strong>of</strong><br />

Agriculture, Chatt Mariem <strong>and</strong> Department <strong>of</strong><br />

Horticultural sciences <strong>of</strong> the university; we wish <strong>to</strong><br />

thanks all staff for their technical assistance.


EurAsian Journal <strong>of</strong> BioSciences 6: 76-84 (2012)<br />

REFERENCES<br />

Elouaer <strong>and</strong> Hannachi<br />

Abdul-Baki AA, Anderson JD (1970) Viability <strong>and</strong> leaching <strong>of</strong> sugars from germinating barley. Crop Science 10: 31-34.<br />

Achakzai AK, Kayani SA, Hanif Z (2010) Effect <strong>of</strong> salinity on uptake <strong>of</strong> micronutrients in sunflower at early <strong>growth</strong> stage.<br />

Pakistan Journal <strong>of</strong> Botany 42: 129-139.<br />

Akram M, Ashraf MY, Ahmad R, Waraich EA, Iqbal J, Mohsan M (2010) Screening for salt <strong>to</strong>lerance in maize (Zea mays<br />

L.) hybrids at an early stage. Pakistan Journal <strong>of</strong> Botany 42: 141-151.<br />

Almansouri M, Kinet JM, Lutts S (2001) Effect <strong>of</strong> salt <strong>and</strong> osmotic stresses on <strong>germination</strong> in durum wheat (Triticum<br />

durum). Plant <strong>and</strong> Soil 231: 243-254. doi:10.1023/A:1010378409663<br />

Argerich CA, Bradford KJ (1989) The effects <strong>of</strong> <strong>priming</strong> <strong>and</strong> ageing on seed vigour in <strong>to</strong>ma<strong>to</strong>. Journal <strong>of</strong> Experimental<br />

Botany 40: 599-607. doi:10.1093/jxb/40.5.599<br />

Ashraf M, Rauf H (2001) Inducing salt <strong>to</strong>lerance in maize (Zea mays) thorugh seed <strong>priming</strong> with chloride salts: Growth<br />

<strong>and</strong> ion transport at early <strong>growth</strong> stages. Acta Physiologiae Plantarum 23: 407-414. doi:10.1007/s11738-001-0050-<br />

9<br />

Ashraf M, Qureshi AS, Ghafoor A, Khan NA (2001) Genotype-environment interaction in wheat. Asian Journal <strong>of</strong><br />

Biological Sciences 1: 356-367.<br />

Basra SMA, Afzal I, Rashid RA, Hameed A (2005) Inducing salt <strong>to</strong>lerance in wheat by seed vigor enhancement<br />

techniques. International Journal <strong>of</strong> Biotechnology <strong>and</strong> Biology 1: 173-179.<br />

Bewley JD, Black M (1982) Physiology <strong>and</strong> Biochemistry <strong>of</strong> <strong>Seed</strong>s in Relation <strong>to</strong> Germination. Vol. 2, Viability, Dormancy<br />

<strong>and</strong> Environmental Control, Springer-Verlag, Berlin.<br />

Bouaziz A, Hicks DR (1990) Consumption <strong>of</strong> wheat seed reserves during <strong>germination</strong> <strong>and</strong> early <strong>growth</strong> as affected by<br />

soil water potential. Plant <strong>and</strong> Soil 128: 161-165. doi:10.1007/BF00011105<br />

Cayuela E, Perez-Alfocea F, Caro M, Bolarin MC (1996) Priming <strong>of</strong> seeds with NaCl induces physiological changes in<br />

<strong>to</strong>ma<strong>to</strong> plants grown under salt stress. Physiologia Plantarum 96:231-236. doi:10.1111/j.1399-3054.1996.tb00207.x<br />

Cicek N, Cakirlar H (2002) The effect <strong>of</strong> salinity on some physiological parameters in two maize cultivars. Bulgarian<br />

Journal <strong>of</strong> Plant Physiology 28: 66-74.<br />

Dioniso-Sese ML, Tobita S (2000) Effects <strong>of</strong> salinity on sodium content <strong>and</strong> pho<strong>to</strong>synthetic responses <strong>of</strong> rice <strong>seedling</strong>s<br />

differing in salt <strong>to</strong>lerance. Journal <strong>of</strong> Plant Physiology 157: 54-58. doi:10.1016/S0176-1617(00)80135-2<br />

Dodd GL, Donovan LA (1999) Water potential <strong>and</strong> ionic effects on <strong>germination</strong> <strong>and</strong> <strong>seedling</strong> <strong>growth</strong> <strong>of</strong> two cold desert<br />

shrubs. American Journal <strong>of</strong> Botany 86: 1146-1153.<br />

Ellis RA, Roberts EH (1981) The quantification <strong>of</strong> ageing <strong>and</strong> survival in orthodox seeds. <strong>Seed</strong> Science Technology 9:<br />

373-409.<br />

Farooq M, Basra SMA, Saleem BA, Nafees M, Chishti SA (2005) Enhancement <strong>of</strong> <strong>to</strong>ma<strong>to</strong> seed <strong>germination</strong> <strong>and</strong> <strong>seedling</strong><br />

vigour by osmo<strong>priming</strong>. Pakistan Journal <strong>of</strong> Agricultural Sciences 42(3-4): 36-41.<br />

François LE, Bernstein, L (1964) Salt <strong>to</strong>lerance <strong>of</strong> safflower. Agronomy Journal 54:38-40.<br />

Grieve C, Fujiyama MH (1987) The response <strong>of</strong> two rice cultivars <strong>to</strong> external Na + /Ca + ratio. Plant Soil 103: 345-250.<br />

Hopper NW, Overholt JR, Martin JR (1979) Effect <strong>of</strong> cultivar, temperature <strong>and</strong> seed size on the <strong>germination</strong> <strong>and</strong><br />

emergence <strong>of</strong> soybeans (Glycine max). Annals <strong>of</strong> Botany 44: 301-308.<br />

Jumsoon K, Jeuonlai C, Ywonok J (1996) Effect <strong>of</strong> seed <strong>priming</strong> on the germinability <strong>of</strong> <strong>to</strong>ma<strong>to</strong> (Lycopercicon esculentum<br />

Mill.) seeds under water <strong>and</strong> saline stress. Journal <strong>of</strong> Korean Society <strong>of</strong> Horticultural Sciences 37: 516-521.<br />

Kader MA, Jutzi SC (2004) Effects <strong>of</strong> thermal <strong>and</strong> salt treatments during imbibition on <strong>germination</strong> <strong>and</strong> <strong>seedling</strong> <strong>growth</strong><br />

<strong>of</strong> Sorghum at 42/19°C. Journal <strong>of</strong> Agronomy <strong>and</strong> Crop Science 190: 35-38. doi: 10.1046/j.0931-2250.2003.00071.x<br />

Katembe WJ, Ungar IA, Mitchell JP (1998) Effect <strong>of</strong> salinity on <strong>germination</strong> <strong>and</strong> <strong>seedling</strong> <strong>growth</strong> <strong>of</strong> two Atriplex species<br />

(Chenopodiaceae). Annals <strong>of</strong> Botany 82: 167-175.<br />

Kaya MD, Okgu G, Atak GY, Kolsarici O (2006) <strong>Seed</strong> treatments <strong>to</strong> overcome salt <strong>and</strong> drought stress during <strong>germination</strong><br />

in sunflower (Helianthus annuus L.). European Journal <strong>of</strong> Agronomy 24: 291-295. doi:10.1016/j.eja.2005.08.001<br />

Khajeh-Hosseini M, Powell AA, Bimgham IJ (2003) The interaction between salinity stress <strong>and</strong> seed vigor during<br />

<strong>germination</strong> <strong>of</strong> soybean seeds. <strong>Seed</strong> Science Technology 31: 715-725.<br />

Maas EV (1986) Salt <strong>to</strong>lerance <strong>of</strong> plants. Applied Agriculture Research 1: 12-26.<br />

Mansour MMF, Salama KHA, Ali FZM, Abou Hadid AF ( 2005) Cell <strong>and</strong> Plant Repsonses <strong>to</strong> NaCl in Zea mays L. Cultivars<br />

Differing in Salt Tolerance. General <strong>and</strong> Applied Plant Physiology 31(1-2): 29-41.<br />

82


EurAsian Journal <strong>of</strong> BioSciences 6: 76-84 (2012)<br />

83<br />

Elouaer <strong>and</strong> Hannachi<br />

Murillo-Amador B, Lopez-Aguilar R, Kaya C, Larrinaga-Mayoral J, Flores-Hern<strong>and</strong>ez A (2002) Comparative effects <strong>of</strong><br />

NaCl <strong>and</strong> polyethylene glycol on <strong>germination</strong>, emergence <strong>and</strong> <strong>seedling</strong> <strong>growth</strong> <strong>of</strong> cowpea. Journal <strong>of</strong> Agronomy<br />

<strong>and</strong> Crop Science 188: 235-247. doi:10.1046/j.1439-037X.2002.00563.x<br />

Nasim M, Qureshi R, Aziz T, Saqib M, Nawaz S, Sahi ST, Pervaiz S (2008) Growth <strong>and</strong> ionic composition <strong>of</strong> salt stressed<br />

Eucalyptus camaldulensis <strong>and</strong> Eucalyptus teretcornis. Pakistan Journal <strong>of</strong> Botany 40: 799-805.<br />

Okcu G, Demir M, Ataka M (2005) Effects <strong>of</strong> salt <strong>and</strong> drought stresses on <strong>germination</strong> <strong>and</strong> <strong>seedling</strong>s <strong>growth</strong> <strong>of</strong> pea<br />

(Pisum sativum L.). Turkish Journal <strong>of</strong> Agriculture 20: 237-242.<br />

Passam HC, Kakouriotis D (1994) The effects <strong>of</strong> osmoconditioning on the <strong>germination</strong>, emergence <strong>and</strong> early plant<br />

<strong>growth</strong> <strong>of</strong> cucumber under saline conditions. Scientia Horticulturae 57(3): 233-240. doi:10.1016/0304-<br />

4238(94)90143-0<br />

Pill WG, Frett JJ, Morneau DC (1991) Germination <strong>and</strong> <strong>seedling</strong> emergence <strong>of</strong> primed <strong>to</strong>ma<strong>to</strong> <strong>and</strong> asparagus seeds<br />

under advers conditions. Horticultural Science 26: 1160-1162.<br />

Ruan S, Xue Q, Tylkowska K (2002a) Effects <strong>of</strong> seed <strong>priming</strong> on <strong>germination</strong> <strong>and</strong> health <strong>of</strong> rice (Oryza sativa L.) seeds.<br />

<strong>Seed</strong> Science <strong>and</strong> Technology 30: 451-458.<br />

Ruan S, Xue Q, Tylkowska K (2002b) The influence <strong>of</strong> <strong>priming</strong> on <strong>germination</strong> <strong>of</strong> rice Oryza sativa L. seeds <strong>and</strong> <strong>seedling</strong><br />

emergence <strong>and</strong> performance in flooded soil. <strong>Seed</strong> Science Technology 30: 61-67.<br />

Singh BG (1995) Effect <strong>of</strong> hydration-dehydration seed treatments on vigor <strong>and</strong> yield <strong>of</strong> sunflower. Indian Journal <strong>of</strong><br />

Plant Physiology 38: 66-68.<br />

Sivritepe N, Sivritepe HO, Eris A (2003) The effects <strong>of</strong> NaCl <strong>priming</strong> on salt <strong>to</strong>lerance in melon <strong>seedling</strong>s grown under<br />

saline conditions. Scientia Horticulturae 97(3-4): 229-237. doi:10.1016/S0304-4238(02)00198-X<br />

S<strong>to</strong>fella PJ, Lipucci DP, Pardossi A, Toganoni F (1992) <strong>Seed</strong>ling root morphology <strong>and</strong> shoot <strong>growth</strong> after seed <strong>priming</strong><br />

or pre-emergence <strong>of</strong> bell pepper. Journal <strong>of</strong> American Society <strong>of</strong> Horticultural Sciences 27: 214-215.<br />

Taiz L, Zeiger E (2002) Plant Physiology. 3rd ed, Sinaure Associates, Inc. Publishers, Su <strong>and</strong> L<strong>and</strong>, Massachusetts.


EurAsian Journal <strong>of</strong> BioSciences 6: 76-84 (2012)<br />

Elouaer <strong>and</strong> Hannachi<br />

Tuz Stresi Altındaki Aspir (Carthamus tinc<strong>to</strong>rius) Bitkisinde Çimlenme ve Fide<br />

Büyümesinin İyileştirilmesi İçin Tohum Hazırlanması<br />

Özet<br />

Giriş: Tuzluluk bazı tahıl bitkisi türlerinde, çimlenmeyi ve fide büyümesini etkilemektedir. Bitkilerin <strong>to</strong>leransını ve<br />

büyümelerini iyileştimek için bir çok teknik kullanılmaktadır. Hazırlama, tuzluluk şartları altında bazı ürün bitkilerinin<br />

çimlenmesini iyileştiren etkili bir tekniktir. Bu yüzden bu deney, beş farklı tuzluluk seviyesine (0, 5, 10, 15 ve 20 g/L)<br />

maruz bırakılan yalancı safran (Carthamus tinc<strong>to</strong>rius) bitkisinde, 5 g/L NaCl ve KCl ile <strong>to</strong>hum hazırlamanın çimlenme ve<br />

fide büyümesi üzerine etkilerini incelemek için gerçekleştirildi.<br />

Materyal ve Me<strong>to</strong>t: Aspir <strong>to</strong>humları, 20°C’de NaCl (5 g/L, 12 s) ve KCl (5 g/L, 24 s) çözeltilerinde ıslatıldı. Islatılmış ve<br />

ıslatılmamış <strong>to</strong>humlar, çimlenmeleri için petri kaplarına kondu ve beş farklı NaCl konsantrasyonu (0, 5, 10, 15 ve 20 g/L)<br />

içeren tuz çözeltisi ile sul<strong>and</strong>ı.<br />

Bulgular: NaCl ve KCl ile ıslatma, tuzluluk şartları altındaki yalancı safr<strong>and</strong>a, çimlenme (çimlenme yüzdesi, ortalama<br />

çimlenme zamanı, çimlenme indeksi ve hız katsayısı) ve büyüme parametrelerini (kökçük ve fide uzunluğu, fide yaş ve<br />

kuru ağırlıkları ve canlılık indeksi) iyileştirdi.<br />

Sonuç: Mevcut çalışma, tuz stresi altında, yalancı safran <strong>to</strong>hum çimlenmesini iyileştirmede NaCl ve KCl ile<br />

hazırlamanın, bir yöntem olarak kullanılabilceğini ortaya koymuştur. Ancak, NaCl ve KCl ile <strong>to</strong>hum hazırlamanın, kültür<br />

ortamında sonraki büyüme ve gelişme üzerindeki etkilerinin gösterilebilmesi için daha fazla çalışmaya ihtiyaç vardır.<br />

Anahtar Kelimeler: Carthamus tinc<strong>to</strong>rius, çimlenme, fide büyümesi, hazırlama, tuzluluk.<br />

84

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!