12.02.2015 Views

Hydration of Small Peptides (8.29 MB pdf) - The Bowers Group

Hydration of Small Peptides (8.29 MB pdf) - The Bowers Group

Hydration of Small Peptides (8.29 MB pdf) - The Bowers Group

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Hydration</strong> <strong>of</strong><br />

<strong>Small</strong> <strong>Peptides</strong><br />

Thomas Wyttenbach, Dengfeng Liu,<br />

and Michael T. <strong>Bowers</strong><br />

http://bowers.chem.ucsb.edu/


Why study hydration<br />

Is a certain property <strong>of</strong> a molecule<br />

(e.g. conformation)<br />

inherent to the molecule<br />

or a consequence <strong>of</strong> solute–solvent interaction


Alzheimer amyloid β-peptide<br />

apolar solvent<br />

(NMR) 1<br />

water<br />

(theory) 3<br />

gas<br />

phase<br />

(theory) 3<br />

water: 2<br />

• no NMR structure<br />

• no α-helix<br />

• no β-sheet<br />

• hydrophobic core<br />

1<br />

Crescenzi et al<br />

Eur J Biochem 269,<br />

5642 (2002)<br />

2<br />

Zhang et al<br />

J Struct Biology 130,<br />

130 (2000)<br />

3<br />

Baumketner, Shea<br />

UCSB, unpublished


Why study hydration<br />

Bridge gas phase and solution phase<br />

Study effect <strong>of</strong> individual water molecules<br />

on solute molecules<br />

• energetics (water binding energy)<br />

• structure<br />

• conformations, folding<br />

• zwitterion formation<br />

• hydration sites


Myoglobin<br />

NMR structure


(M+H) +<br />

1 H 2 O<br />

1<br />

Mass Spectra<br />

Neurotensin<br />

(ELYENKPRRPYIL)<br />

2 torr H 2 O<br />

286 K<br />

3<br />

(M+2H) 2+<br />

2<br />

6<br />

(M+3H) 3+<br />

0<br />

9<br />

m/z


Instrumentation<br />

ESI Ion<br />

Source<br />

Ion<br />

Funnel<br />

Drift<br />

Cell<br />

MS<br />

Detector<br />

H 2 O<br />

Liquid N 2 cooling<br />

M +<br />

~1 torr H 2 O<br />

M + •(H 2 O) n<br />

Electrical<br />

heaters


drift time<br />

900 µs<br />

(M+H) +<br />

1 H 2 O<br />

Mass Spectra<br />

Neurotensin<br />

(ELYENKPRRPYIL)<br />

1800 µs<br />

H 2 O<br />

2700 µs<br />

(M+2H) 2+<br />

(M+3H) 3+<br />

0<br />

1<br />

2<br />

6<br />

2 torr H 2 O<br />

286 K<br />

Equilibrium<br />

3<br />

YES<br />

<br />

9<br />

m/z<br />

M +<br />

m/z<br />

~1 torr H 2 O<br />

M + •(H 2 O) n<br />

Neurotensin (M+2H) 2+<br />

290 K, 1.8 torr H 2<br />

O


Data Analysis<br />

ratio <strong>of</strong><br />

peak intensities<br />

equilibrium<br />

constant<br />

van’t H<strong>of</strong>f<br />

∆H° and ∆S°<br />

⊕<br />

H 2 O<br />

M +<br />

+<br />

(M+H) +<br />

(M+2H) 2+<br />

(M+3H) 3+<br />

~1 torr H 2 O<br />

0<br />

1 H 2 O<br />

1<br />

∆H° ∆S°<br />

2<br />

M + •(H 2 O) n<br />

Mass Spectra<br />

Neurotensin<br />

(ELYENKPRRPYIL)<br />

6<br />

2 torr H 2 O<br />

286 K<br />

Equilibrium<br />

3<br />

YES<br />

<br />

⊕<br />

9<br />

m/z


Charged groups are important.<br />

In peptides and<br />

proteins they are:<br />

• Amine<br />

• lys<br />

• N-terminus<br />

• Guanidine<br />

• arg<br />

• Imidazole<br />

• his<br />

• Carboxylate<br />

• asp<br />

• glu<br />

• C-terminus


HYDRATION OF PEPTIDES<br />

Ionic <strong>Group</strong>s<br />

<br />

<strong>The</strong> Ammonium <strong>Group</strong><br />

<strong>The</strong> Guanidinium <strong>Group</strong><br />

<strong>The</strong> Carboxylate <strong>Group</strong><br />

Several Ionic <strong>Group</strong>s<br />

Multiply Charged Ions<br />

Salt Bridges<br />

Challenges Ahead<br />

Change <strong>of</strong> Conformation<br />

Zwitterion Formation<br />

Entropy


CH 3 NH 3<br />

+<br />

2<br />

1<br />

3<br />

second<br />

solvation<br />

shell<br />

4<br />

B3LYP/6-311++G**


Water binding energy (kcal/mol)<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

first solvation shell<br />

Experiment<br />

MM<br />

DFT<br />

1 2 3 4 5<br />

Number <strong>of</strong> water molecules<br />

n-decylamine<br />

second solvation shell<br />

Molecular<br />

Mechanics<br />

A<strong>MB</strong>ER, TIP3P<br />

Experiment


δ+<br />

δ–<br />

⊕<br />

Ionic hydrogen bond:<br />

electrostatic interaction important


17kcal/mol<br />

experiment 1<br />

& DFT 2<br />

15 kcal/mol<br />

experiment 2<br />

δ+<br />

⊕<br />

⊕<br />

1<br />

Meot-Ner<br />

JACS 1984, 106, 1265<br />

2<br />

Liu, Wyttenbach,<br />

Barran, <strong>Bowers</strong>,<br />

JACS 2003, 125, 8458<br />

δ+


δ+<br />

⊕<br />

δ+


M + •(H 2 O) n<br />

n<br />

1<br />

2<br />

3<br />

∆H°<br />

kcal/mol<br />

15<br />

12<br />

10


NBO charges on<br />

CH 3 NH 3<br />

+ • (H 2 O) n<br />

B3LYP/6-311++G**<br />

n<br />

0<br />

1<br />

2<br />

3<br />

CH 3 —NH 3<br />

+<br />

0.35 0.65<br />

1.00<br />

0.95<br />

0.92<br />

0.90<br />

(H 2 O) n<br />

—<br />

0.05<br />

0.08<br />

0.10


Electrostatic energy E el<br />

2 kcal/mol<br />

q j<br />

n–1<br />

etc.<br />

etc.<br />

q i<br />

E<br />

el<br />

=<br />

Exp<br />

Ele<br />

Σ∑<br />

∑Σ<br />

Experiment<br />

=<br />

MM n-decylamine n th<br />

H 2 O<br />

DFT<br />

CH 3 NH<br />

+<br />

3<br />

(H 2 O) n–1<br />

Electrostatic<br />

interaction<br />

q q<br />

q i qj<br />

j<br />

r<br />

ij<br />

1 2 3 4 5<br />

Number <strong>of</strong> water molecules


Experimental<br />

water binding energy<br />

(C 10 H 21 NH 3 + )<br />

vs<br />

E<br />

el<br />

=<br />

Exp<br />

Ele<br />

Σ∑<br />

∑Σ<br />

Experiment<br />

=<br />

MM n-decylamine n th<br />

H 2 O<br />

DFT<br />

CH 3 NH<br />

+<br />

3<br />

(H 2 O) n–1<br />

Electrostatic<br />

interaction<br />

q q<br />

q i qj<br />

j<br />

r<br />

ij<br />

2 kcal/mol<br />

1 2 3 4 5<br />

Number <strong>of</strong> water molecules


Water binding energy (kcal/mol)<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

DFT<br />

methylamine<br />

Experiment<br />

n-decylamine<br />

Experiment<br />

MM<br />

DFT<br />

1 2 3 4 5<br />

Number <strong>of</strong> water molecules<br />

A<strong>MB</strong>ER<br />

n-decylamine


lysine<br />

NH 3<br />

CH 2<br />

CH 2<br />

CH 2<br />

<strong>Peptides</strong><br />

self-solvation<br />

δ–<br />

O<br />

3.7 D<br />

H 3 C C NH 2<br />

δ+<br />

O<br />

C<br />

CH 2<br />

O<br />

NH CH C<br />

NH<br />

O<br />

CH C NH<br />

R<br />

δ–<br />

O<br />

H 3 C C OH<br />

1.7 D<br />

δ+


Nα-acetyl-L-lysine<br />

A<strong>MB</strong>ER


δ+<br />

⊕<br />

Experimental binding energies<br />

(–∆H° in kcal/mol)<br />

<strong>of</strong> n th water molecule<br />

n<br />

1<br />

2<br />

3<br />

n-decylamine<br />

14.8<br />

12.1<br />

9.6<br />

OH<br />

Nα-acetyl-<br />

L-lysine<br />

10.6<br />

8.4<br />

A<strong>MB</strong>ER


Ac-AAKAA<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

H 3 C<br />

C<br />

NH CH C<br />

NH<br />

CH C<br />

NH<br />

CH C<br />

NH<br />

CH C<br />

NH<br />

CH C<br />

OH<br />

CH 3<br />

CH 3<br />

CH 2<br />

CH 3<br />

CH 3<br />

CH 2<br />

CH 2<br />

CH 2<br />

NH 2<br />

A<strong>MB</strong>ER


Ac-AAAAK<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

H 3 C<br />

C<br />

NH CH C<br />

NH<br />

CH C<br />

NH<br />

CH C<br />

NH<br />

CH C<br />

NH<br />

CH C<br />

OH<br />

CH 3<br />

CH 3<br />

CH 3<br />

CH 3<br />

CH 2<br />

CH 2<br />

CH 2<br />

CH 2<br />

charge<br />

remote<br />

NH 2<br />

A<strong>MB</strong>ER


Ac-AAKAA vs Ac-AAAAK<br />

8.5<br />

kcal/mol<br />

experimental<br />

water binding<br />

enthalpy<br />

6.9<br />

kcal/mol<br />

A<strong>MB</strong>ER


Ac-A x K<br />

A<strong>MB</strong>ER<br />

x = 8<br />

x = 20 Jarrold JACS (1998) 120, 12974<br />

A<strong>MB</strong>ER<br />

x = 4<br />

⊕<br />

NH δ–<br />

+<br />

3<br />

c)<br />

α-helix<br />

δ+


Ammonium <strong>Group</strong><br />

Experimental water binding energies (kcal/mol)<br />

First solvation shell Second<br />

solvation<br />

1 2 3 shell<br />

Charge<br />

remote<br />

n-decylamine 15 12 10 8<br />

acetyllysine n/a 10 8 8<br />

Ac-AAKAA<br />

Ac-AAAAK<br />

Ac-A 8 K<br />

Ac-A 20 K<br />

n/a<br />

n/a<br />

n/a<br />

n/a<br />

n/a<br />

n/a<br />

n/a<br />

n/a<br />

9<br />

n/a<br />

n/a<br />

n/a<br />

7<br />

n/a<br />

n/a<br />

n/a<br />

7<br />

7<br />

5<br />

≤4<br />

a Estimated based on: Jarrold JACS (2002) 124, 11148<br />

a


HYDRATION OF PEPTIDES<br />

Ionic <strong>Group</strong>s<br />

<strong>The</strong> Ammonium <strong>Group</strong><br />

<br />

<strong>The</strong> Guanidinium <strong>Group</strong><br />

<strong>The</strong> Carboxylate <strong>Group</strong><br />

Several Ionic <strong>Group</strong>s<br />

Multiply Charged Ions<br />

Salt Bridges<br />

Challenges Ahead<br />

Change <strong>of</strong> Conformation<br />

Zwitterion Formation<br />

Entropy


Experimental water binding energies<br />

Amine<br />

Guanidine<br />

O<br />

O<br />

NH 2<br />

HO<br />

CH 3<br />

H<br />

N<br />

NH 3<br />

HO<br />

NH<br />

NH 2<br />

CH 3<br />

O<br />

NH 2<br />

–∆H° (kcal/mol)<br />

(Ala-Ala + H) + 14.8<br />

C 10 H 21 NH 3<br />

+<br />

14.8<br />

–∆H° (kcal/mol)<br />

(Arg + H) + 9.0<br />

(Arg–OMe + H) + 9.2


H<br />

H<br />

H<br />

N<br />

C<br />

N<br />

H<br />

N<br />

H<br />

R = arginine


Ac-AAAAK vs Ac-AAAAR<br />

Lys<br />

⊕<br />

⊕<br />

Arg<br />

A<strong>MB</strong>ER


Experimental water binding energies<br />

Amines<br />

Guanidines<br />

–∆H°<br />

kcal/mol<br />

–∆H°<br />

kcal/mol<br />

C 10 H 21 NH 3<br />

+<br />

14.8<br />

Exposed<br />

(Arg + H) +<br />

9.0<br />

pentapeptides<br />

(AAAAA + H) +<br />

(Ac-AAKAA + H) +<br />

(Ac-AAAAK + H) +<br />

10.5<br />

8.5<br />

6.9<br />

Selfsolvated<br />

(RAAAA + H) +<br />

(AARAA + H) +<br />

(Ac-AARAA + H) +<br />

(AARAA-OMe + H) +<br />

9.3<br />

10.2<br />

9.5<br />

9.4


Experimental water binding energies<br />

Guanidines –∆H° kcal/mol<br />

1 st H 2 O<br />

2 nd H 2 O<br />

3 rd H 2 O<br />

(RAAAA + H) +<br />

9.3<br />

7.8<br />

7.1<br />

(AARAA + H) +<br />

10.2<br />

8.4<br />

(Ac-AARAA + H) +<br />

9.5<br />

8.1<br />

(AARAA-OMe + H) +<br />

9.4<br />

8.4<br />

7.6


HYDRATION OF PEPTIDES<br />

Ionic <strong>Group</strong>s<br />

<strong>The</strong> Ammonium <strong>Group</strong><br />

<strong>The</strong> Guanidinium <strong>Group</strong><br />

<br />

<strong>The</strong> Carboxylate <strong>Group</strong><br />

Several Ionic <strong>Group</strong>s<br />

Multiply Charged Ions<br />

Salt Bridges<br />

Challenges Ahead<br />

Change <strong>of</strong> Conformation<br />

Zwitterion Formation<br />

Entropy


Ammonium<br />

(Ala-Ala + H) +<br />

O<br />

O<br />

H 3 N CH C<br />

H 2 N CH C<br />

CH 3<br />

N<br />

H<br />

Ala-Ala<br />

CH COOH<br />

CH 3<br />

–∆H°<br />

kcal/mol<br />

Carboxylate<br />

(Ala-Ala – H) –<br />

CH 3<br />

N<br />

H<br />

CH COO<br />

CH 3<br />

–∆H°<br />

kcal/mol<br />

1 st H 2 O 14.8<br />

1 st H 2 O 11.6<br />

2 nd H 2 O<br />

10.5<br />

2 nd H 2 O<br />

9.4<br />

3 rd H 2 O<br />

8.9<br />

3 rd H 2 O<br />

8.5


CH 3<br />

O<br />

N<br />

CH C<br />

+ 4 H 2 O<br />

H<br />

O<br />

1<br />

4<br />

2<br />

first<br />

solvation<br />

shell<br />

A<strong>MB</strong>ER<br />

3


(Ala-Ala – H) –<br />

Calculated (B3LYP/6-31G*)<br />

water binding energy (kcal/mol)<br />

15.6<br />

13.1<br />

A<strong>MB</strong>ER<br />

B3LYP/6-31G*<br />

11.9


Peptide self-solvation<br />

CH C<br />

CH 3<br />

O<br />

N<br />

H<br />

O<br />

CH C<br />

(CH 2 ) x<br />

N<br />

H<br />

O<br />

CH C<br />

CH 3<br />

O<br />

C<br />

O<br />

x=1 aspartic acid<br />

x=2 glutamic acid


A<strong>MB</strong>ER<br />

(Ala-Ala) • (Ala-Ala – H) –


0 2 4 6 8<br />

n<br />

1.3 Torr H 2 O, 260 K<br />

(AA–H) – •(H 2 O) 5.2<br />

Average: 〈n〉 = 5.2<br />

3<br />

319<br />

8<br />

(AA–H) – •(H 2 O) n<br />

Monomer<br />

160 180 200 220 240 260 280 300<br />

[(AA) 2<br />

-H] -<br />

(AA–H) – •(AA)•(H 2 O) 1.3<br />

Average: 〈m〉 = 1.3<br />

3<br />

4<br />

(AA–H) – •(AA)•(H 2 O) m<br />

Dimer<br />

320 340 360 380 400 420 440 460 480<br />

m/z<br />

〈n〉 – 〈m〉 ≅ 4


A<strong>MB</strong>ER<br />

(AA–H) –


A<strong>MB</strong>ER<br />

(AA–H) – •(AA)


A<strong>MB</strong>ER<br />

(AA–H) – •(H 2 O) 4


Overlap <strong>of</strong> (AA–H) –<br />

conformation in<br />

• (AA–H) –<br />

• (AA–H) – •(H 2 O) 4<br />

• (AA–H) – •(AA)<br />

A<strong>MB</strong>ER


HYDRATION OF PEPTIDES<br />

Ionic <strong>Group</strong>s<br />

<strong>The</strong> Ammonium <strong>Group</strong><br />

<strong>The</strong> Guanidinium <strong>Group</strong><br />

<strong>The</strong> Carboxylate <strong>Group</strong><br />

<br />

<br />

<br />

Several Ionic <strong>Group</strong>s<br />

<br />

Multiply Charged Ions<br />

Salt Bridges<br />

Challenges Ahead<br />

Change <strong>of</strong> Conformation<br />

Zwitterion Formation<br />

Entropy


H 3 N<br />

Experimental binding energies<br />

<strong>of</strong> n th water molecule<br />

CH 3 (CH 2 ) 9 NH 3<br />

+<br />

H 3 N(CH 2 ) 12 NH 3<br />

2+<br />

Blades, Klassen, Kebarle<br />

JACS 118, 12437 (1996)<br />

H 3 N<br />

n<br />

–∆H°<br />

n<br />

–∆H°<br />

kcal/mol<br />

kcal/mol<br />

1<br />

14.8<br />

1<br />

15.7<br />

2<br />

15.7<br />

2<br />

12.1<br />

3<br />

13.4<br />

n<br />

Na + Ca 2+<br />

4<br />

13.6<br />

NH 3<br />

1 24<br />

~55<br />

(radius 0.97 Å) (radius 0.99 Å)


(M+H) + 6<br />

(M+2H) 2+<br />

(M+3H) 3+<br />

0<br />

1660 1700 1740 1780 1820<br />

0<br />

3<br />

6<br />

820 840 860 880 900 920 940 960<br />

0<br />

3<br />

9<br />

9<br />

<strong>Hydration</strong> Mass Spectra<br />

Neurotensin<br />

12<br />

12<br />

m/z<br />

(ELYENKPRRPYIL)<br />

15<br />

1.3 Torr H 2 O<br />

260 K<br />

18<br />

H 2 O<br />

560 580 600 620 640 660 680 700


Experimental ∆H°-values for binding n th water molecule to<br />

neurotensin (ELYENKPRRPYIL) in charge states +1, +2, and +3<br />

n −∆H° n (kcal/mol)<br />

+1 +2 +3<br />

1 9.2 9 10.3 (15)<br />

2 9.8 10<br />

10<br />

8.9 (12)<br />

3 (9) 9 9.6 9.5<br />

10<br />

4 (9) 9.4 9.3<br />

5 8.5 9.4<br />

8<br />

6 (8) 9.8<br />

7 (9) 8.8<br />

8 (10)<br />

9 (9)<br />

10 (9)<br />

± 0.3 kcal/mol<br />

± 1 kcal/mol for values in parenthesis<br />

12<br />

10<br />

9


Experimental ∆H°-values for binding n th water molecule to<br />

neurotensin (ELYENKPRRPYIL) in charge states +1, +2, and +3<br />

n −∆H° n (kcal/mol)<br />

H 3 N<br />

+1 +2 +3<br />

1 9.2 10.3 (15)<br />

2 9.8 8.9 (12)<br />

CH<br />

3 (9) 3 (CH 2 ) 9 NH<br />

+ 3 H 3 N(CH<br />

9.6 2 ) 12 NH<br />

2+ 3<br />

Blades, Klassen, Kebarle 9.5<br />

JACS 118, 12437 (1996)<br />

4 (9) 9.4 9.3<br />

5 n<br />

–∆H° 8.5 n<br />

–∆H° 9.4<br />

kcal/mol<br />

kcal/mol<br />

6 (8) 9.8<br />

1<br />

7 14.8<br />

1<br />

(9) 15.7 8.8<br />

2<br />

8 15.7 (10)<br />

9 Degree 2<br />

<strong>of</strong> charge exposure<br />

12.1<br />

3<br />

13.4 (9)<br />

10 NH 3<br />

Nature <strong>of</strong> charged groups<br />

4<br />

(9)<br />

13.6<br />

± 0.3 kcal/mol<br />

± 1 kcal/mol for values in parenthesis<br />

H 3 N<br />

NH 3


Experimental ∆H°-values for binding n th water molecule to<br />

neurotensin (ELYENKPRRPYIL) in charge states +1, +2, and +3<br />

n −∆H° n (kcal/mol)<br />

+1 +2 +3<br />

1 9.2 10.3 (15)<br />

2 9.8 8.9 (12)<br />

3 (9)<br />

⊕<br />

9.6 9.5<br />

⊕<br />

4 (9) 9.4 9.3<br />

5 ⊕<br />

8.5 9.4<br />

6 ⊕ (8) ⊕9.8<br />

7 (9) 8.8<br />

8 (10)<br />

9 Degree <strong>of</strong> charge exposure (9)<br />

10<br />

Nature <strong>of</strong> charged groups<br />

(9)<br />

± 0.3 kcal/mol<br />

± 1 kcal/mol for values in parenthesis<br />


Experimental ∆H°-values for binding n th water molecule to<br />

neurotensin (ELYENKPRRPYIL) in charge states +1, +2, and +3<br />

n −∆H° n (kcal/mol)<br />

+1 +2<br />

+3<br />

1 9.2 10.3 (15)<br />

2 9.8 8.9 (12)<br />

exposed 3 (9) ammonium<br />

⊕<br />

9.6 9.5<br />

⊕<br />

4 (9) 9.4 9.3<br />

5 ⊕<strong>of</strong> other charges 8.5 9.4<br />

6 ⊕ (8) ⊕9.8<br />

7 (9) 8.8<br />

8 (10)<br />

9 Degree <strong>of</strong> charge exposure (9)<br />

10<br />

Nature <strong>of</strong> charged groups<br />

(9)<br />

± 0.3 kcal/mol<br />

± 1 kcal/mol for values in parenthesis<br />

Expect 15 kcal/mol for<br />

independent <strong>of</strong> the presence<br />


Multiply Charged Ions<br />

(A)<br />

(B)<br />

number <strong>of</strong> preferred hydration sites ∝ z<br />

water binding energy ≠ f(z)<br />

(A)<br />

(B)<br />

H 3 N<br />

NH 3


HYDRATION OF PEPTIDES<br />

Ionic <strong>Group</strong>s<br />

<strong>The</strong> Ammonium <strong>Group</strong><br />

<strong>The</strong> Guanidinium <strong>Group</strong><br />

<strong>The</strong> Carboxylate <strong>Group</strong><br />

<br />

<br />

<br />

Several Ionic <strong>Group</strong>s<br />

<br />

Multiply Charged Ions<br />

<br />

Salt Bridges<br />

Challenges Ahead<br />

Change <strong>of</strong> Conformation<br />

Zwitterion Formation<br />

Entropy


Same sign vs opposite sign charges<br />

⊕<br />

Coulomb repulsion<br />

⊕<br />

Coulomb attraction<br />


Salt Bridge<br />

⊕<br />

Salt Bridge<br />

N<br />

C<br />

N<br />

N<br />

H<br />

H<br />

H<br />

H<br />

H<br />

O<br />

O<br />

C<br />

N<br />

C<br />

N<br />

N<br />

H<br />

H<br />

H<br />

H<br />

H<br />

O<br />

O<br />

C<br />

N<br />

C<br />

N<br />

N<br />

H<br />

H<br />

H<br />

H<br />

H<br />

O<br />

O<br />

C<br />

N<br />

C<br />

N<br />

N<br />

H<br />

H<br />

H<br />

H<br />

H<br />

O<br />

O<br />

C<br />

N<br />

H<br />

H<br />

O<br />

O<br />

C<br />

H<br />

N<br />

H<br />

H<br />

O<br />

O<br />

C<br />

H


Bradykinin<br />

⊕<br />

δ–<br />

δ+<br />

δ–<br />

δ+<br />

⊕<br />

A<strong>MB</strong>ER<br />

Barran, Liu, Wyttenbach, <strong>Bowers</strong>; unpublished


⊕<br />

δ–<br />

δ+<br />

δ–<br />

δ+<br />

⊕<br />

A<strong>MB</strong>ER


Bradykinin<br />

Experimental ∆H° and ∆S° values for binding<br />

n th water molecule to bradykinin (M+H) +<br />

n<br />

–∆H°<br />

kcal/mol<br />

–∆S°<br />

kcal/mol<br />

1<br />

2<br />

3<br />

4<br />

10.7<br />

10.1<br />

10.1<br />

10.2<br />

26<br />

±0.3 ±1<br />

25<br />

26<br />

27


Understand first steps <strong>of</strong> hydration:<br />

• Water binding sites<br />

• Energetics<br />

<strong>Hydration</strong><br />

Sites & Energies<br />

for given peptide/protein structure.<br />

However, peptide/protein structure<br />

changes as hydration proceeds.<br />

• Conformation<br />

• Zwitterion formation


HYDRATION OF PEPTIDES<br />

Ionic <strong>Group</strong>s<br />

<strong>The</strong> Ammonium <strong>Group</strong><br />

<strong>The</strong> Guanidinium <strong>Group</strong><br />

<strong>The</strong> Carboxylate <strong>Group</strong><br />

<br />

<br />

<br />

Several Ionic <strong>Group</strong>s<br />

Multiply Charged Ions<br />

Salt Bridges<br />

<br />

<br />

Challenges Ahead<br />

Change<br />

<strong>of</strong> Conformation<br />

Zwitterion Formation<br />

Entropy


Change <strong>of</strong> Conformation<br />

H 2 O<br />

Alzheimer amyloid β-peptide<br />

aq


Measure collision cross sections <strong>of</strong><br />

hydrated ions in helium<br />

ESI Ion<br />

Source<br />

MS<br />

Drift Cell<br />

(helium)<br />

MS<br />

Detector<br />

form M ±z •(H 2 O) n in the source<br />

Williams, J. Am. Soc. Mass Spectrom. 1997, 8, 565<br />

Beauchamp, J. Am. Chem. Soc. 1998, 120, 11758.<br />

measure cross sections in helium<br />

Wyttenbach, <strong>Bowers</strong>, Top. Curr. Chem. 2003, 225, 207.


HYDRATION OF PEPTIDES<br />

Ionic <strong>Group</strong>s<br />

<strong>The</strong> Ammonium <strong>Group</strong><br />

<strong>The</strong> Guanidinium <strong>Group</strong><br />

<strong>The</strong> Carboxylate <strong>Group</strong><br />

<br />

<br />

<br />

Several Ionic <strong>Group</strong>s<br />

Multiply Charged Ions<br />

Salt Bridges<br />

<br />

<br />

Challenges Ahead<br />

<br />

Change <strong>of</strong> Conformation<br />

<br />

Zwitterion Formation<br />

Entropy


Glycine<br />

O<br />

H 2 O<br />

O<br />

H 2 N CH 2 C<br />

H 3 N CH 2 C<br />

OH<br />

O<br />

aq


Glycine<br />

Gly<br />

Gly•(H 2 O) 2<br />

zwitterion<br />

zwitterion<br />

<strong>The</strong>ory<br />

Jensen and Gordon<br />

JACS, 117, 8159 (1995)<br />

12 kcal/mol<br />

Photoelectron spectroscopy<br />

Xu, Nilles, Bowen<br />

J.Chem.Phys., 119, 10696 (2003)<br />

Gly•(H 2 O) 5<br />

zwitterion<br />

neutral<br />

kcal/mol<br />

drop per H 2 O


<strong>Peptides</strong> AARAA<br />

residue<br />

NH<br />

2 N O<br />

NH<br />

H 3 N +<br />

O<br />

O<br />

O<br />

NH<br />

H<br />

NH<br />

+<br />

H 2 N NH 2<br />

NH<br />

O<br />

NH<br />

O<br />

O<br />

DvsL<br />

O<br />

NH<br />

NH<br />

O<br />

O<br />

O –<br />

OH<br />

O<br />

H 3 N CH 2 C<br />

O


AARAA<br />

different<br />

Wyttenbach, Paizs, Barran, residue Breci,<br />

+<br />

Liu, Suhai, Wysocki, <strong>Bowers</strong> O H 2 N NH 2<br />

JACS 125, 13768 (2003) NH<br />

2 N NH<br />

NH<br />

NH<br />

O<br />

O<br />

O<br />

+<br />

O<br />

O<br />

NH<br />

NH<br />

OR’<br />

RNH<br />

NH<br />

NH<br />

O<br />

O<br />

O<br />

zwitterion<br />

MH<br />

R = Ac<br />

R’= H<br />

100<br />

75<br />

50<br />

25<br />

MH<br />

all<br />

1 H<br />

R = H<br />

R’= H<br />

AARAA<br />

gas-phase<br />

H/D exchange<br />

with D 2 O<br />

R = H<br />

R’=<br />

AARA<br />

CH 3<br />

500 502 504<br />

0<br />

458 460 462 464 466 468 470<br />

m/z<br />

72 474 476 4


AARAA<br />

different<br />

Wyttenbach, Paizs, Barran, residue Breci,<br />

+<br />

Liu, Suhai, Wysocki, <strong>Bowers</strong> O H 2 N NH 2<br />

JACS 125, 13768 (2003) NH<br />

2 N NH<br />

CAUTION<br />

NH<br />

NH<br />

O<br />

O<br />

O<br />

with interpretation O <strong>of</strong><br />

O<br />

NH<br />

NH<br />

OH<br />

H 2 Ngas-phase<br />

NH<br />

NH<br />

O<br />

O<br />

O<br />

H/D exchange<br />

data<br />

(AARAA)H +<br />

Energy (kcal/mol)<br />

A<strong>MB</strong>ER & B3LYP/6-31+G(d,p)<br />

kcal/mol<br />

drop per H 2 O<br />

(AARAA)H +·H 2 O<br />

neutral termini<br />

zwitterion<br />

0.0<br />

+4.8<br />

0.0<br />

+1.8


Wyttenbach, Paizs, Barran, Breci,<br />

Liu, Suhai, Wysocki, <strong>Bowers</strong><br />

JACS 125, 13768 (2003)<br />

AARAA<br />

(AARAA)H +···H 2 O<br />

binding energy (kcal/mol)<br />

<strong>The</strong>ory<br />

B3LYP/6-31+G(d,p)<br />

BSSE & ZPE correction<br />

Experiment<br />

8.9<br />

10.2 ± 0.3


Neutral termini<br />

(AARAA)H + •H 2 O<br />

Wyttenbach, Paizs, Barran, Breci,<br />

Liu, Suhai, Wysocki, <strong>Bowers</strong><br />

JACS 125, 13768 (2003)<br />

set up for<br />

H/D exchange<br />

relay mechanism<br />

C-terminus<br />

N-terminus<br />

B3LYP/6-31+G(d,p)


Zwitterion<br />

(AARAA)H + •H 2 O<br />

Wyttenbach, Paizs, Barran, Breci,<br />

Liu, Suhai, Wysocki, <strong>Bowers</strong><br />

JACS 125, 13768 (2003)<br />

C-terminus<br />

N-terminus<br />

B3LYP/6-31+G(d,p)


Transition state<br />

(AARAA)H + •H 2 O<br />

Wyttenbach, Paizs, Barran, Breci,<br />

Liu, Suhai, Wysocki, <strong>Bowers</strong><br />

JACS 125, 13768 (2003)<br />

C-terminus<br />

N-terminus<br />

B3LYP/6-31+G(d,p)


HYDRATION OF PEPTIDES<br />

Ionic <strong>Group</strong>s<br />

<strong>The</strong> Ammonium <strong>Group</strong><br />

<strong>The</strong> Guanidinium <strong>Group</strong><br />

<strong>The</strong> Carboxylate <strong>Group</strong><br />

<br />

<br />

<br />

Several Ionic <strong>Group</strong>s<br />

Multiply Charged Ions<br />

Salt Bridges<br />

<br />

<br />

Challenges Ahead<br />

<br />

Change <strong>of</strong> Conformation<br />

<br />

Zwitterion Formation<br />

<br />

Entropy


–∆S°<br />

cal/mol/K<br />

all other data:<br />

• all molecules<br />

• all charge states<br />

• all hydrates 1 st –n th H 2 O<br />

∆S° < 0<br />

loss <strong>of</strong> 3 translational<br />

and 3 rotational<br />

degrees <strong>of</strong> freedom<br />

(gain <strong>of</strong> 6 vibrational<br />

degrees <strong>of</strong> freedom)<br />

2 nd H 2 O<br />

on small<br />

molecules<br />

1 st H 2 O<br />

on small<br />

molecules<br />

all data<br />

positive and<br />

negative ions<br />

floppy<br />

–∆H° kcal/mol


strong<br />

entropy–enthalpy<br />

correlation<br />

(red data)<br />

tightly bound H 2<br />

O<br />

• large binding energy<br />

• large loss <strong>of</strong> entropy<br />

exceptions are:<br />

• Addition <strong>of</strong> 1 st H 2 O to small molecules (blue data)<br />

yields smaller than average loss <strong>of</strong> entropy<br />

→ floppy hydrates<br />

• Addition <strong>of</strong> 2 nd H 2 O to small molecules (yellow data)<br />

yields data between blue and red


HYDRATION OF PEPTIDES<br />

Understand first steps <strong>of</strong> hydration:<br />

• Water binding sites<br />

• Water binding energies<br />

• Loss <strong>of</strong> entropy<br />

Future challenges include:<br />

<br />

• <strong>Hydration</strong> beyond the first steps<br />

• Change <strong>of</strong> protein conformation<br />

• Zwitterion formation

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!