13.02.2015 Views

Bomem-GRAMS User's Guide

Bomem-GRAMS User's Guide

Bomem-GRAMS User's Guide

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Bomem</strong>-<strong>GRAMS</strong><br />

<strong>User's</strong> <strong>Guide</strong><br />

This manual contains: Information on installing <strong>Bomem</strong>-<strong>GRAMS</strong>, and using the Collect menu<br />

commands.<br />

IMZ9013<br />

Revision 1.1 March 2003


Copyright<br />

© 2001 - 2003 ABB <strong>Bomem</strong> Inc. All Rights Reserved.<br />

This <strong>Guide</strong> and the accompanying software are copyrighted and all rights are<br />

reserved by ABB Inc. henceforth ABB. This product, including software and<br />

documentation, may not, in whole or in part, be copied, photocopied,<br />

reproduced, translated, or reduced to any electronic medium or machinereadable<br />

form without prior consent, in writing, from ABB.<br />

Windows NT, Windows 2000 and Windows XP are trademarks of Microsoft<br />

Corporation. All rights reserved.<br />

License and<br />

Limited Warranty<br />

Agreement<br />

Important:<br />

This software product is sold by ABB with the following Software License,<br />

Software Disclaimer of Warranty, and Hardware Limited Warranty<br />

(collectively, the Agreement).<br />

READ THIS AGREEMENT CAREFULLY BEFORE OPENING THE DISKS<br />

AND ASSOCIATED SOFTWARE PACKAGES. OPENING THE DISKS AND<br />

SOFTWARE PACKAGES INDICATES YOUR UNDERSTANDING AND<br />

ACCEPTANCE OF THIS AGREEMENT.<br />

If you do not agree to the terms contained below, return the product with the<br />

package disks unopened to your distributor and the purchase price will be<br />

refunded. ABB agrees to grant and the licensee agrees to accept on the following<br />

terms and conditions, non-transferable (except as herein defined) and nonexclusive<br />

licenses to the software program(s) (Licensed Programs) herein<br />

delivered with this agreement.<br />

Software license<br />

Each software license granted under this Agreement authorizes the licensee to<br />

use the Licensed Programs in a machine-readable form on any single computer<br />

with a single specific ABB spectrometer. A separate license is required for each<br />

single computer and/or each single ABB spectrometer on which the Licensed<br />

Programs will be used.<br />

This Agreement and any of the licenses, programs, or materials to which it<br />

applies may not be assigned, sublicensed, or otherwise transferred by the<br />

licensee without prior written consent from ABB, except as herein after<br />

expressly provided.<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong><br />

iii


No right to print, copy, in whole or in part, the Licensed Programs is granted<br />

except as herein after expressly provided. You may copy the Licensed Programs<br />

solely for backup purposes as long as this copyright is reproduced along with<br />

the backup copies.<br />

You may physically transfer the Licensed Programs from one computer to<br />

another provided that the Licensed Programs are only used on one computer at a<br />

time and only with the specific ABB instrument they were supplied for.<br />

Software disclaimer<br />

of warranty and<br />

hardware limited<br />

warranty<br />

ABB makes no representations or warranties with regard to this software and<br />

instructional and reference materials, including, but not limited to, the implied<br />

warranties of merchantability and fitness for a particular purpose.<br />

ABB does not warrant, guarantee, or make any representations regarding the<br />

use, or the results of the use, of the software or written material in terms of<br />

correctness, accuracy, reliability, currentness, or otherwise.<br />

ABB shall not be liable for errors or omissions contained in its software or<br />

manuals or incidental or consequential damages in connection with<br />

the furnishing, performance, or use of these materials even if ABB has been<br />

advised of the possibility of such damages. The software and manuals are sold<br />

as is. The entire risk as to the results and performance of the software is assumed<br />

by you.<br />

ABB warrants to the original licensee that the disks on which the software is<br />

recorded are free from defects in materials and workmanship for a period of<br />

ninety (90) days from the date of delivery. ABB’s entire liability and your<br />

exclusive remedy as to the disks shall be, at ABB’s option, either:<br />

(a) return of the purchase price or<br />

(b) replacement of the disk that does not meet this Limited Warranty.<br />

THE ABOVE ARE THE ONLY WARRANTIES OF ANY KIND, EITHER<br />

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED<br />

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A<br />

PARTICULAR PURPOSE, THAT ARE MADE BY ABB ON THIS PRODUCT.<br />

BECAUSE SOME STATES DO NOT ALLOW THE EXCLUSION OR<br />

LIMITATION OF LIABILITY OR CONSEQUENTIAL OR INCIDENTAL<br />

DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY TO YOU.<br />

iv<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


Customer support<br />

ABB provides product support services throughout the world. To receive<br />

product support, either in or out of warranty, contact the ABB office that serves<br />

your geographical area, or the office shown below:<br />

ABB <strong>Bomem</strong> Inc.<br />

585, Charest Blvd. East, suite 300<br />

Québec, Québec G1K 9H4<br />

CANADA<br />

Tel.: (418) 877-2944 or<br />

(800) 858-FTIR (in North America)<br />

Fax: (418) 877-2834<br />

E-mail: bomem_service@ca.abb.com<br />

You can also consult ABB’s web site at www.abb.com/analytical<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong><br />

v


T ABLE OF CONTENTS<br />

About this Manual............................................................................................................................................ ix<br />

1. Quick Start................................................................................................................................................. 1<br />

1.1 Check the signal.............................................................................................................................. 1<br />

1.2 Acquire a background spectrum ..................................................................................................... 5<br />

1.3 Acquire a sample spectrum............................................................................................................. 6<br />

2. <strong>Bomem</strong>-<strong>GRAMS</strong>........................................................................................................................................ 9<br />

2.1 Description ..................................................................................................................................... 9<br />

3. Software Installation ............................................................................................................................... 11<br />

3.1 Software description ..................................................................................................................... 11<br />

3.2 Computer requirements ................................................................................................................ 12<br />

3.3 Software installation ..................................................................................................................... 12<br />

4. The Collect Menu .................................................................................................................................... 15<br />

4.1 Description ................................................................................................................................... 15<br />

4.1.1<br />

4.1.2<br />

Setup............................................................................................................................... 15<br />

Align............................................................................................................................... 22<br />

4.1.3<br />

4.1.4<br />

Collect ............................................................................................................................ 24<br />

Instrument Status and Control........................................................................................ 27<br />

4.1.5 Halt Collect ....................................................................................................................29<br />

4.1.5.1<br />

4.1.5.2<br />

Data acquisition initiated by the Align command ........................................ 29<br />

Data acquisition initiated by the Collect command ...................................... 29<br />

4.1.6 Help................................................................................................................................ 30<br />

A Apodization Functions ............................................................................................................................ 31<br />

A.1 Purpose ......................................................................................................................................... 31<br />

A.2 Functions available in <strong>Bomem</strong>-<strong>GRAMS</strong>...................................................................................... 31<br />

B Array Basic Interface .............................................................................................................................. 33<br />

B.1 Array Basic methods .................................................................................................................... 33<br />

B.2 Array Basic Properties.................................................................................................................. 38<br />

B.3 Error codes.................................................................................................................................... 41<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong><br />

vii


C Audit Log ..................................................................................................................................................45<br />

D Glossary ....................................................................................................................................................47<br />

Index of Dialog boxes.......................................................................................................................................59<br />

Index..................................................................................................................................................................61<br />

viii<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


ABOUT THIS M ANUAL<br />

Audience<br />

a This appendix is intended<br />

for people who will be<br />

programming in the Array<br />

Basic language.<br />

This manual is intended for personnel installing <strong>Bomem</strong>-<strong>GRAMS</strong> (which<br />

consists of <strong>GRAMS</strong>/AI or <strong>GRAMS</strong>/LT and the added Collect menu) and using<br />

the Collect menu commands. Please refer to the following chapters:<br />

For information on:<br />

Refer to:<br />

Installing <strong>Bomem</strong>-<strong>GRAMS</strong> Chapter 3 Software Installation<br />

Using the Collect menu commands Chapter 1 Quick Start<br />

Chapter 4 The Collect Menu<br />

The apodization functions used by<br />

Appendix A Apodization Functions<br />

the software.<br />

The Array Basic extensions related to<br />

the Michelson Collect Driver. a<br />

<br />

Appendix B Array Basic Interface<br />

For information on <strong>GRAMS</strong>/AI software and the Array Basic language,<br />

refer to the manuals from Thermo Galactic. These manuals are included<br />

with your spectrometer.<br />

Note: <strong>GRAMS</strong>/LT is a simplified version of <strong>GRAMS</strong>/AI. It can be provided by<br />

ABB with the purchase of certain instruments.<br />

Conventions used<br />

in ABB manuals<br />

Software commands and dialog box names and are shown in boldface type.<br />

Text to be entered into software is in sans serif type.<br />

<br />

This symbol refers you to another manual or document.<br />

Note: Supplemental information to help the reader.<br />

Important: Information that is important, but that does not concern the safe use<br />

of the equipment.<br />

This symbol shows that Caution is required. Follow<br />

the instructions carefully to avoid damage to the equipment.<br />

WARNING! Failure to comply with warnings can result in serious injury<br />

or loss of life.<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong><br />

ix


CHAPTER 1<br />

QUICK START<br />

This Quick Start guides you in acquiring the transmittance spectrum of a sample<br />

using <strong>Bomem</strong>-<strong>GRAMS</strong>, once the program has been installed (see Chapter 3 on<br />

page 11).<br />

Note: All commands used in this section are in the Collect menu and are<br />

described in detail in Chapter 4 on page 15.<br />

<br />

For information on the other functions in <strong>Bomem</strong>-<strong>GRAMS</strong>, refer to<br />

the <strong>GRAMS</strong>/AI manuals from Thermo Galactic. These manuals are<br />

included with your spectrometer.<br />

1.1 Check the signal<br />

1. Make sure that the sampling accessory or sample holder is properly<br />

installed and that there are no objects or sample in the sampling area.<br />

(This condition is called “open beam”.)<br />

2. Start <strong>Bomem</strong>-<strong>GRAMS</strong> (see Figure 1-1 below).<br />

Figure 1-1. Starting <strong>Bomem</strong>-<strong>GRAMS</strong><br />

3. Select Setup in the Collect menu. Once the connected instruments have<br />

been detected the Parameters Setup dialog box (see Figure 1-2 on page 2)<br />

will be displayed. Use the Acquisition Card list box to select one of<br />

the connected instruments.<br />

Make sure that all of the parameters on the four tabs are set correctly<br />

(refer to the Section 4.1.1 on page 15).<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 1


Section 1.1<br />

Check the signal<br />

Figure 1-2. Parameter Setup dialog box<br />

4. Set the spectrometer resolution to 4 cm -1 . If the spectrometer has a manual<br />

resolution switch, turn the knob to 4. If the spectrometer resolution is<br />

computer controlled, select Instrument Status and Control and set<br />

the Resolution to 4 (see Figure 1-3 below).<br />

Figure 1-3. Instrument Status and Control dialog box<br />

5. Select Align to display the Align dialog box (see Figure 1-4 on page 3).<br />

2 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


Chapter 1<br />

Quick Start<br />

Figure 1-4. Align dialog box<br />

Set the parameters as follows:<br />

Spectral Range Start and End:<br />

• for MIR: 4000 to 400 cm -1<br />

• for NIR: 14 000 to 4000 cm -1<br />

Show Scan direction: Both directions<br />

Data type: Single-Beam<br />

6. Click OK Align to begin data acquisition in the align mode. This will allow<br />

you to make sure the spectra will be properly acquired without detector<br />

saturation.<br />

In the align mode, the display is continuously updated until the Halt Collect<br />

command is selected. No data is saved in this mode.<br />

7. Observe the displayed spectrum. The word Align near the upper right<br />

corner of the display indicates the interferogram amplitude as a percentage<br />

of the maximum allowed (refer to Maximum interferogram amplitude<br />

allowed on page 21). This percentage should be between 40% and 90%.<br />

8. Check for any unusual spectral features such as a strong signal below<br />

the detector cut-off frequency (usually caused by detector saturation).<br />

Note: <strong>Bomem</strong>-<strong>GRAMS</strong> can automatically detect this condition. Refer to<br />

Optical Cut-Off Detection on page 21.<br />

Figure 1-5 on page 4 shows typical open-beam spectra for MIR<br />

(mid infrared) and NIR (near infrared).<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 3


Section 1.1<br />

Check the signal<br />

Figure 1-5. Typical open-beam spectra<br />

Figure 1-6 below presents MIR spectra showing detector saturation.<br />

Highly<br />

saturated<br />

Saturated<br />

Normal<br />

Figure 1-6. MIR spectra showing detector saturation<br />

9. Select Halt to stop data acquisition.<br />

4 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


Chapter 1<br />

Quick Start<br />

1.2 Acquire<br />

a background<br />

spectrum<br />

1. Select Collect to display the Collect dialog box (see Figure 1-7 below).<br />

Set the parameters as follows:<br />

Acquisition type: Background<br />

General Param:<br />

• Number of Scans: 10 or more<br />

File Name: Enter a file name (up to 144 characters).<br />

The program will automatically add the extension shown.<br />

Use Auto Gain: Select this option.<br />

2. Click OK Collect to begin data acquisition.<br />

During data acquisition the spectrum of each individual scan is displayed on<br />

the page. When all the spectra are acquired, the coadded spectrum is<br />

displayed and saved.<br />

Figure 1-7. Collect dialog box<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 5


Section 1.3<br />

Acquire a sample spectrum<br />

1.3 Acquire<br />

a sample<br />

spectrum<br />

1. When the background spectrum has been acquired, insert the sample in<br />

the sample holder or sampling accessory.<br />

For an FT-IR series spectrometer:<br />

• For MIR, use the polystyrene sample supplied with<br />

the spectrometer (see Figure 1-8 below).<br />

• For NIR, do not use the polystyrene sample. Instead, place an<br />

ordinary plastic bag over the sample holder.<br />

For another model of spectrometer, use a sample of the appropriate type.<br />

Figure 1-8. Inserting the polystyrene sample into the sample holder of an MB Series spectrometer<br />

2. Select Collect to display the Collect dialog box (see Figure 1-7 on page 5).<br />

Set the parameters as follows:<br />

Acquisition type: Normal<br />

Spectral Range Start and End:<br />

• for MIR: from 4000 to 400 cm -1<br />

• for NIR: from 14 000 to 4000 cm -1<br />

General Param:<br />

• Initial Delay: 0<br />

• Number of scans: 10 or more<br />

6 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


Chapter 1<br />

Quick Start<br />

File Name: Enter a file name (up to 144 characters).<br />

The program will automatically add the extension shown.<br />

Use Auto Gain: Select this option.<br />

Data type: %Trans<br />

Background: This should be the name of the background file enter in<br />

step 1 of Section 1.2.<br />

3. Click OK Collect to begin data acquisition.<br />

During data acquisition the spectrum of each individual scan is displayed on<br />

the page. When all the spectra are acquired, the coadded spectrum is<br />

displayed and saved.<br />

4. Observe the acquired spectrum.<br />

Figure 1-9 below shows an example of the transmittance spectrum of<br />

a polystyrene sample in the MIR range and the transmittance spectrum of<br />

a plastic bag in the NIR range.<br />

Figure 1-9. Transmittance spectra<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 7


CHAPTER 2<br />

BOMEM-<strong>GRAMS</strong><br />

2.1 Description<br />

<strong>GRAMS</strong>/LT is a simplified<br />

version of <strong>GRAMS</strong>/AI. It can<br />

be provided by ABB with the<br />

purchase of certain<br />

instruments.<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> is a program for spectral acquisition, display, and processing<br />

that can interact directly with an ABB FT-IR instrument.<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> consists of the following components, which are installed<br />

separately. These components are included on the ABB and Thermo Galactic<br />

Products CD-ROM:<br />

• <strong>GRAMS</strong>/AI (or <strong>GRAMS</strong>/LT) version 7 from Thermo Galactic<br />

• the Michelson Collect Driver from ABB<br />

Note: This manual assumes that the user already be familiar with<br />

the <strong>GRAMS</strong>/AI environment. This manual does not attempt to document<br />

<strong>GRAMS</strong>/AI software or the Array Basic language.<br />

The present version of <strong>GRAMS</strong>/AI from Thermo Galactic is designed to run on<br />

Windows NT, Windows 2000 and Windows XP. This version uses the driver<br />

technology called “My Instrument”. With this feature, when a compatible “My<br />

Instrument” control program is detected on the computer, <strong>GRAMS</strong>/AI will<br />

automatically add a Collect menu that will link to the instrument. When any<br />

command in the Collect menu is used, a new page will automatically be added<br />

to the current workbook with a link to the instrument.<br />

Installing the Michelson Collect Driver adds the Collect menu (see Figure 2-1<br />

below) to <strong>GRAMS</strong>/AI and allows <strong>GRAMS</strong>/AI to communicate with ABB FT-IR<br />

instruments. Once the Collect menu has been added to <strong>GRAMS</strong>/AI, the<br />

software is referred to as <strong>Bomem</strong>-<strong>GRAMS</strong>.<br />

Figure 2-1. Collect menu<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 9


CHAPTER 3<br />

SOFTWARE INSTALLATION<br />

Note: If the computer is supplied by ABB Inc., the software is already installed<br />

and configured.<br />

Administrator access privileges are required to install the Michelson<br />

Collect Driver.<br />

For convenience, this installation procedure is provided in this manual<br />

and in the FT-IR Spectrometer Ethernet Interface and External Ethernet<br />

for FT-IR <strong>User's</strong> <strong>Guide</strong>.<br />

3.1 Software<br />

description<br />

<strong>GRAMS</strong>/LT is a simplified<br />

version of <strong>GRAMS</strong>/AI. It can<br />

be provided by ABB with the<br />

purchase of certain<br />

instruments.<br />

This chapter shows how to install the following software:<br />

‣ Products from Thermo Galactic including <strong>GRAMS</strong>/AI (or <strong>GRAMS</strong>/LT)<br />

<strong>GRAMS</strong>/AI is a program for spectral acquisition, display, and processing.<br />

It also includes tools for building calibration models.<br />

‣ The Michelson Collect Driver from ABB. This includes the following<br />

components:<br />

• the ABB FT-IR Control Panel configuration applet (bodriv.cpl)<br />

This is used to configure the FT-IR Spectrometer Ethernet Interface of<br />

an instrument and to update the firmware.<br />

• the Acquisition DLL (bograms.dll)<br />

This enables applications to control and acquire data from ABB FT-IR<br />

instruments through the FT-IR Spectrometer Ethernet Interface.<br />

• the Collect menu. This menu is added to <strong>GRAMS</strong>/AI or <strong>GRAMS</strong>/LT<br />

and contains commands allowing you to set acquisition parameters for<br />

and acquire spectra from ABB FT-IR instruments.<br />

The Collect menu is part of an ActiveX acquisition interface (bgac.dll).<br />

The interface simplifies connecting to the FT-IR Spectrometer Ethernet<br />

Interface from any application that supports ActiveX.<br />

Note: Once the Collect menu has been added to <strong>GRAMS</strong>/AI, the software is<br />

referred to as <strong>Bomem</strong>-<strong>GRAMS</strong><br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 11


Section 3.2<br />

Computer requirements<br />

3.2 Computer<br />

requirements<br />

The minimum requirements for the computer are:<br />

• Pentium II class computer, 350 MHz, 128 MB RAM<br />

• Ethernet network adapter<br />

• Windows NT version 4.0 with Service Pack 6a<br />

Windows 2000<br />

Windows XP<br />

3.3 Software<br />

installation<br />

The software is installed using the following procedure:<br />

1. Insert the ABB and Thermo Galactic Products CD-ROM into the CD-ROM<br />

drive of the computer. The main menu should appear automatically (see<br />

Figure 3-1 below).<br />

Note:<br />

If the main menu fails to appear, using Windows Explorer, find and<br />

double click the file launch.exe on the CD-ROM.<br />

Figure 3-1. Main menu of installation program<br />

12 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


Chapter 3<br />

Software Installation<br />

2. Click the Install Products button. The Install Products screen<br />

(see Figure 3-2 below) will appear. This screen presents the lists of products<br />

available on the CD-ROM.<br />

Figure 3-2. Install Products screen<br />

3. Select Thermo Galactic Products to install Thermo Galactic products.<br />

The Typical installation option includes <strong>GRAMS</strong>/AI. If you perform<br />

a Custom installation be sure to include <strong>GRAMS</strong>/AI.<br />

4. Follow the screen prompts and refer to the documentation from Thermo<br />

Galactic to complete the installation.<br />

5. Start <strong>GRAMS</strong>/AI to complete the installation (see Figure 3-3 on page 14).<br />

Then exit <strong>GRAMS</strong>/AI.<br />

Note:<br />

It is important to start and exit <strong>GRAMS</strong>/AI at least once before<br />

proceeding with the installation.<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 13


Section 3.3<br />

Software installation<br />

Figure 3-3. Starting <strong>GRAMS</strong>/AI<br />

6. Return to the Install Products screen and Select Michelson Collect Driver<br />

to install the driver.<br />

7. Return to the main menu and exit the program.<br />

8. Restart the computer.<br />

After these steps have been completed, the Collect menu will appear in<br />

the menu bar of <strong>GRAMS</strong>/AI.<br />

<br />

For information on the other menus in <strong>Bomem</strong>-<strong>GRAMS</strong>, refer to<br />

the <strong>GRAMS</strong>/AI manuals from Thermo Galactic. These manuals are<br />

included with your spectrometer.<br />

14 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


CHAPTER 4<br />

THE COLLECT MENU<br />

The user interface of <strong>Bomem</strong>-<strong>GRAMS</strong> is identical to that of the standard version<br />

of <strong>GRAMS</strong>/AI except for the addition of the Collect menu. This chapter<br />

describes the commands in the Collect menu.<br />

<br />

For information on the other commands in <strong>Bomem</strong>-<strong>GRAMS</strong>, refer to<br />

the <strong>GRAMS</strong>/AI manuals from Thermo Galactic. These manuals are<br />

included with your spectrometer.<br />

4.1 Description<br />

The Collect menu of <strong>Bomem</strong>-<strong>GRAMS</strong> contains all of the acquisition-related<br />

commands. These commands are shown in Figure 4-1 below and are described<br />

in the following sections.<br />

Figure 4-1. Collect menu<br />

Note: The standard toolbar is disabled while acquisition-related commands are<br />

executing.<br />

4.1.1 Setup<br />

The Setup command is used to set parameters that affect how spectrum<br />

acquisition is performed. Clicking Setup in the Collect menu displays<br />

the Parameter Setup dialog box. This dialog box has four tabs:<br />

• Hardware<br />

• Spectroscopic Parameters<br />

• Program<br />

• Saturation<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 15


Section 4.1<br />

Description<br />

Parameter Setup: Hardware<br />

The Hardware tab is used to display and edit hardware parameters.<br />

• Instrument Type indicates the type of spectrometer or analyzer being used.<br />

This parameter cannot be edited in this dialog box; it is edited using the ABB<br />

FT-IR Control Panel applet.<br />

<br />

For information on using the Control Panel applet, refer to the FT-IR<br />

Spectrometer Ethernet Interface and External Ethernet Interface for<br />

FT-IR User’s <strong>Guide</strong>.<br />

• Acquisition card selects the type of acquisition card or instrument that will<br />

be used to acquire data. Note that only one instrument can be used at a time.<br />

The currently selected card or instrument is indicated by a symbol<br />

at the left of the name.<br />

A symbol indicates that the instrument is free, i.e. not already<br />

connected.<br />

16 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


Chapter 4<br />

The Collect Menu<br />

A symbol indicates that the instrument is busy and thus not<br />

available for connection.<br />

• Timeout sets the longest delay the program will wait before declaring that<br />

a hardware error has been detected.<br />

• Computer Controlled indicates that the instrument responds to computer<br />

commands. This parameter cannot be edited in the Hardware tab; it is edited<br />

using the ABB FT-IR Control Panel applet.<br />

• Detector selects the channel (detector) for which the first stage gain values<br />

are displayed. Depending on the selected instrument, the valid range is 1 or 2,<br />

or 1 to 64.<br />

• Use First Stage Gain and Use Second Stage Gain indicate that the gains on<br />

the first and second stages of the preamplifier are computer selectable. These<br />

parameters cannot be edited in the Hardware tab; they are edited using<br />

the ABB FT-IR Control Panel applet.<br />

• Use Default restores the default values.<br />

Parameter Setup: Spectroscopic Parameters<br />

The Spectroscopic Parameters tab is used to change the way spectra are<br />

calculated from the raw interferogram data.<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 17


Section 4.1<br />

Description<br />

b The recommended setting<br />

for this field is Cosine.<br />

• Apodization b selects the apodization function that is applied to<br />

the interferogram before computing the Fast Fourier Transform (FFT).<br />

The available apodization functions are listed and described in Appendix A<br />

on page 31.<br />

• Laser Freq must be set to the frequency of the reference laser.<br />

This value should be 15799.7 for the red He-Ne laser used in all standard FT-<br />

IR Series spectrometers. Changing this value will render the data acquired<br />

incompatible with other data and with standard methods and libraries.<br />

• Absorbance Cut-Off min and Cut-Off max define the minimum and<br />

maximum values that any absorbance spectrum can reach.<br />

If the spectrum goes out of this range it is automatically truncated.<br />

• Transmittance Cut-Off min and Cut-Off max define the minimum and<br />

maximum values that any transmittance spectrum can reach.<br />

If the spectrum goes out of this range it is automatically truncated.<br />

18 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


Chapter 4<br />

The Collect Menu<br />

c For most applications, normal<br />

phase correction with Gaussian<br />

apodization and 128 cm -1<br />

resolution should be used.<br />

• Phase correction c affects the behaviour of the phase correction that is<br />

performed on the spectrum after computing the fast Fourier transform of<br />

the interferogram.<br />

Apodization selects the apodization function to use on the phase<br />

interferogram.<br />

Resolution selects the number of points to use for the apodization<br />

function.<br />

Type selects the interferogram from which the phase information is<br />

deduced:<br />

Normal selects the same interferogram as the sample.<br />

Stored selects an external interferogram stored in a file.<br />

• Use Default restores the default values.<br />

Parameter Setup: Program<br />

The Program tab shows parameters that affect the behaviour of the acquisition<br />

interface.<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 19


Section 4.1<br />

Description<br />

• Buffer size allows changing the size of the FIFO (First In First Out memory)<br />

buffer that is used in the FT-IR Spectrometer Ethernet interface to hold<br />

spectra. The default value is recommended.<br />

• Overwrite warning when checked, the program will ask the user for<br />

confirmation before overwriting an existing file.<br />

d Some third-party software<br />

utilities may have trouble<br />

with floating-point format.<br />

However, files stored in this<br />

format can easily be<br />

converted to the <strong>GRAMS</strong><br />

format by loading them in<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> and saving<br />

them under a new name.<br />

• File Format selects the format in which the files generated by the acquisition<br />

interface will be stored.<br />

IEEE floating-point format d stores the files in floating point format.<br />

This format is recommended because it provides better precision for<br />

the results.<br />

New SPC <strong>GRAMS</strong> format stores the files in the <strong>GRAMS</strong> SPC format.<br />

• Save Option determines whether the full or the specified spectral range is<br />

included in the saved spectrum files. This option is valid for the Absorbance<br />

and Transmittance data types only.<br />

• Use Default restores the default values.<br />

20 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


Chapter 4<br />

The Collect Menu<br />

Parameter Setup: Saturation<br />

The Saturation tab is used to set the parameters related to automatic saturation<br />

monitoring.<br />

e This value is also used as the<br />

target value for the maximum<br />

interferogram amplitude by<br />

the automatic gain setting<br />

function.<br />

• Maximum interferogram amplitude allowed e used to calculate<br />

the percentage values displayed by the align function and determines<br />

the saturation threshold for interferograms.<br />

• Optical Cut-Off Detection used to diagnose spectra for saturation<br />

(and/or nonlinearity).<br />

Spectral Range defines a region where each spectrum acquired by<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> is tested by computing the average amplitude of<br />

the points in this region.<br />

The spectral range must be chosen to be below the cut-off of the detector<br />

and/or the optics. In mid IR, this will usually be below 400 cm -1 and in<br />

near IR, below 4000 cm -1 .<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 21


Section 4.1<br />

Description<br />

Threshold determines the maximum value (in percentage) of the ratio of<br />

the average amplitude in the Spectral Range against the maximum<br />

spectrum amplitude.<br />

If the ratio is greater than the threshold value, a saturation warning is<br />

given to the user and put in the audit log (see Appendix C on page 45).<br />

• Use Default restores the default values.<br />

4.1.2 Align<br />

The Align command is used to display a spectrum or interferogram that is<br />

updated after each scan of the spectrometer. This is useful to adjust accessories<br />

for maximum throughput and to check if the signal intensity is acceptable.<br />

A readout of the ZPD amplitude as a percentage of the maximum allowed ZPD<br />

is also provided. When the Align command is selected, <strong>Bomem</strong>-<strong>GRAMS</strong><br />

switches to the page used for alignment and the Align dialog box appears.<br />

Align<br />

This dialog box is used to set align parameters before data acquisition is started.<br />

• Spectral Range Start and End define the displayed spectral region.<br />

• Show Scan direction allows showing the scans in one direction only<br />

(direction 0 or direction 1), or in both directions simultaneously.<br />

• Data type determines the type of data that will be displayed.<br />

IGram: raw interferogram<br />

Single-Beam: single-beam spectrum<br />

22 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


Chapter 4<br />

The Collect Menu<br />

f For transmittance spectrum<br />

and absorbance spectrum a<br />

background file is required.<br />

%Trans: transmittance spectrum f<br />

Absorb: absorbance spectrum f<br />

Background: the name of the current background (reference) file.<br />

• OK Align begins data acquisition.<br />

During this data acquisition, the display (see Figure 4-2 below) is continuously<br />

updated until the Halt Collect command (see Section 4.1.5 on page 29) is<br />

selected. No data is saved when using the Align command.<br />

1<br />

2<br />

8<br />

7<br />

6<br />

5<br />

3<br />

4<br />

Figure 4-2. Align display<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 23


Section 4.1<br />

Description<br />

Number<br />

Identification<br />

1 Date and time<br />

2 Spectrum type<br />

3 Y-axis units<br />

4 X-axis units<br />

5 Interferogram ZPD amplitude as a percentage of the maximum allowed ZPD<br />

6 Scan speed in scans per minute<br />

(1 scan includes a forward and a reverse sweep)<br />

7 Resolution and instrument mode (Mid IR or Near IR)<br />

8 Number of scans<br />

4.1.3 Collect<br />

The Collect command is used for all data acquisition in <strong>Bomem</strong>-<strong>GRAMS</strong>.<br />

When the Collect command is selected, <strong>Bomem</strong>-<strong>GRAMS</strong> switches to the page<br />

used for data acquisition and the Collect dialog box appears.<br />

Collect<br />

This dialog box is used to set collect parameters before data acquisition is started.<br />

24 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


Chapter 4<br />

The Collect Menu<br />

g Spectra are acquired over<br />

the full spectral range unless<br />

specified otherwise in the<br />

Save Option parameter.<br />

• Acquisition type determines the type of data acquisition that will be used.<br />

Background: reference spectra<br />

Normal: normal spectra<br />

Kinetic: multifiles<br />

• Spectral Range Start and End define the displayed spectral region. g<br />

• General Param allows setting the following parameters:<br />

Initial Delay: delay in seconds before any scans are acquired.<br />

Number of Scans: number of scans to be averaged (coadded) together.<br />

Note: A scan is defined as a forward and a reverse sweep of the scan<br />

mechanism. Therefore, a single scan will result in two<br />

interferograms. The interferograms for forward sweeps and<br />

reverse sweeps are not combined, they are averaged separately.<br />

The forward and reverse sweep information is combined during<br />

the transformation from interferograms to spectra after the phase<br />

correction.<br />

• Use Auto Gain: When selected, determines the optimal gain setting using<br />

the first scan acquired.<br />

h When the Acquisition type is<br />

Kinetic, the gain is<br />

recalculated for each sub-file.<br />

The ZPD must be as close as possible to the maximum allowed ZPD without<br />

exceeding it. After the gain is determined, all scans are acquired using this<br />

gain setting. h All spectra are normalised with respect to the gain used so that<br />

they can be compared directly without scaling.<br />

The actual gain selected can be observed in real time with the Instrument<br />

Status and Control command (see Section 4.1.4 on page 27). The gain used<br />

is also stored in the resulting spectrum file in the audit log (see Appendix C<br />

on page 45).<br />

i When the Data type is<br />

transmittance or absorbance,<br />

a single beam file is also<br />

saved.<br />

• File Name indicates the name under which the files will be saved. This name<br />

can have a maximum length of 144 characters. The extension of the file is<br />

determined automatically and will depend on the type of data acquisition<br />

used. i The extension of the file will be one of the following:<br />

.interferogram.spc<br />

.background.spc<br />

.single beam.spc<br />

.transmittance.spc<br />

.absorbance.spc<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 25


Section 4.1<br />

Description<br />

j For transmittance and<br />

absorbance spectra<br />

a background file is required.<br />

k Kinetic parameters are used<br />

when Kinetic is used as<br />

Acquisition type.<br />

Once a name is chosen, each time the Collect command is selected,<br />

the program will suggest this name with a number appended to it<br />

(the program will automatically increment the existing number).<br />

For example, if the first time the Collect command is selected the File Name<br />

is poly.absorbance.spc, the second time the command is selected<br />

the suggested name will be poly1.absorbance.spc, the third time it will be<br />

poly2.absorbance.spc, and so on.<br />

• Memo allows the user to attach an optional description to the file.<br />

• Data type determines the type of data that will be acquired.<br />

IGram: raw interferogram<br />

Single-Beam: single-beam spectrum<br />

%Trans: transmittance spectrum j<br />

Absorb: absorbance spectrum j<br />

Background: the name of the current background (reference) file.<br />

• Kinetic parameters k allows setting the following parameters:<br />

Number of Sub-Files: number of sub-files to acquire.<br />

Minimum time interval between Sub-Files: minimum time in<br />

seconds between the start of two consecutive sub-files. Using zero will<br />

cause <strong>Bomem</strong>-<strong>GRAMS</strong> to acquire as fast as possible with no delays<br />

between the end of one sub-file and the start of the next.<br />

• OK Collect begins data acquisition.<br />

During this data acquisition the spectrum of each individual scan is displayed on<br />

the page. When all the spectra are acquired, the coadded spectrum is displayed<br />

(see Figure 4-3 on page 27) and saved.<br />

The audit log for files acquired with <strong>Bomem</strong>-<strong>GRAMS</strong> contains information on<br />

the parameters and on the conditions under which the process occurred. This<br />

information can be visualised by using the Trace Information command in<br />

the File menu (see Appendix C on page 45).<br />

Data acquisition can be aborted by selecting the Halt Collect command<br />

(see Section 4.1.5 on page 29). When this command is selected, the current page<br />

is cleared and the Halt Collect dialog box appears.<br />

26 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


Chapter 4<br />

The Collect Menu<br />

2<br />

1<br />

3<br />

Figure 4-3. Page used for data acquisition<br />

Number<br />

Identification<br />

1 File name<br />

2 Number of scans acquired<br />

3 Elapsed and remaining time for this acquisition<br />

4.1.4 Instrument<br />

Status and<br />

Control<br />

The Instrument Status and Control command is used to obtain the current<br />

instrument status and to change operating conditions on the instrument if it<br />

supports computer control.<br />

Instrument Status and Control<br />

This dialog box appears after clicking Instrument Status and Control in<br />

the Collect menu of <strong>Bomem</strong>-<strong>GRAMS</strong>.<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 27


Section 4.1<br />

Description<br />

• Instrument indicates the type of spectrometer or analyzer being used. This<br />

parameter cannot be edited in this dialog box; it is edited using the ABB FT-<br />

IR Control Panel applet.<br />

<br />

For information on using the Control Panel applet, refer to the FT-IR<br />

Spectrometer Ethernet Interface and External Ethernet for FT-IR<br />

User’s <strong>Guide</strong>.<br />

• Speed indicates the current acquisition speed in scans per minute (1 scan<br />

includes a forward and a reverse sweep). This parameter cannot be edited.<br />

• Over Sampling indicates whether the instrument is acquiring one sample per<br />

fringe and thus running in Mid IR mode with an upper wavelength limit<br />

around 8000 cm -1 (Over Sampling OFF) or two samples per fringe and<br />

running in Near IR mode with an upper wavelength limit around 16 000 cm -1<br />

(Over Sampling ON). This parameter cannot be edited.<br />

• Detector selects the detector or channel or used to acquire data. The meaning<br />

of this field varies from instrument to instrument:<br />

On an FTPA2000-260 Process FT-IR Spectrometer this field corresponds to<br />

one of the fibre optic channels.<br />

On a Hand Held Diffuse Reflectance Probe only two detectors are defined,<br />

detector 1 corresponds to the diffuse reflectance probe,<br />

detector 2 corresponds to the fibre optic interface.<br />

On a standard FT-IR Spectrometer, detector 1 is the standard detector;<br />

detector 2 corresponds to the auxiliary or the external detector.<br />

• Resolution indicates the current instrument resolution and allows changing<br />

the resolution on instruments that support computer control.<br />

28 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


Chapter 4<br />

The Collect Menu<br />

l If only the second stage gain<br />

is available the first stage gain<br />

field will be disabled.<br />

• Gain First Stage and Second Stage l allow setting the preamplifier gains on<br />

instruments that support computer control.<br />

The Instrument Status and Control dialog box can remain active over<br />

the current page while other actions are being performed, in order to follow<br />

the state of the instrument.<br />

Changes to the state of the instrument are allowed during alignment or when<br />

there is no data acquisition. Changes to the state of the instrument are not<br />

allowed during data acquisition. However, if Use Auto Gain is selected in<br />

the Collect dialog box (see Section 4.1.3 on page 24), the gain may change<br />

automatically.<br />

4.1.5 Halt Collect<br />

The Halt Collect command is used to stop data acquisition.<br />

Note: This command has no effect if there is no data acquisition in progress.<br />

4.1.5.1 Data acquisition initiated by the Align command<br />

When data acquisition was initiated by the Align command, selecting the Halt<br />

Collect command will clear the current page. No data will be saved.<br />

4.1.5.2 Data acquisition initiated by the Collect command<br />

When data acquisition was initiated by the Collect command, selecting the Halt<br />

Collect command will clear the current page. The Halt Collect dialog box will<br />

then appear.<br />

Halt Collect<br />

This dialog box appears after clicking Halt Collect in the Collect menu during<br />

data acquisition initiated by the Collect command.<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 29


Section 4.1<br />

Description<br />

• Halt current collect and loose data halts the current data acquisition and<br />

erases all data.<br />

• Halt current collect but keep data accumulated up to now halts the current<br />

data acquisition and saves data acquired so far.<br />

• OK performs the selected action.<br />

• Cancel cancels the Halt Collect command and allows data acquisition to<br />

continue.<br />

4.1.6 Help<br />

The Help command provides access to the About <strong>Bomem</strong>-<strong>GRAMS</strong> dialog box<br />

and to Help Using <strong>Bomem</strong>-<strong>GRAMS</strong>.<br />

30 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


APPENDIX A<br />

APODIZATION FUNCTIONS<br />

A.1 Purpose<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> uses apodization functions to correct the Fourier transform<br />

process for artifacts that are introduced by the abrupt truncation of<br />

the interferogram when the instrument reaches the limit of its scan. Apodization,<br />

or “foot removal” consists of multiplying the interferogram by a function that<br />

causes its intensity to fall smoothly to zero at its ends. This reduces the feet<br />

(side lobes) of the interferogram, thus reducing the artifacts. However, it also<br />

increases the line width (degrades the resolution) of the spectrum.<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> offers a large selection of apodization functions. However, we<br />

recommend that you use the cosine function as a general-purpose apodization<br />

function.<br />

A.2 Functions<br />

available in<br />

<strong>Bomem</strong>-<strong>GRAMS</strong><br />

The following table lists all the apodization functions available in the <strong>Bomem</strong>-<br />

<strong>GRAMS</strong> acquisition interface and gives a brief description of how they affect<br />

the spectrum.<br />

FWHH: (Full Width Half Height) is the theoretical width of a monochromatic<br />

line at half its peak height compared with the apodized resolution<br />

requested, in percentage.<br />

SLAM: (Side Lobe Amplitude Maximum) is the theoretical amplitude of<br />

the largest side lobe compared with the amplitude of the main peak, in<br />

percentage.<br />

D: is given by<br />

Optical _ path _ difference<br />

maximum_optical_path_difference<br />

Name and description Function FWH<br />

H (%)<br />

Boxcar<br />

No apodization. Side lobes diminish as 1/x.<br />

Line shape given by sinc x<br />

Bartlett (triangular)<br />

Triangular function; all side lobes positive,<br />

side lobes damped out as 1/x 2 ; intermediate<br />

half width. Line shape given by sinc 2 x<br />

1 60 20<br />

( 1 − D)<br />

89 4.5<br />

SLAM<br />

(%)<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 31


Appendix A<br />

Apodization Functions<br />

Name and description Function FWH<br />

H (%)<br />

Cosine<br />

Small side lobes, although with appreciable<br />

ripple; intermediate half-width.<br />

Hamming (Happ-Genzel)<br />

Small side lobes, although with appreciable<br />

ripple; intermediate half-width.<br />

Blackman-Harris<br />

Extremely small side lobes; large half width.<br />

Gaussian<br />

Monotone decreasing function with no ripple<br />

(minor ripple due to finite length).<br />

( cosπD)<br />

SLAM<br />

(%)<br />

0 .5 + 0.5<br />

91 0.71<br />

( cosπD)<br />

0 .53856 + 0.46144<br />

91 0.71<br />

0 .42323 + 0.49755( cosπD)+<br />

0.07922(cos 2π D)<br />

116 0.04<br />

e<br />

2<br />

-3.91202300543D<br />

75 0.1<br />

Norton Beer weak* 2<br />

0.548<br />

− 0.08331 ( − D )+ 0.5353(1<br />

− D<br />

2 ) 2 72 5.8<br />

Norton Beer medium* 2<br />

0.261−<br />

0.1548381 ( − D )+ 0.894838(1<br />

− D<br />

2 ) 2 84 1.4<br />

Norton Beer strong* 2 2<br />

0.09 + 0.5875( 1−<br />

D ) +<br />

0.3225(1<br />

− D<br />

2 ) 4<br />

97 0.3<br />

* Functions taken from the article New Apodization Functions for Fourier Spectrometry by Robert H. Norton and<br />

Reinhard Beer, J. Opt. Soc. Am., Vol. 66, No. 3, March 1976, pp. 259-264.<br />

These functions are an attempt to provide optimum apodizing functions of algebraic form that provide the smallest<br />

degradation in resolution for a specified reduction in side lobe intensity.<br />

Although these three functions provide optimum performance in terms of FWHH/SLAM ratio, they have the drawback of<br />

exhibiting very slow damping of the side lobe features (large ripple), which is often undesirable.<br />

32 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


m Array Basic programs made<br />

using <strong>Bomem</strong>-<strong>GRAMS</strong> versions<br />

4.x, will require some<br />

modification to operate with<br />

later versions.<br />

APPENDIX B<br />

ARRAY B ASIC INTERFACE<br />

Note: This chapter is intended for people who will be programming using<br />

the Array Basic language, and assumes familiarity with the Array Basic<br />

language.<br />

This version of <strong>Bomem</strong>-<strong>GRAMS</strong> requires Windows NT or Windows 2000 and<br />

includes an acquisition driver based on Thermo Galactic’s “My Instrument”<br />

technology. This acquisition driver works differently from the <strong>Bomem</strong>-<strong>GRAMS</strong><br />

versions 4.x drivers that only work under Windows 95/98. m<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> provides extensions to Array Basic language that can be used<br />

to automate the acquisition of spectra, and allow combining acquisition<br />

functions with other functions of <strong>Bomem</strong>-<strong>GRAMS</strong>. These extensions include:<br />

• methods which can be called by Array Basic to execute operations<br />

• properties that Array Basic can read or set and that affect the way<br />

the acquisition interface operates<br />

• events that are used by the Array Basic interface to inform Array Basic<br />

that something has happened<br />

The methods and properties are accessed through Array Basic OBJXCALL<br />

commands (see Sections B.1 and B.2).<br />

B.1 Array Basic<br />

methods<br />

The following table lists the Array Basic methods. These are accessed through<br />

the Array Basic OBJXCALL commands.<br />

Array Basic methods<br />

OBJXCALL "TaskObj", "CONFIG"<br />

OBJXCALL "TaskObj", "CDEFAULTS"<br />

OBJXCALL “TaskObj”,<br />

“WARNINGS_ENABLED”,,value<br />

OBJXCALL "TaskObj", "HALT"<br />

OBJXCALL "TaskObj", "SETUP"<br />

OBJXCALL "TaskObj", "SDEFAULTS"<br />

OBJXCALL "TaskObj", "SCAN"<br />

Description<br />

Call up hardware configuration dialog<br />

Reset hardware settings to internal defaults<br />

Enables or disables the warning messages.<br />

Parameters:<br />

0: to disable the warnings<br />

1: to enable the warnings<br />

Stop any data acquisition or other operation in progress<br />

Call up the collect dialog<br />

Set all collect parameters to internal defaults<br />

Start a Sample acquisition using current settings (no dialog)<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 33


Appendix B<br />

Array Basic Interface<br />

Array Basic methods<br />

OBJXCALL "TaskObj", "AUTOSCALE"<br />

OBJXCALL "TaskObj", "COPYCOLLECT"<br />

OBJXCALL "TaskObj", "BSETUP"<br />

OBJXCALL "TaskObj", "BSCAN"<br />

OBJXCALL "TaskObj", "KSETUP"<br />

OBJXCALL "TaskObj", "KSCAN"<br />

OBJXCALL "TaskObj", "ALIGN"<br />

OBJXCALL "TaskObj", "About<strong>Bomem</strong><strong>GRAMS</strong>"<br />

OBJXCALL "TaskObj",<br />

"STATUS_AND_CONTROL"<br />

OBJXCALL "TaskObj", "OnHelp"<br />

OBJXCALL "TaskObj", "START_ALIGN", ,<br />

sigma_min, sigma_max, direction, type, name<br />

OBJXCALL "TaskObj", "START_BSCAN", ,<br />

delay, scans, name, memo, use_autogain,<br />

use_display<br />

Description<br />

Auto scale the data display to show data full scale<br />

Copy the last displayed data to the Windows Clipboard<br />

Call up the collect dialog; set for background scans<br />

Run a background scan using the current settings<br />

Call up the collect dialog; set for kinetics scans<br />

Run a kinetics scan using the current settings<br />

Start continuous acquisition to align accessories<br />

Call up the About <strong>Bomem</strong>-<strong>GRAMS</strong> dialog<br />

Call up the Instrument Status and Control dialog<br />

Call up the main help of the system<br />

Start continuous acquisition to align accessories<br />

Parameters:<br />

sigma_min: start of display range in cm -1<br />

sigma_max: end of display range in cm -1<br />

direction: 0 - only show direction 0<br />

1 - only show direction 1<br />

2 - show both directions<br />

type: 0 - Interferogram<br />

1 - Raw spectrum<br />

2 -Transmittance<br />

3 - Absorbance<br />

name: The file name of the background. This is used if the type is<br />

transmittance or absorbance<br />

Run a background (reference) scan<br />

Parameters<br />

delay: delay in seconds before acquisition starts<br />

scans: number of scans to acquire<br />

name: file name to save data under, extension is always forced<br />

to .background.spc<br />

memo: comment to associate with this file<br />

use_autogain: true or false field for use of autogain<br />

use_display: true or false field for use of display during<br />

acquisition<br />

34 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


Appendix B<br />

Array Basic Interface<br />

Array Basic methods<br />

OBJXCALL "TaskObj", "START_SCAN",,<br />

sigma_min, sigma_max, delay, scans, name,<br />

memo, type, bname, use_autogain, use_display<br />

OBJXCALL "TaskObj", "START_KSCAN",,<br />

sigma_min, sigma_max, delay, scans, name,<br />

memo, type, bname, subfiles, sdelay,<br />

use_autogain, use_display<br />

Description<br />

Start a sample scan<br />

Parameters<br />

sigma_min: start of display range in cm -1<br />

sigma_max: end of display range in cm -1<br />

delay: delay in seconds before acquisition starts<br />

scans: number of scans to acquire<br />

name: file name to save data under, extension is always imposed<br />

according to the type of spectrum acquired<br />

memo: comment to associate with this file<br />

type: 0 - Interferogram, extension .interferogram.spc<br />

1 - Raw spectrum, extension .SingleBeam.spc<br />

2 - Transmittance, extension .Transmittance.spc<br />

3 - Absorbance, extension .Absorbance.spc<br />

bname: The file name of the background. This is used if the<br />

type is transmittance or absorbance<br />

use_autogain: true or false field for use of autogain<br />

use_display: true or false field for use of display during<br />

acquisition<br />

Start a sample scan in kinetic mode<br />

Parameters<br />

sigma_min: start of display range in cm -1<br />

sigma_max: end of display range in cm -1<br />

delay: delay in seconds before acquisition starts<br />

scans: number of scans to acquire<br />

name: file name to save data under, extension is always imposed<br />

according to the type of spectrum acquired<br />

memo: comment to associate with this file<br />

type: 0 - Interferogram, extension .interferogram.spc<br />

1 - Raw spectrum, extension .SingleBeam.spc<br />

2 - Transmittance, extension .Transmittance.spc<br />

3 - Absorbance, extension .Absorbance.spc<br />

bname: the file name of the background. This is used if the<br />

type is transmittance or absorbance<br />

subfiles: the number of consecutive measurements to acquire in<br />

this kinetic run<br />

sdelay: the delay between subfiles measured from start to start<br />

use_autogain: true or false field for use of autogain<br />

use_display: true or false field for use of display during<br />

acquisition<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 35


Appendix B<br />

Array Basic Interface<br />

Array Basic methods<br />

OBJXCALL "TaskObj",<br />

"CONFIG_HARDWARE", , cardid, timeout<br />

OBJXCALL "TaskObj",<br />

"CONFIG_HARDWARE_ID", , bname, timeout<br />

OBJXCALL "TaskObj", "CONFIG_PROGRAM",<br />

, buffer, warn, format, save_option<br />

OBJXCALL "TaskObj",<br />

"CONFIG_SATURATION", , max_aplitude,<br />

sigma_min, sigma_max, threshold<br />

Sets hardware parameters<br />

Parameters<br />

cardid:<br />

Description<br />

The zero based index of the instrument to use for<br />

acquisition. The order may vary depending on the<br />

available instruments. It is recommended to use the<br />

"INSTRUMENT_INDEX" and "INSTRUMENT_ID"<br />

properties to determine the appropriate cardid value to<br />

use.<br />

timeout: the longest time in seconds that the driver will wait for a<br />

response before declaring an error<br />

Sets hardware parameters<br />

Parameters<br />

bname:<br />

the name (or description or ID) of the instrument to use<br />

for acquisition (as returned by the "INSTRUMENT_ID"<br />

property)<br />

timeout: the longest time in seconds that the driver will wait for a<br />

response before declaring an error<br />

Sets program parameters<br />

Parameters<br />

buffer:<br />

warn:<br />

format:<br />

this is the size of the FIFO buffer in kilobytes for holding<br />

spectra in memory. This parameters is normally set<br />

to 4096<br />

true of false field for the file overwrite warning. If true,<br />

the user must confirm file overwrites before they occur<br />

0 - Float IEEE (recommended)<br />

1 - New SPC <strong>GRAMS</strong> format<br />

save_option: 0 - to save full spectral range,<br />

1 - to save specified spectral range<br />

Sets saturation parameters<br />

Parameters<br />

max_amplitude:<br />

maximum allowed interferogram ZPD<br />

amplitude. This value is used for detecting<br />

saturation and computing percent of maximum<br />

in align mode<br />

sigma_min: start of out of band region in cm -1 for linearity and<br />

optical saturation test<br />

sigma_max: end of out if band region in cm -1 for linearity and<br />

optical saturation test<br />

threshold: highest allowed value for the ratio of the average band<br />

intensity with the maximum spectral intensity in<br />

percentage<br />

36 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


Appendix B<br />

Array Basic Interface<br />

Array Basic methods<br />

OBJXCALL "TaskObj",<br />

"CONFIG_SPEC_PARAM", , apod, lwn, trhigh,<br />

trlow, abhigh, ablow, res, phaseapod,<br />

phasetype, phasename<br />

Sets spectroscopic parameters<br />

Parameters<br />

apod:<br />

Description<br />

apodization function to apply to the interferogram<br />

0 – Boxcar<br />

1 – Bartlet<br />

2 – Cosine (default)<br />

3 – Hamming<br />

4 – Blackman<br />

5 – Gaussian<br />

6 - Norton B weak<br />

7 - Norton B medium<br />

8 - Norton B strong<br />

lwn: laser wavenumber (default 15799.7)<br />

trhigh: Transmittance high cut-off, this is the highest value that<br />

any transmittance can have, any higher values are set to<br />

this value<br />

trlow: Transmittance low cut-off, this is the lowest value that<br />

any transmittance can have, any lower values are set to<br />

this value<br />

abhigh: Absorbance high cut-off, this is the highest value that<br />

any absorbance can have, any higher values are set to<br />

this value<br />

ablow: Absorbance low cut-off, this is the lowest value that any<br />

absorbance can have, any lower values are set to this<br />

value<br />

res: Resolution of the phase correction<br />

0 - 64 cm -1<br />

1 - 128 cm -1 (default)<br />

2 - 256 cm -1<br />

3 - 512 cm -1<br />

phaseapod: apodization function to apply to the phase<br />

interferogram<br />

0 - Boxcar<br />

1 - Bartlet<br />

2 - Cosine<br />

3 - Hamming<br />

4 - Blackman<br />

5 - Gaussian (default)<br />

6 - Norton B weak<br />

7 - Norton B medium<br />

8 - Norton B strong<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 37


Appendix B<br />

Array Basic Interface<br />

Array Basic methods<br />

OBJXCALL "TaskObj",<br />

"UPDATE_INSTRUMENT_LIST"<br />

Description<br />

phasetype: the type of phase correction to perform<br />

0 - Normal or Self (default)<br />

3 - Stored phase<br />

phasename: file name of the stored phase interferogram<br />

Update the instrument list by querying the available instruments.<br />

B.2 Array Basic<br />

Properties<br />

The following table lists the Array Basic properties. These are accessed through<br />

the Array Basic OBJXCALL commands.<br />

Array Basic properties<br />

OBJXCALL "TaskObj","LASTERROR",eval<br />

OBJXCALL "TaskObj","BEGX",eval<br />

OBJXCALL "TaskObj","ENDX",eval<br />

OBJXCALL "TaskObj","XTYPE",eval<br />

OBJXCALL "TaskObj","YTYPE",eval<br />

OBJXCALL "TaskObj","ZTYPE",eval<br />

dim str(129) : OBJXCALL "TaskObj", "MEMO", $str<br />

OBJXCALL "TaskObj", "MEMO",,"comment"<br />

OBJXCALL "TaskObj","SDELAY",eval<br />

OBJXCALL "TaskObj","SDELAY",, delay<br />

OBJXCALL "TaskObj","SCANS",eval<br />

OBJXCALL "TaskObj","SCANS",, scans<br />

Description<br />

Put the last error code into the variable eval<br />

0 = successful acquisition<br />

-1 = user abort<br />

>0 = Instrument error<br />


Appendix B<br />

Array Basic Interface<br />

Array Basic properties<br />

dim str(129) : OBJXCALL "TaskObj", "NAMEBG",<br />

$str : dialogon<br />

OBJXCALL "TaskObj", "NAMEBG",, "filename"<br />

dim str(129) : OBJXCALL "TaskObj",<br />

"NAMELASTCOLLECT", $str<br />

OBJXCALL "TaskObj", "NAMELASTCOLLECT",,<br />

"filename"<br />

dim str(255) : OBJXCALL "TaskObj", "VELNAME",<br />

$str<br />

OBJXCALL "TaskObj","LWN",eval<br />

OBJXCALL "TaskObj","LWN",, lwn<br />

OBJXCALL "TaskObj","PURGE",eval<br />

OBJXCALL "TaskObj","PURGE",, delay<br />

OBJXCALL "TaskObj","CHANNEL",eval<br />

OBJXCALL "TaskObj","CHANNEL",, channel<br />

OBJXCALL "TaskObj","RES",eval<br />

OBJXCALL "TaskObj","RES",, res<br />

OBJXCALL "TaskObj","ZFF",eval<br />

OBJXCALL "TaskObj","IRMODE",eval<br />

OBJXCALL "TaskObj","APOD",eval<br />

Description<br />

Get the Background spectrum filename currently in use<br />

Set the Background spectrum filename<br />

Get the last acquired filename<br />

Set the acquisition filename. Note that the extension is automatically<br />

adjusted according to the acquire data type.<br />

Get the scan speed<br />

Get the laser wave number in use<br />

Set the laser wave number<br />

Get the Purge delay before scanning<br />

Set the Purge delay before scanning<br />

Get the detector/channel in use<br />

Set the detector/channel<br />

Get the resolution in use<br />

0 - 1 cm -1<br />

1 - 2 cm -1<br />

2 - 4 cm -1<br />

3 - 8 cm -1<br />

4 - 16 cm -1<br />

5 - 32 cm -1<br />

6 - 64 cm -1<br />

7 - 128 cm -1<br />

Set the resolution<br />

Get the Zero Filling Factor used. always zero<br />

Get Spectral domain. 0 = MID-IR, 1 = NEAR-IR<br />

Get the Apodization function type<br />

0 = None (Boxcar)<br />

1 = Triangular (or Bartlet)<br />

2 = Weak Norton-Beer<br />

3 = Medium Norton-Beer<br />

4 = Strong Norton-Beer<br />

5 = Happ-Genzel (or Hamming)<br />

7 = Cosine<br />

10 = Gaussian<br />

12 = Blackman<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 39


Appendix B<br />

Array Basic Interface<br />

Array Basic properties<br />

OBJXCALL "TaskObj","APOD",,apod<br />

OBJXCALL "TaskObj","PHASE",eval<br />

OBJXCALL "TaskObj","PHASE",,phase<br />

OBJXCALL "TaskObj","PHASEPTS",eval<br />

OBJXCALL "TaskObj","I<strong>GRAMS</strong>IDE",eval<br />

OBJXCALL "TaskObj","IGRAMDIR",eval<br />

dim str(255) : OBJXCALL "TaskObj", "NAMEPHAS",<br />

$str<br />

OBJXCALL "TaskObj", "NAMEPHAS",, filename<br />

OBJXCALL "TaskObj", "FIRST_STAGE_GAIN",eval<br />

OBJXCALL "TaskObj", "FIRST_STAGE_GAIN",,<br />

gain<br />

OBJXCALL "TaskObj",<br />

"SECOND_STAGE_GAIN",eval<br />

OBJXCALL "TaskObj", "SECOND_STAGE_GAIN",,<br />

gain<br />

Description<br />

Set the Apodization function type<br />

0 = None (Boxcar)<br />

1 = Triangular (or Bartlet)<br />

2 = Weak Norton-Beer<br />

3 = Medium Norton-Beer<br />

4 = Strong Norton-Beer<br />

5 = Happ-Genzel (or Hamming)<br />

7 = Cosine<br />

10 = Gaussian<br />

12 = Blackman<br />

Get the Phase correction type<br />

0 - Self<br />

3 - Stored phase<br />

Set the Phase correction type<br />

0 - Self<br />

3 - Stored phase<br />

Get the Number of interferogram points for phase correction<br />

Get the Interferogram mode. 0 = double sided (0 scans!), 4 = double<br />

interferogram<br />

Get the Interferogram direction. Always 0 (bi-directional)<br />

Get File name of phase array for Stored Phase<br />

Set the File name of phase array for Stored Phase<br />

Get the first stage preamplifier gain in use<br />

0 - first gain value<br />

1 - second gain value<br />

2 - third gain value<br />

3 - fourth gain value<br />

Set the first stage gain<br />

Get the second stage preamplifier gain in use<br />

0 - gain = 1<br />

1 - gain = 2<br />

2 - gain = 4<br />

3 - gain = 8<br />

4 - gain = 16<br />

Set the second stage gain<br />

40 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


Appendix B<br />

Array Basic Interface<br />

Array Basic properties<br />

OBJXCALL "TaskObj",<br />

"INSTRUMENT_COUNT",eval<br />

OBJXCALL "TaskObj", "INSTRUMENT_INDEX",eval<br />

OBJXCALL "TaskObj", "INSTRUMENT_INDEX",,<br />

index<br />

dim str(255) : OBJXCALL "TaskObj",<br />

"INSTRUMENT_ID", $str<br />

OBJXCALL "TaskObj",<br />

"INSTRUMENT_STATE",eval<br />

Description<br />

Get the number of available instruments. It is recommended to call<br />

the "UPDATE_INSTRUMENT_LIST" method prior to reading this<br />

property.<br />

Get the current index in the instrument list used to retrieve the<br />

"INSTRUMENT_ID" and "INSTRUMENT_STATE" properties. Note<br />

that this index is NOT the currently selected instrument for<br />

acquisition.<br />

Set the current index in the instrument list used to retrieve the<br />

"INSTRUMENT_ID" and "INSTRUMENT_STATE". properties. Note<br />

that this index is NOT the currently selected instrument for<br />

acquisition.<br />

Get the description of the instrument pointed to by the<br />

"INSTRUMENT_INDEX" in the instrument list.<br />

Get the connection state of the instrument pointed to by the<br />

"INSTRUMENT_INDEX" in the instrument list. Returned values are<br />

as follows:<br />

0 - FREE - instrument is not connected<br />

1 - BUSY - instrument is connected<br />

2 - Not Ethernet - connected via an interface card<br />

3 - Selected - instrument currently selected for acquisition<br />

B.3 Error codes<br />

The following is a list of the possible warning and error codes:<br />

Error ID Value Description<br />

ERR_USER_CANCEL -1 User Cancelled during collect<br />

ERR_NONE 0 No error<br />

ERR_OTHER 1 Other error<br />

ERR_TIMEOUT 2 Acquisition time-out<br />

ERR_INIT_IN_PROGRESS 3 Initialization in progress<br />

ERR_PARAM_INVALID 4 Input parameter invalid<br />

ERR_NOT_ENOUGH_MEMORY 5 Not enough memory<br />

ERR_AUTO_GAIN_FAILED 6 Auto gain failed<br />

ERR_BOARD_COUNT_INVALID 120 Bopard count parameter invalid<br />

ERR_BOARD_NAME_INVALID 121 Board name parameter invalid<br />

ERR_BOARD_ID_INVALID 122 Board ID parameter invalid<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 41


Appendix B<br />

Array Basic Interface<br />

Error ID Value Description<br />

ERR_OPEN_ERR 140 Error in acq_open function<br />

ERR_ALREADY_OPEN 141 Acquisition subsystem already opened<br />

ERR_ALREADY_OPEN_BY_OTHER 142 Acquisition subsystem already opened by another<br />

application<br />

ERR_DEV_NOT_EXIST 143 Acquisition board is not present<br />

ERR_SND_CMD_ERR 160 Error in acq_send_command function<br />

ERR_SND_CMD_NOT_SUPPORTED 161 Send command code not supported by the current<br />

acquisition subsystem<br />

ERR_SND_CMD_INVALID 162 Send command code invalid<br />

ERR_CMD_VALUE_INVALID 163 Send command value invalid<br />

ERR_GET_STATUS_ERR 180 Error in acq_get_status function<br />

ERR_NO_STATUS 181 Status not available<br />

ERR_GET_DIAG_STATUS_ERR 200 Error in acq_get_diag_status function<br />

ERR_NOT_IN_DIAG_MODE 201 Acquisition subsystem is not in diagnostic mode<br />

ERR_DIAG_MODE_NOT_SUPPORTED 202 Diagnostic mode is not supported by the current<br />

acquisition subsystem<br />

ERR_START_ERR 220 Error in acq_start function<br />

ERR_NOT_IN_ACQ_MODE 221 Acquisition subsystem is not in acquisition mode<br />

ERR_GET_DATA_ERR 240 Error in acq_get_datafunction<br />

ERR_ACQ_NOT_IN_PROGRESS 241 Acquisition is not in progress<br />

ERR_STOP_ERR 260 Error in acq_stop function<br />

ERR_ACQ_NOT_STARTED 261 Acquisition is not started yet<br />

ERR_CLOSE_ERR 280 Error in acq_close function<br />

ERR_WN_BEGIN 300 Invalid start wavenumber<br />

ERR_WN_END 301 Invalid end wavenumber<br />

ERR_WN_UNIQUE 302 Start and end wavenumber must be unique<br />

ERR_BG_FILE_NONE 303 Please specify a background file<br />

ERR_BG_FILE_NOT_LOADED 304 Couldn’t load the background file<br />

ERR_BG_FILE_NOT_FOUND 305 Background file does not exist<br />

ERR_BG_FILE_SATURATED 306 Background file is saturated<br />

ERR_BG_FILE_NBR_PTS 307 Invalid number of points in background file<br />

ERR_BG_MULTI_FILE 308 Background file cannot be a multi-file<br />

42 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


Appendix B<br />

Array Basic Interface<br />

Error ID Value Description<br />

ERR_BG_DATA_TYPE 309 Background file must be a single beam data file<br />

ERR_SCAN_DIR 310 Invalid scan direction<br />

ERR_DATA_TYPE 311 Invalid data type<br />

ERR_ACQ_MODE 312<br />

ERR_START_DELAY 313<br />

ERR_FILE_NONE 314<br />

ERR_NBR_SCANS 315<br />

ERR_NBR_RUNS 316<br />

ERR_KINETIC_DELAY 317<br />

ERR_BUFFER_SIZE 318<br />

ERR_IGRAM_MAX_AMP 319<br />

ERR_CUTOFF_THRESHOLD 320<br />

ERR_LASER_WN 321<br />

ERR_TRANS_HIGH_CUTOFF 322<br />

ERR_TRANS_LOW_CUTOFF 323<br />

ERR_TRANS_CUTOFF_LT_UNIQUE 324 Low transmittance cutoff must be lower than high<br />

transmittance cutoff value<br />

ERR_ABSORB_HIGH_CUTOFF 325<br />

ERR_ABSORB_LOW_CUTOFF 326<br />

ERR_ABSORB_CUTOFF_LT_UNIQUE 327 Low absorbance cutoff must be lower than high<br />

absorbance cutoff value<br />

ERR_TIMEOUT_INVALID 328<br />

ERR_BOARD_INDEX_INVALID 329<br />

ERR_PHASE_FILE_NONE 330 Please specify a stored phase file<br />

ERR_PHASE_FILE_NOT_FOUND 331 Stored phase file do not exist<br />

ERR_PHASE_FILE_NOT_LOADED 332 Couldn't load the stored phase file<br />

ERR_PHASE_FILE_MULTI_FILE 333 Stored phase file can not be a multi file<br />

ERR_PHASE_FILE_DATA_TYPE 334 Stored phase file must be an Igram data file<br />

ERR_PHASE_TYPE_UNSUPPORTED 335<br />

ERR_DETECTOR_INDEX 336<br />

ERR_RESOLUTION_INDEX 337<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 43


Appendix B<br />

Array Basic Interface<br />

Error ID Value Description<br />

ERR_FIRST_GAIN_INDEX 338<br />

ERR_SECOND_GAIN_INDEX 339<br />

ERR_FMGR_BUFFER_UNDERRUN 340 Buffer Underrun, missing some data. Increase the buffer<br />

size<br />

ERR_FMGR_SAVE_DATA 341 Error occurs when trying to save a new bunch of data to<br />

disk<br />

ERR_FMGR_DELETE_FILE 342<br />

ERR_SATURATION_DET 343<br />

ERR_SATURATION_IGRAM_AMP 344<br />

ERR_SATURATION_OPT_CUTOFF 345<br />

ERR_OPT_BEGIN_OVERSAMPLING 346<br />

ERR_OPT_END_OVERSAMPLING 347<br />

ERR_FILE_FORMAT 348<br />

ERR_SE51_NEARIR_MODE 349<br />

ERR_APOD 350<br />

ERR_PHASE_APOD 351<br />

ERR_INVALID_PATH 352 Invalid disk/directory specified<br />

ERR_BG_FILE_INTG_FAILED 353 Integrety of background file could not be verified<br />

ERR_PHASE_FILE_INTG_FAILED 354 Integrety of stored phase file could not be verified<br />

44 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


APPENDIX C<br />

AUDIT LOG<br />

The spectrum files are saved<br />

without a key (i.e. without<br />

an eSignature).<br />

During acquisition, the<br />

integrity of the background<br />

or stored phase file is<br />

checked. If an integrity error<br />

occurs, an error is displayed<br />

to the user and added to<br />

the audit log.<br />

Each spectrum acquired by <strong>Bomem</strong>-<strong>GRAMS</strong> includes a block of information<br />

called the audit log. The audit log contains unalterable information about the file<br />

including the time the file was collected, the user, the instrument,<br />

the background or phase file (if applicable), etc., as well as all operations<br />

performed on the file.<br />

To view the audit log of a trace, select Trace Information in the File menu of<br />

<strong>Bomem</strong>-<strong>GRAMS</strong>, then click the Audit Log button. The following is an example<br />

of the audit log of a spectrum file:<br />

Local Time = 2002/08/29 12:43:09<br />

UTC Time = 2002/08/29 16:43:09<br />

Original File Name = C:\Program Files\Galactic\Data\test.SingleBeam.spc<br />

Logon name = WP<br />

User name = Warren Peace<br />

Instrument type = NetworkIR<br />

Instrument description = Test instrument22<br />

Resolution = 4 cm-1<br />

Speed = 66 scans/minute<br />

Sampling = 1 samples/fringe<br />

Detector = 1<br />

Apodisation = Cosine<br />

Phase correction:<br />

Apodisation = Gaussian<br />

Resolution = 128 cm-1<br />

Type = Normal<br />

Number of scans = 1<br />

Number of measurements = 1<br />

SUBFILE1<br />

Local Time = 2002/08/29 12:43:11<br />

UTC Time = 2002/08/29 16:43:11<br />

Detector saturation = 0<br />

Bad scans = 0<br />

First stage gain = 1<br />

Second stage gain = 2<br />

Total experiment time = 0:00:27<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 45


APPENDIX D<br />

GLOSSARY<br />

Note: The following terms are defined as they are used in ABB manuals.<br />

absorbance (also called optical density or extinction)<br />

A measure of the amount of light absorbed as it passes through a sample.<br />

The absorbance A is the logarithm of the ratio of the intensity I 0 of the light<br />

striking the sample to the intensity I of the light which passes through<br />

the sample.<br />

I<br />

0 1<br />

A = log10 = log10<br />

I T<br />

The absorbance is equal to the logarithm of the reciprocal of<br />

the transmittance T.<br />

absorbance spectrum<br />

The absorbance of a sample as a function of the frequency or wavelength<br />

over a given spectral range.<br />

The absorbance spectrum is calculated point-by-point from the sample and<br />

reference spectra as follows:<br />

analyzer<br />

⎛<br />

Absorbance = −log<br />

10⎜<br />

⎝<br />

sample<br />

reference<br />

A complete system for FT-IR or FT-NIR analysis (see Figure D-1).<br />

⎞<br />

⎟<br />

⎠<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 47


Appendix D<br />

Glossary<br />

Analyzer<br />

Spectrometer<br />

Source<br />

Interferometer<br />

• modulates light from source<br />

Laser<br />

• provides precise, stable reference<br />

for interferometer<br />

Detector<br />

• converts modulated light to electrical<br />

signal after it passes through the sample<br />

• is in spectrometer or sampling accessory<br />

Sampling system (if required)<br />

• brings a sample of the process to the<br />

sampling accessory<br />

• may include valves, filters, pumps, etc.,<br />

controlled by the software<br />

Sampling accessory<br />

• allows modulated light beam to interact<br />

with the sample<br />

• is mounted on spectrometer or linked<br />

by fiber-optic cable<br />

Analyzer software<br />

• performs FFT calculation, analysis of<br />

spectra, reporting, data archiving, etc.<br />

• may control the sampling system(s)<br />

Figure D-1. Analyzer<br />

background spectrum (see reference spectrum)<br />

beamsplitter<br />

A semi-reflecting mirror in the interferometer used to divide the radiation<br />

from the infrared source into two beams, and to recombine the two beams<br />

into a single beam.<br />

Beer-Lambert’s law<br />

An equation relating the absorption of light by a sample to the absorption<br />

coefficient of the sample, the path length, and the concentration.<br />

A λ<br />

= ε λ<br />

× b × C<br />

where<br />

A λ is the sample’s absorbance value at a specific wavelength (λ)<br />

ε λ is the absorption coefficient of the material at that wavelength<br />

(l⋅mol -1 ⋅ cm -1 ).<br />

b is the path length through the sample (cm)<br />

C is the concentration of the analyte (mol⋅l -1 )<br />

BK7<br />

A high quality optical glass.<br />

BK7 is not hygroscopic. Its refractive index is 1.50 at 8000 cm -1 . Its spectral<br />

range is from 25000 cm -1 to 3700 cm -1 .<br />

48 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


Appendix D<br />

Glossary<br />

blank sample<br />

A sample that does not absorb infrared radiation within the spectral range<br />

where the measurement is performed.<br />

calibration<br />

The process of aligning analyzer measurements to agree with reference<br />

measurements obtained using a primary method.<br />

calibration (or model or calibration model)<br />

The set of equations that represents the relationship between the absorbance<br />

spectra of a set of samples and the properties of the samples.<br />

Some common types of models are peak height, peak ratio, PLS and<br />

autosubtract models.<br />

calibration set (or training set)<br />

In spectrometer calibration, a set of standard samples used in calibration<br />

model development. The calibration set covers the expected ranges of<br />

property values, as well as any other variations that may affect the spectra,<br />

such as temperature. When there is more than one property, the calibration<br />

set must include independent variations of each property.<br />

channel<br />

An optical channel on the spectrometer. Each channel is associated with one<br />

sample accessory and one detector. Some spectrometers have only one<br />

channel. This is typical of laboratory instruments.<br />

Some spectrometers have multiple channels. This allows one instrument to<br />

analyze several streams simultaneously.<br />

If the sampling system is set up for stream switching, one channel can be<br />

used to analyze two or more streams. In most cases, however, there is only<br />

one stream (i.e. one sampling point) per channel.<br />

channel spectrum<br />

A spectral artifact caused by reflections in the gap between two optical<br />

surfaces, for example, between parallel window surfaces or at the coupling<br />

point between optical fiber ends. Also called Fabry-Perot interference.<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 49


Appendix D<br />

Glossary<br />

To avoid channel spectrum in transmission cells with a small optical<br />

pathlength, a wedge in the sample path is used to prevent parallelism of the<br />

two windows.<br />

coadded spectrum<br />

The spectrum resulting from averaging, on a point-by-point basis, a number<br />

of spectra or interferograms. Coaddition is used to increase the signal-tonoise<br />

ratio of a spectrum.<br />

desiccant<br />

A substance used as a drying agent.<br />

detector<br />

A device in a spectrometer that produces an electrical signal that is<br />

proportional to the intensity of the light striking it.<br />

detector cut-off<br />

The frequency or wavelength at lower end of the spectral range.<br />

detector saturation<br />

A condition of the detector whereby an increase in the light intensity<br />

striking it no longer produces a linearly proportional change in the output<br />

signal. This is a nonlinear condition and can cause Fourier stray light.<br />

D-star (D*)<br />

A value used to designate the specific detectivity. This is a performance<br />

measure independent of detector size. The higher is the D* value, the better<br />

is the detector.<br />

1<br />

2<br />

D*<br />

= (A × ∆f ) D<br />

where A is the sensitive area<br />

∆f is the bandwidth frequencies<br />

D is the reciprocal of noise equivalent power (NEP)<br />

factor<br />

In analysis using the PLS algorithm, one of a series of synthetic spectra<br />

which represent the most common variations in a given set of spectra<br />

(also known as latent vectors, characteristic vectors, spectral loadings,<br />

loading vectors, principal components, or variation spectra.).<br />

50 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


Appendix D<br />

Glossary<br />

Fast Fourier transform (FFT)<br />

A mathematical algorithm for efficient calculation of the Fourier transform.<br />

Fourier transform<br />

A mathematical function that transforms the time-dependent information<br />

contained in the interferogram into the corresponding optical spectrum.<br />

F-ratio<br />

An indicator of spectral residual after modeling that can help detect whether<br />

an abnormal condition has occurred during analysis. The F-ratio should<br />

normally be low (typically less than 10, depending on the application). An<br />

F-ratio higher than average may indicate that the wrong material is being<br />

analyzed or that there is a problem with the system.<br />

FT-IR<br />

Fourier transform infrared.<br />

FT-MIR<br />

Fourier transform mid-infrared.<br />

FT-NIR<br />

Fourier transform near-infrared.<br />

grab sample<br />

A sample extracted from the process at the precise time that a spectrum is<br />

recorded. Laboratory analysis of the grab sample using a primary method is<br />

used to validate or improve the analyzer calibration.<br />

hygroscopic<br />

Able to absorb moisture from the atmosphere.<br />

hygroscopic optical component<br />

An optical component made of hygroscopic material. Such optical<br />

components can be damaged if exposed to humidity because they can<br />

absorb moisture from the atmosphere.<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 51


Appendix D<br />

Glossary<br />

infrared<br />

A region of the electromagnetic spectrum between visible light and radio<br />

waves where the wavelengths are longer than those of red light.<br />

initial (or first) reference (or zero)<br />

The first reference spectrum collected when the system was commissioned.<br />

This is used as a base to monitor changes in the analyzer response over time.<br />

Installation Qualification (IQ)<br />

A procedure used to ensure that an instrument has been correctly installed.<br />

interferogram<br />

A representation of the electrical signal from the detector of a FT-IR<br />

spectrometer. The interferogram is a graph of the voltage at the output of<br />

the detector as a function of the position of interferometer scan mechanism.<br />

The spectrum is calculated from the interferogram using a Fourier transform.<br />

interferometer<br />

The device in an FT-IR spectrometer that modulates the infrared beam<br />

coming from the source.<br />

The interferometer splits the infrared beam into two beams, introduces<br />

a continuously varying optical path difference (OPD) between the two<br />

beams, and recombines the beams. When the beams are recombined,<br />

interference caused by the OPD modulates the beam.<br />

least-squares regression<br />

A regression procedure used to establish a parameter value derived from<br />

multiple absorbance values such that the sum of the squares of<br />

the differences between the model absorbances and the actual absorbances<br />

is minimized.<br />

a variety of media (e.g. wire pair, fiber, radio, etc.). MODBUS TCP/IP uses<br />

TCP/IP and Ethernet to carry the MODBUS messages.<br />

model (see calibration model)<br />

52 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


Appendix D<br />

Glossary<br />

nonlinearity<br />

A deviation from the normally linear relation between the output and<br />

the input of a device. Nonlinearity occurs when the output of a device does<br />

not vary in direct proportion to the input, for example, when saturation<br />

occurs.<br />

open beam<br />

A condition in which there is no sample in the sample accessory.<br />

open-beam spectrum<br />

A spectrum acquired in the open-beam condition.<br />

Operation Qualification (OQ)<br />

A test procedure used to ensure that an instrument is operating within<br />

specifications.<br />

optical density (see absorbance)<br />

outlier (or outlier sample)<br />

A sample in a set of samples for which a predicted property value or<br />

spectral structure lies significantly outside the main cluster of<br />

the corresponding property values or structures for that set.<br />

Outliers can be caused by several different factors including unexpected<br />

variations in the property value, inconsistent sample handling, or changes in<br />

the performance of the instrument.<br />

path length<br />

The distance that light travels through the sample during analysis.<br />

predict<br />

In spectroscopy, to obtain the value for a specific property of a sample from<br />

its spectrum by using one or more calibration models.<br />

prediction<br />

In spectroscopy, the value obtained from predicting a property.<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 53


Appendix D<br />

Glossary<br />

preprocessing<br />

Mathematical treatment applied to a spectrum before the calibration model<br />

is applied to it. There are a number of standard preprocessing algorithms<br />

commonly used in spectroscopy.<br />

primary method<br />

The accepted standard laboratory technique for measuring the properties of<br />

samples. When developing a calibration model, the “known” property<br />

values of the training set samples are determined by measurement using<br />

the primary method.<br />

property<br />

A single, measurable characteristic of a sample, whether it be a physical<br />

property such as temperature or a chemical property such as concentration.<br />

raw spectrum<br />

1. A spectrum that has not undergone any mathematical alterations.<br />

2. A single-beam spectrum.<br />

reference spectrum (also called background spectrum or zero spectrum)<br />

A single-beam spectrum that only contains information about the analyzer,<br />

including the sample accessory and the air present in any part of<br />

the modulated beam optical path. This is required in order to obtain<br />

a transmittance or absorbance spectrum of the sample.<br />

A reference spectrum is obtained by removing the sample from the sample<br />

accessory or by filling the sample accessory with a blank sample and<br />

acquiring a spectrum.<br />

repeatability<br />

The precision of repeated measurements on the same instrument.<br />

reproducibility<br />

The precision of repeated measurements on different instruments.<br />

resolution<br />

The smallest frequency interval that can be distinguished over a spectral<br />

range. The lower the resolution setting on the spectrometer, the more data<br />

points there are in the spectrum.<br />

54 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


Appendix D<br />

Glossary<br />

Lowering the resolution setting on the spectrometer yields spectra with<br />

a “higher” resolution, since there are more data points covering the same<br />

spectral range.<br />

sample accessory<br />

A device that permits interaction of the modulated light beam from<br />

the spectrometer with the sample, for the purpose of obtaining<br />

a transmittance, absorbance, or reflectance spectrum of the sample.<br />

Flow-through sample cells and immersion probes are commonly used<br />

sample accessories.<br />

sampling point<br />

A sampling point is a point in a process stream where the material in the<br />

process (the sample) is analyzed (see Channel).<br />

sampling system<br />

A system used to direct a sample from a process stream to the sample<br />

accessory. The sampling system may include software-controlled valves,<br />

pumps, and other devices.<br />

saturation (see detector saturation)<br />

scan<br />

With the ABB<strong>Bomem</strong> FT-IR spectrometers, a forward and a reverse sweep<br />

of the interferometer scan mechanism.<br />

A single scan results in two interferograms, one for the forward sweep and<br />

one for the reverse sweep (see Coadded spectrum).<br />

sequence<br />

In Enablir, a sequence defines the order in which streams are analyzed.<br />

Although a number of different sequences can be defined, only one<br />

sequence can run at a time.<br />

single-beam spectrum<br />

The spectrum that results from performing a Fourier transform on<br />

the interferogram obtained from a spectrometer.<br />

The single-beam spectrum contains information not only about any sample<br />

present in the sample compartment or sample accessory, but also about the<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 55


Appendix D<br />

Glossary<br />

instrument (the source, all the optical components, the ambient air, as well<br />

as any contamination there may be in the optical path).<br />

spectral range<br />

The range of frequencies (or wavelengths) over which the amplitude of<br />

a spectrum is above the acceptable noise level. It is application dependent.<br />

spectrometer<br />

An instrument for producing a spectrum and measuring the wavelengths,<br />

energies, etc. involved.<br />

An FT-IR spectrometer has a photoelectric detector and produces<br />

a spectrum that shows how the transmittance, absorbance, or reflectance of<br />

the sample varies with wavelength. Such instruments are also called<br />

spectrophotometers.<br />

spectrum<br />

1. A range of electromagnetic energies arrayed in order of increasing or<br />

decreasing wavelength.<br />

2. A distribution of transmission or absorbance levels over a range of<br />

wavelengths, arrayed in order of increasing or decreasing wavelength.<br />

stray light<br />

1. Apparent optical energy, caused by nonlinearity, in a spectral region where<br />

no energy is expected (Fourier stray light).<br />

2. Modulated light reaching the detector without having passed through the<br />

sample.<br />

stream<br />

A current or flow of material in a process. A stream is analyzed using a<br />

sample accessory, typically a flow-through sample cell, connected to the<br />

analyzer. One sample cell is used for each analyzed stream unless the<br />

sampling system is set up for stream switching.<br />

training set (see calibration set)<br />

transmittance<br />

A measure of the amount of light that passes through the sample, often<br />

expressed as a percentage.<br />

56 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


Appendix D<br />

Glossary<br />

The transmittance T is the ratio of the intensity I of the light which passes<br />

through the sample to the intensity I 0 of the light striking the sample.<br />

transmittance spectrum<br />

I<br />

T = % T = 100T<br />

I<br />

0<br />

The percent transmittance of a sample as a function of the frequency or<br />

wavelength over a given spectral range.<br />

The transmittance spectrum is calculated point-by-point from the sample<br />

and reference spectra as follows:<br />

sample<br />

%Transmitt ance = ×100<br />

reference<br />

validation<br />

Tests used to establish that an analyzer is operating correctly (instrument<br />

validation) and is providing results within the expected degree of agreement<br />

(calibration validation). Validation can include diagnostics on the reference<br />

and sample spectra and predictions with known samples.<br />

validation set<br />

In spectrometer calibration, a set of standard samples similar to a training<br />

set but used to validate a calibration model.<br />

wavelength<br />

The distance (λ) between successive points of equal phase in a wave.<br />

In FT-IR spectrometry, wavelength is usually expressed in micrometers<br />

(µm) or nanometers (nm).<br />

wavenumber<br />

The number (σ) of cycles of a wave in unit length. The wavenumber is<br />

the reciprocal of the wavelength:<br />

σ = 1 λ<br />

The unit of the wavenumber is 1<br />

cm or cm-1 .<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 57


Appendix D<br />

Glossary<br />

zero spectrum (see reference spectrum)<br />

ZPD (Zero Path Difference)<br />

The point where the scan mechanism of a Michelson interferometer is<br />

positioned so that the two beams from the beamsplitter travel exactly<br />

the same distance before being recombined.<br />

58 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


A<br />

Align...........................................................................3, 21<br />

C<br />

Collect.........................................................................5, 23<br />

H<br />

Halt Collect.....................................................................28<br />

INDEX OF DIALOG BOXES<br />

I<br />

Instrument Status and Control .................................... 2, 26<br />

P<br />

Parameter Setup................................................................ 2<br />

Hardware tab ............................................................. 16<br />

Program tab ............................................................... 18<br />

Saturation tab............................................................. 20<br />

Spectroscopic Parameters tab .................................... 17<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 59


INDEX<br />

A<br />

absorbance spectrum.......................................................22<br />

maximum value..........................................................18<br />

minimum value ..........................................................18<br />

acquisition card<br />

selection .....................................................................16<br />

SEQ3600G (or SEQ36)..............................................16<br />

SEQ5100G (or SEQ51)..............................................16<br />

acquisition speed.............................................................27<br />

Align command ....................................................2, 21, 22<br />

Align dialog box .........................................................3, 21<br />

Align display...................................................................22<br />

apodization functions<br />

available in <strong>GRAMS</strong>..................................................31<br />

selection .....................................................................18<br />

Array Basic<br />

extensions ..................................................................33<br />

language................................................................ix, 33<br />

methods......................................................................33<br />

OBJXCALL commands.......................................33, 38<br />

properties ...................................................................38<br />

auto gain .........................................................................24<br />

B<br />

background<br />

current background file........................................22, 25<br />

Bartlett (triangular) apodization function........................31<br />

Blackman-Harris apodization function ...........................32<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> AI<br />

description....................................................................9<br />

starting .........................................................................1<br />

Boxcar apodization function......................... 31, 37, 39, 40<br />

buffer size .......................................................................19<br />

C<br />

Collect command....................................................5, 6, 23<br />

Collect dialog box.......................................................5, 23<br />

Collect menu .................................................................. 15<br />

computer controlled........................................................ 17<br />

computer-selectable gains .............................................. 17<br />

Cosine apodization function..................................... 31, 32<br />

D<br />

data acquisition<br />

background (reference) spectra.................................. 24<br />

coadded spectrum ...................................................... 25<br />

Halt Collect command............................................... 25<br />

multifiles.................................................................... 24<br />

normal spectra ........................................................... 24<br />

spectrum of each individual scan............................... 25<br />

data type<br />

Absorb (absorbance spectrum) ............................ 22, 25<br />

Background (current background file name) ....... 22, 25<br />

displayed.............................................................. 21, 25<br />

IGram (raw interferogram) .................................. 21, 25<br />

Single-Beam (single-beam spectrum).................. 21, 25<br />

detector........................................................................... 17<br />

cutoff ........................................................................... 3<br />

saturation ................................................................. 3, 4<br />

selection..................................................................... 27<br />

F<br />

file<br />

name .......................................................................... 24<br />

optional description ................................................... 25<br />

file format....................................................................... 19<br />

IEEE floating-point ................................................... 19<br />

SPC <strong>GRAMS</strong>............................................................. 19<br />

G<br />

gain<br />

computer selectable ................................................... 17<br />

setting .................................................................. 20, 24<br />

Gaussian apodization function........................................ 32<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 61


general parameters<br />

initial delay................................................................ 24<br />

number of scans......................................................... 24<br />

<strong>GRAMS</strong> AI<br />

manuals ............................................................ ix, 1, 15<br />

<strong>GRAMS</strong>/32 AI<br />

starting....................................................................... 14<br />

<strong>GRAMS</strong>/32 AI manuals................................................. 14<br />

H<br />

Halt Collect command.......................................3, 4, 22, 28<br />

Halt Collect dialog box .................................................. 28<br />

Help command ............................................................... 29<br />

I<br />

instrument (type) .......................................................16, 27<br />

Instrument Status and Control command ..............2, 24, 26<br />

Instrument Status and Control dialog box ...................2, 26<br />

interferogram<br />

maximum amplitude allowed .................................... 20<br />

K<br />

Kinetic parameters<br />

Minimum time interval between Sub-Files ............... 25<br />

Number of Sub-Files ................................................. 25<br />

L<br />

laser frequency ............................................................... 18<br />

M<br />

Maximum interferogram amplitude allowed.................. 20<br />

memo (optional file description) .................................... 25<br />

Michelson Collect Driver................................................. 9<br />

installing.................................................................... 14<br />

multifiles ........................................................................ 24<br />

My Instrument.............................................................9, 33<br />

N<br />

Norton Beer apodization function...................................32<br />

O<br />

open beam condition.........................................................1<br />

Optical Cut-Off Detection...............................................20<br />

over sampling..................................................................27<br />

overwrite warning...........................................................19<br />

P<br />

Parameter Setup dialog box ..............................................2<br />

Hardware tab..............................................................16<br />

Program tab................................................................18<br />

Saturation tab .............................................................20<br />

Spectroscopic Parameters tab.....................................17<br />

phase correction........................................................18, 24<br />

polystyrene sample .......................................................6, 7<br />

preamplifier<br />

computer-selectable gains ..........................................17<br />

R<br />

resolution ....................................................................2, 27<br />

S<br />

saturation<br />

automatic detection of................................................20<br />

detection threshold.....................................................21<br />

Save option .....................................................................19<br />

scan<br />

definition....................................................................24<br />

direction .....................................................................21<br />

SEQ36 interface board....................................................14<br />

SEQ3600G (or SEQ36) interface board..........................16<br />

SEQ5100G (or SEQ51) interface board..........................16<br />

Setup command ..........................................................1, 15<br />

spectral range<br />

acquiring a sample spectrum................................21, 24<br />

checking the signal...............................................21, 24<br />

displayed ..............................................................21, 24<br />

62 <strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong>


spectrum log file .............................................................21<br />

sweeps<br />

forward.......................................................................24<br />

reverse........................................................................24<br />

T<br />

threshold<br />

maximum value..........................................................21<br />

timeout............................................................................17<br />

Trace Information command .................................... 25, 45<br />

transmittance spectrum............................................... 1, 22<br />

maximum value ......................................................... 18<br />

minimum value.......................................................... 18<br />

MIR ............................................................................. 7<br />

NIR.............................................................................. 7<br />

Z<br />

ZPD amplitude ......................................................... 21, 23<br />

<strong>Bomem</strong>-<strong>GRAMS</strong> <strong>User's</strong> <strong>Guide</strong> 63


Analytical and Advanced Solutions<br />

585 Charest Blvd East, Suite 300<br />

Québec, QC G1K 9H4<br />

CANADA<br />

Phone: 418- 877 2944<br />

North America: 800-858–3847<br />

France: 0810 020 000<br />

Fax.: 418- 877-2834<br />

E-mail: ftir@ca.abb.com<br />

www.abb.com/analytical<br />

Printed in Canada

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!