10.02.2015 Views

MCS 351 ENGINEERING MATHEMATICS SOLUTION OF ...

MCS 351 ENGINEERING MATHEMATICS SOLUTION OF ...

MCS 351 ENGINEERING MATHEMATICS SOLUTION OF ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>MCS</strong> <strong>351</strong> <strong>ENGINEERING</strong> <strong>MATHEMATICS</strong><br />

<strong>SOLUTION</strong> <strong>OF</strong> CHAPTER 13-14-15<br />

Prof. Dr. İsmet KARACA<br />

ERWIN KREYSZIG, 9TH EDITION<br />

NOVEMBER 2012


CHAPTER 13 - COMPLEX NUMBERS AND FUNCTIONS<br />

13.1<br />

1. We can write −i as 0 + i(−1). Then,<br />

• i 2 = [0 + i(−1)][0 + i(−1)] = 0 − 1 + i.(0 + 0) = −1,<br />

• i 3 = i 2 .i = (−1).i = −i,<br />

• i 4 = i 3 .i = (−i).i = −i 2 = −(−1) = 1,<br />

• i 5 = i 4 .i = 1.i = i<br />

We know that i = −i.<br />

• 1 i = −i<br />

−i 2<br />

= −i<br />

1 = −i,<br />

• 1 i 2 = 1<br />

−1 = −1,<br />

• 1 i 3 = 1 −i = i<br />

−i 2 = i 1 = i.<br />

2. Let z = 2 + 2i. Then we obtain iz = i(2 + 2i) = −2 + 2i.<br />

Let z = −1 − 5i. Then iz = i(−1 − 5i) = 5 − i.<br />

Let z = 4 − 3i. Then iz = i(4 − 3i) = 3 + 4i.<br />

a + b = 90 ◦<br />

1


a + b = 90 ◦<br />

3.<br />

z 1<br />

= x 1 + iy 1<br />

= (x 1 + iy 1 )(x 2 − iy 2 )<br />

z 2 x 2 + iy 2 (x 2 + iy 2 )(x 2 − iy 2 )<br />

= x 1x 2 − x 1 iy 2 + iy 1 x 2 − iy 1 iy 2<br />

x 2 2 − ix 2y 2 + ix 2 y 2 − i 2 y 2 2<br />

= x 1x 2 + y 1 y 2 + i(x 1 y 2 + x 2 y 1 )<br />

x 2 2 + y2 2<br />

= x 1x 2 + y 1 y 2<br />

x 2 2 + y2 2<br />

+ i. x 2y 1 + x 1 y 2<br />

x 2 2 + y2 2<br />

4. We assume that z 1 ≠ 0.<br />

0 = 0 z 1<br />

= z 1z 2<br />

z 1<br />

= z 2<br />

That is, if z 1 ≠ 0 then z 2 = 0.<br />

Similarly you can show that if z 2 ≠ 0 then z 1 must be zero. So, at least one factor must be zero.<br />

5. (⇒) If z = x + iy is pure imaginary then x = 0. So z = iy and z = −iy. That is z = −z.<br />

(⇐) Let z = −z.<br />

z = x − iy = −(x + iy) = −x − iy<br />

x must be zero because x ∈ R and x = −x. So z is pure imaginary.<br />

6. z 1 = 24 + 10i, z 2 = 4 + 6i<br />

• z 1 +z 2 = (24 + 10i)+(4 + 6i) = (24−10i)+(4−6i) = 28−16i = (28 + 16i) = [(24 + 10i) + (4 + 6i)]<br />

= (z 1 + z 2 )<br />

• z 1 −z 2 = (24 + 10i)−(4 + 6i) = (24−10i)−(4−6i) = 20−4i = (20 + 4i) = [(24 + 10i) − (4 + 6i)]<br />

= (z 1 − z 2 )<br />

• z 1 .z 2 = (24 + 10i).(4 + 6i) = (24−10i).(4−6i) = 36−184i = (36 + 184i) = [(24 + 10i).(4 + 6i)]<br />

= (z 1 .z 2 )<br />

• z 1<br />

z 2<br />

= ( 24+10i<br />

4+6i ) = ( (24+10i)(4−6i)<br />

16+36<br />

) = ( 156<br />

52 − 104<br />

52<br />

156<br />

i) =<br />

52 + 104<br />

52 i = (24+10i) = z 1<br />

(4+6i) z 2<br />

2


7-15: Complex Aritmetic Let z 1 = 2 + 3i and z 2 = 4 − 5i.<br />

7. (5z 1 + 3z 2 ) 2 = [5.(2 + 3i) + 3.(4 − 5i)] 2 = [(10 + 15i) + (12 − 15i)] 2 = (22) 2 = 484<br />

8. z 1 .z 2 = (2 − 3i).(4 + 5i) = 23 − 2i<br />

9. Re( 1<br />

1<br />

−5−12i<br />

) = Re(<br />

z1<br />

2 −5+12i<br />

) = Re(<br />

169<br />

) = Re(− 5<br />

169 − 12<br />

169 i) = − 5<br />

169<br />

10.• z2 2 = (4 − 5i)2 = −9 − 40i ⇒ Re(z2 2) = −9<br />

11. z 2<br />

z 1<br />

• (Rez 2 ) 2 = 4 2 = 16<br />

12. • z 1<br />

z 2<br />

= 4−5i<br />

2+3i = (4−5i)(2−3i)<br />

4+9<br />

= −7−22i<br />

13<br />

= − 7<br />

13 − 22<br />

13 i<br />

= (2+3i)<br />

(4−5i) = 2−3i<br />

4+5i = −7−22i<br />

41<br />

= − 7<br />

41 − 22<br />

41 i<br />

• ( z 1<br />

z 2<br />

) = ( 2+3i<br />

4−5i ) = ( −7+22i<br />

41<br />

) = (− 7<br />

41 + 22<br />

41 i) = − 7<br />

41 − 22<br />

41 i<br />

13. (4z 1 − z 2 ) 2 = [4.(2 + 3i) − (4 − 5i)] 2 = (8 + 12i − 4 + 5i) 2 = (4 + 17i) 2 = −273 + 136i<br />

14. • z 1<br />

z 1<br />

= 2−3i<br />

2+3i = −5−12i<br />

4+9<br />

= − 5<br />

13 − 12<br />

13 i<br />

• z 1<br />

z 1<br />

= 2+3i<br />

2−3i = −5+12i<br />

4+9<br />

= − 5<br />

13 + 12<br />

13 i<br />

15. z 1+z 2<br />

z 1 −z 2<br />

= (2+3i)+(4−5i)<br />

(2+3i)−(4−5i) = 6−2i<br />

−2+8i = −28−44i<br />

68<br />

= − 7<br />

17 − 11<br />

17 i<br />

16-19: Let z = x + iy.<br />

16. • Im(z 3 ) = Im((x + iy) 3 ) = Im((x 3 − 3xy 2 ) + i.(3x 2 y − y 3 )) = 3x 2 y − y 3<br />

• (Imz) 3 = (Im(x + iy)) 3 = y 3<br />

17. 1 z = 1<br />

x−iy = x+iy = x y<br />

+ i ⇒ Re( 1 x 2 +y 2 x 2 +y 2 x 2 +y 2 z ) = x<br />

18. At first we will find (1 + i) 8 :<br />

(1 + i) 2 = 2i,<br />

(1 + i) 3 = (1 + i) 2 .(1 + i) = 2i.(1 + i) = −2 + 2i,<br />

(1 + i) 4 = (1 + i) 3 .(1 + i) = (−2 + 2i).(1 + i) = −4,<br />

(1 + i) 5 = (1 + i) 4 .(1 + i) = (−4).(1 + i) = −4 − 4i,<br />

(1 + i) 6 = (1 + i) 5 .(1 + i) = (−4 − 4i).(1 + i) = −8i,<br />

(1 + i) 7 = (1 + i) 6 .(1 + i) = (−8i).(1 + i) = 8 − 8i,<br />

(1 + i) 8 = (1 + i) 7 .(1 + i) = (8 − 8i).(1 + i) = 16.<br />

x 2 +y 2<br />

Then, Im((1 + i) 8 .z 2 ) = Im(16.z 2 ) = Im(16.(x 2 − y 2 + i2xy)) = Im(16(x 2 − y 2 ) + i32xy) = 32xy<br />

19. Re( 1<br />

z 2 ) = Re(<br />

1<br />

(x−iy) 2 ) = Re(<br />

1<br />

x 2 −y 2 −i2xy ) = Re( x2 −y 2 +i2xy<br />

x 4 +2x 2 y 2 +y 4 ) =<br />

x 2 −y 2<br />

x 4 +2x 2 y 2 +y 4 .<br />

13.2<br />

1-8 Represent the followings in the polar form:<br />

1. Let z = 3 − 3i. Then |z| = √ 3 2 + (−3) 2 = √ 9 + 9 = √ 18 = 3 √ 2 and since tan θ = 3<br />

−3 = −1,<br />

we get<br />

⇒ θ = 7π 4 ⇒ z = 3√ 2(cos( 7π 4 ) + i. sin(7π 4 )).<br />

3


the fact that tan θ = π 2 , θ = arctan( π 2 )<br />

2. Let z = 2i. We can say that |z| = √ 2 2 = √ 4 = 2. Because of θ = π 2<br />

, the result is<br />

z = 2(cos( π 2 ) + i. sin(π 2 )).<br />

On the other hand, for z = −2i, |z| = √ (−2) 2 = √ 4 = 2 and also by θ = −π<br />

2<br />

is found.<br />

z = 2(cos( −π ) + i. sin(−π<br />

2 2 ))<br />

3. If z = −5 ⇒ |z| = √ (−5) 2 = √ 25 = 5. As θ = π, we have<br />

z = 5(cos π + i. sin π).<br />

√<br />

4. For z = 1 2 + 1 4<br />

√( πi, we calculate desired result which |z| = 1 2 )2 + ( 1 4 π)2 π<br />

=<br />

2 +4<br />

16<br />

. Besides due to<br />

and<br />

⇒ z =<br />

5. Let z = 1+i<br />

1−i<br />

. Firstly, we have to say that<br />

√<br />

π 2 + 4<br />

16 (cos(arctan(π 2 )) + i. sin(arctan(π 2 ))).<br />

z = 1 + i (1 + i)(1 − i)<br />

=<br />

1 − i (1 − i) 2 = 1 − i + i − i2<br />

1 − 2i + i 2 = 1 − (−1)<br />

1 − 2i − 1 = 2<br />

−2i =<br />

2i<br />

(−2i.i) = 2i<br />

2 = i.<br />

After that, now we could calculate |z| = √ 1 2 = √ 1 = 1. Moreover, θ = π 2<br />

, we conclude that<br />

z = cos( π 2 ) + i. sin(π 2 ).<br />

6. Let z = 3√ 2+2i<br />

− √ 2−2 √ 3i . Then<br />

z =<br />

3√ 2 + 2i<br />

− √ 2 − 2 √ 3i = (3√ 2 + 2i)(− √ 2 + 2 √ 3i)<br />

(− √ 2 − 2 √ 3i)(− √ 2 + 2 √ 3i) = (−6 + 6√ 6i − 2 √ 2i − 4 √ 3)<br />

= −11<br />

−10<br />

5 .<br />

Finally, we have |z| =<br />

√<br />

( −11<br />

5 )2 =<br />

√<br />

121<br />

25 = 11 5<br />

. From θ = π,<br />

7. If z = −6+5i<br />

3i<br />

, we can alternatively interpret it:<br />

z = 11 (cos π + i. sin π).<br />

5<br />

z =<br />

−6 + 5i<br />

3i<br />

=<br />

(−6 + 5i)(−3i)<br />

(3i)(−3i)<br />

=<br />

18i + 15<br />

9<br />

= 5 3 + 2i.<br />

By this reason, we get<br />

|z| =<br />

√<br />

( 5 3 )2 + 2 2 =<br />

√<br />

25<br />

9 + 4 = √<br />

61<br />

3 .<br />

4


As we know that tan θ = 6 5 , we immediately conclude that θ = arctan 6 5 and<br />

⇒ z =<br />

√<br />

61<br />

3 (cos(arctan(6 5 )) + i. sin(arctan(6 5 ))).<br />

8. Let z = 2+3i<br />

5+4i<br />

. This can be simple form as following :<br />

From this equality,<br />

z = 2 + 3i (2 + 3i)(5 − 4i) 22 + 7i<br />

= = == 22<br />

5 + 4i (5 + 4i)(5 − 4i 41 41 + 7 41 i.<br />

|z| =<br />

From above, we can say that<br />

consequently<br />

√<br />

⇒ z =<br />

( 22<br />

41 )2 + ( 7<br />

41 )2 =<br />

√<br />

444<br />

1681 + 49<br />

1681 = √<br />

533<br />

41 .<br />

tan θ = 7 22 ⇒ θ = arctan 7 22 ,<br />

9-15 Determine the principle value of the argument:<br />

√<br />

533<br />

41 (cos(arctan(7 2 )) + i. sin(arctan(7 2 ))).<br />

9. Let z = −1 − i. Then tan α = 1 and since z is in 3. region, we get α = 5π 4 .<br />

10. Let z = −20 + i. For z,<br />

tan α = −1<br />

20 ⇒ α = arctan(−1 ) = 3, 09163<br />

20<br />

On the other hand, for z = −20 − i, tan β = 1<br />

20<br />

and so<br />

⇒ β = arctan( 1 ) = −3, 09163.<br />

20<br />

11. We take z = 4 ∓ 3i. As a result,<br />

tan α = ∓3<br />

4<br />

⇒ α = arctan( ∓3 ) = ∓0, 6435.<br />

4<br />

12. If z = −π 2 , then tan α = 0 and due to this we get α = π.<br />

13. Let z = 7 + 7i. In conclusion<br />

⇒ tan α = 1 ⇒ α = arctan( π ) = 1, 5485.<br />

4<br />

On the other hand, for z = 7 − 7i<br />

tan α = −1 ⇒ α = arctan( −π ) = −1, 5485.<br />

4<br />

14. Take z = (1 + i) 12 . We can this clearly as following :<br />

z = (1 + i) 12 = ((1 + i) 2 ) 6 = (1 + 2i − 1) 6 = 64(i 2 ) 3 = 64(−1) 3 = −64.<br />

5


For this reason, tan α = 0 and so α = π.<br />

15. Let z = (9 + 9i) 3 . This could be interpret more simple:<br />

z = (9 + 9i) 3 = 9 3 + 3.9 2 .9i + 3.9.9 2 .i 2 + 9 3 .i 3 = 729 + 2187i − 2187 − 729i = −1458(1 + i).<br />

By this reality, tan α = 1 and since z is in 3. region, we conclude that α = 5π 4 .<br />

16-20 Represent in the form x + iy:<br />

16. We take z = cos 1 ∓1<br />

2π + i. sin<br />

2 π. Moreover, we know cos 1 2 π = 0 and sin 1 2π = 1. Then we get that<br />

z = cos 1 ∓1<br />

π + i. sin<br />

2 2 π = ∓i.<br />

17. If z = 3(cos 0.2 + i. sin 0.2), then from cos 0.2 = 2, 99 and sin 0.2 = 0, 01,<br />

z = 3(cos 0.2 + i. sin 0.2) = 3. cos 0.2 + 3. sin 0.2 = 2, 99 + 0, 01i<br />

is found.<br />

18. Let z = 4(cos π 3 ∓ i sin π 3<br />

). Because<br />

the result is<br />

cos π 3 = 1 2 and sin π 3 = √<br />

3<br />

2 ,<br />

4(cos π 3 ∓ i sin π 3 ) = 4.(1 2 ∓ i. √<br />

3<br />

2 ) = 2 ∓ 2√ 3i.<br />

19. For z = cos(−1) + i. sin(−1), since cos(−1) = 0, 99 and sin(−1) = −0, 01, we have<br />

cos(−1) + i. sin(−1) = 0, 99 − 0, 01i.<br />

20. Let z = 12(cos 3π 2 + i sin 3π 2<br />

). Because of the fact that<br />

cos 3π 2 = 0 and sin 3π 2 = −1,<br />

we conclude that<br />

12(cos 3π 2 + i sin 3π 2<br />

) = 12.(0 + i.(−1)) = −12i.<br />

21-25 Find all roots in the complex plane:<br />

21. Let z = x + iy. Then<br />

z = √ −i ⇒ z 2 = −i ⇒ x 2 − y 2 + 2xyi = −i ⇒ x 2 − y 2 = 0, 2xy = −1.<br />

As a consequence,<br />

y 4 = 1 4 ⇒ x = y = ∓ 1 √<br />

2<br />

⇒ z = ∓ 1 √<br />

2<br />

∓ 1 √<br />

2<br />

i.<br />

6


22. Let z = 8√ 1. Since<br />

1 = cos(2kπ) + i sin(2kπ), k = 0, ±1, ±2, ...,<br />

Above equation can be rewrite in the following form:<br />

There are 8 roots as following:<br />

23. Let z = x + iy. If z = 4√ −1, then z 4 = −1.<br />

z = 8√ 1 = cos( 2kπ<br />

8 ) + i sin(2kπ 8 )<br />

k = 0 =⇒ z 0 = 1,<br />

k = 1 =⇒ z 1 = 1 √<br />

2<br />

+ i 1 √<br />

2<br />

,<br />

k = 2 =⇒ z 2 = i,<br />

k = 3 =⇒ z 3 = − 1 √<br />

2<br />

+ i 1 √<br />

2<br />

,<br />

k = 4 =⇒ z 4 = −1,<br />

k = 5 =⇒ z 5 = − 1 √<br />

2<br />

− i 1 √<br />

2<br />

,<br />

k = 6 =⇒ z 6 = −i,<br />

k = 7 =⇒ z 7 = 1 √<br />

2<br />

− i 1 √<br />

2<br />

,<br />

(x+iy) 4 = (x 4 −6x 2 y 2 +y 4 )+(4x 3 y−4xy 3 )i = −1 ⇒ x 4 −6x 2 y 2 +y 4 = −1 and 4x 3 y−4xy 3 = 0.<br />

Solving latter equation, we have x = y. After, solving first equation with x = y, we have x = y = ∓ 1 √<br />

2<br />

.<br />

Therefore, z = ∓ 1 √<br />

2<br />

∓ 1 √<br />

2<br />

i.<br />

24. Let w = 3 + 4i and z = 3√ w. From this, we get<br />

arg(w) = α =⇒ tan α = 4 3 =⇒ arctan(4 3 ) = α.<br />

For θ = arg(z), we can say that<br />

=⇒ θ = α 3 = 1 3 arctan(4 3 ).<br />

There are 3 roots:<br />

=⇒ z k = 3√ 5(cos(θ + 2kπ<br />

2kπ<br />

) + i sin(θ +<br />

3 3 ))<br />

k = 0 =⇒ z 0 = 3√ 5(cos θ + i sin θ)<br />

k = 1 =⇒ z 1 = 3√ 5(cos(θ + 2π 3 ) + i sin(θ + 2π 3 ))<br />

7


k = 2 =⇒ z 2 = 3√ 5(cos(θ + 4π 3 ) + i sin(θ + 4π 3 )).<br />

25. Taking z = 5√ −1, z 5 = −1 = cos π + i sin π can be written. So<br />

z k = cos( π + 2kπ<br />

5<br />

) + i sin( π + 2kπ )<br />

5<br />

For k = 0, 1, 2, 3, 4, 5, respectively there are 6 roots. These are as following :<br />

z 0 = cos π 5 + i sin π 5 ,<br />

z 1 = cos 3π 5 + i sin 3π 5 ,<br />

z 2 = −1,<br />

z 3 = cos 7π 5 + i sin 7π 5 ,<br />

z 4 = cos 9π 5 + i sin 9π 5 .<br />

27-30 Solve the following equations:<br />

27. To find all roots of z 2 − (8 − 5i)z + 40 − 20i, we should calculate<br />

∆ = (8 − 5i) 2 − 4.1.(40 − 20i) = −121.<br />

Consequently,<br />

Two roots are z 1 = 4 − 8i and z 2 = 4 + 3i.<br />

⇒ z 1,2 = 8 − 5i ∓ √ −121<br />

2<br />

28. Let’s determine the all roots of z 4 + (5 − 14i)z 2 − (24 + 10i). For this reason, if we take z 2 = u, we<br />

get u 2 + (5 − 14i)u − (24 + 10i) = 0. So we find that<br />

∆ = (5 − 14i) 2 − 4.1.(−24 − 10i) = −85 − 100i.<br />

Hence two roots are following:<br />

u 1,2 = 14 − i ∓ √ −85 − 100i<br />

.<br />

2<br />

29. Given 8z 2 − (36 − 6i)z + 42 − 11i = 0, we now find all roots. First of all,<br />

∆ = (36 − 6i) 2 − 4.8.(42 − 11i) = −84 + 96i<br />

is calculated. By this knowledge, we say<br />

⇒ z 1,2 = 36 − 6i ∓ √ −84 + 96i<br />

.<br />

16<br />

8


30. For z 4 + 16 = 0, let z 2 = u. Then<br />

√<br />

i can be determined as following:<br />

u 2 = −16 ⇒ u = ∓4i ⇒ z 2 = ∓4i ⇒ z = ∓2 √ i.<br />

As a result, all roots are ∓(1 ∓ i). √ 2.<br />

√<br />

i = ∓[<br />

√<br />

1<br />

2 + 1.i. √<br />

1<br />

2 ] = ∓ 1 √<br />

2<br />

(1 + i).<br />

13.3<br />

1-10 Find and graph followings in the complex plane:<br />

1. Let |z − 3 − 2i| = 4 3<br />

and z = a + ib. Since<br />

|z − 3 − 2i| = |(a − 3) + (b − 2)i| = √ (a − 3) 2 + (b − 2) 2 = 4 3 ⇒ (a − 3)2 + (b − 2) 2 = 16<br />

9 ,<br />

we get a circle with radius r = 4 3<br />

and centered at (3, 2). For graph, look at the following picture.<br />

2. Let 1 ≤ |z − 1 + 4i| ≤ 5 and z = a + bi. Because of<br />

1 ≤ |z − 1 + 4i| ≤ 5 ⇒ 1 ≤ |(a − 1) + (b + 4)i| ≤ 5 ⇒ 1 ≤ (a − 1) 2 + (b + 4) 2 ≤ 25,<br />

we find that closed annulus bounded by circles of radius 1 and 5 centered at (1, −4).<br />

3. If we take 0 < |z − 1| < 1 and z = a + bi, then we get<br />

0 < |z − 1| < 1 ⇒ 0 < |(a − 1) + bi| < 1 ⇒ 0 < (a − 1) 2 + b 2 < 1,<br />

i.e. a circle with radius 1 and centered at (1, 0).<br />

9


4. Let’s now determine the region of −π < Rez < π. For this reason, we take z = x + iy. As<br />

−π < Rez < π ⇒ −π < x < π,<br />

we get open vertical strip of width 2π. For the region, look at this picture.<br />

5. Let Imz 2 = 2 and z = x + iy. From z 2 = (x + iy) 2 = x 2 − y 2 + 2xyi, we can say that<br />

Im(x 2 − y 2 + 2xyi) = 2 ⇒ 2xy = 2 ⇒ xy = 1.<br />

Consequently, its region is pictured as following:<br />

6. For Rez > −1, let z = x + iy. Then<br />

Rez = x > 1, y ∈ R.<br />

So, open half-plane extending from the vertical line x = 1 to the right is found.<br />

10


7. Let |z + 1| = |z − 1| and z = a + bi. If same things occur,<br />

|z + 1| = |z − 1| ⇒ |(a + 1) + bi| = |(a − 1) + bi| ⇒ √ (a + 1) 2 + b 2 = √ (a − 1) 2 + b 2<br />

⇒ (a + 1) 2 + b 2 = (a − 1) 2 + b 2<br />

⇒ a = 0 ⇒ z = bi, b ∈ R<br />

is found. Then we could picture it as following:<br />

8. We now determine the region of |Argz| ≤ 1 4π. For this reason, z = x + iy is taken.<br />

|Argz| ≤ 1 4 π ⇒ | tan( y x )| ≤ 1 4 π ⇒ −π<br />

4 ≤ tan( y x ) ≤ π 4<br />

⇒ arctan( −π<br />

4 ) ≤ y x ≤ arctan(π 4 ) ⇒ −1 ≤ y x ≤ 1.<br />

Angular region of angle π 2<br />

symmetric to the positive x-axis is found.<br />

9. If Rez ≤ Imz and z = x + iy, then x ≤ y. So<br />

10. For Re( 1 z<br />

) < 1, we take z = x + iy. Because we know that<br />

we conclude that<br />

1<br />

Re(<br />

x + iy ) ⇒<br />

1<br />

z = 1<br />

x + iy =<br />

This is the exterior of the circle of radius 1 2 centered at 1 2 .<br />

x<br />

x 2 + y 2 ,<br />

x<br />

x 2 + y 2 < 1 ⇒ 1 4 < (x − 1 2 )2 + y 2 .<br />

11


12-15 Function values:<br />

12. For z = 2 + i, since f(z) = 3z 2 − 6z + 3i,<br />

f(z) = f(2 + i) = 3(2 + i) 2 − 6(2 + i) + 3i = 3(4 + 4i − 1) − 12 − 6i + 3i<br />

= 3(3 + 4i) − 12 − 3i = 9 + 12i − 12 − 3i = −3 + 9i<br />

is found. Let z = x + iy.<br />

f(z) = 3(x + iy) 2 − 6(x + iy) + 3i = (3x 2 − 3y 2 − 6x) + (6xy − 6y + 3)i<br />

13. Let z = 4 − 5i. Because f(z) = z<br />

z+1<br />

, we get<br />

⇒ Ref = 3x 2 − 3y 2 − 6x, Imf = 6xy − 6y + 3.<br />

f(z) = f(4 − 5i) = 4 − 5i (4 − 5i)(5 + 5i) 20 + 20i − 25i + 25 45 − 5i<br />

= = = = 9 − i<br />

5 − 5i (5 − 5i)(5 + 5i) 25 + 25<br />

50 10 .<br />

Let z = x + iy. Then<br />

f(z) =<br />

x + iy<br />

x + 1 + iy =<br />

(x + iy)(x + 1 − iy)<br />

(x + 1 + iy)(x + 1 − iy) = x2 + x + y 2 + (−xy + y)i<br />

x 2 + 2x + 1 + y 2<br />

⇒ Ref = x2 + x + y 2<br />

x 2 + 2x + 1 + y 2 , Imf =<br />

14. Let z = 1 2 + 1 1<br />

4i. Since f(z) =<br />

1−z<br />

, we have<br />

Let z = x + iy.<br />

−xy + y<br />

x 2 + 2x + 1 + y 2 .<br />

f(z) = f( 1 2 + 1 4 i) = 1<br />

1 − 1 2 − 1 4 i = 1<br />

1<br />

1<br />

2 − 1 4 i = 2 + 1 4 i<br />

( 1 2 − 1 4 i)( 1 2 + 1 = 1, 6 + 0, 8i.<br />

4i) f(z) =<br />

1<br />

1 − x − iy = 1 − x + iy<br />

(1 − x − iy)(1 − x + iy) = ( 1 − x<br />

(1 − x) 2 + y 2 ) + ( y<br />

(1 − x) 2 + y 2 )i<br />

As a result, we have<br />

⇒ Ref =<br />

1 − x<br />

(1 − x) 2 + y 2 , Imf = y<br />

(1 − x) 2 + y 2 .<br />

12


15. Let z = 1 + i. Since f(z) = 1<br />

z 2 , we have<br />

For z = x + iy,<br />

f(z) =<br />

f(z) = f(1 + i) =<br />

1<br />

(x + iy) 2 = 1<br />

x 2 − y 2 + 2xyi =<br />

and so we can say<br />

16-19 Continuity:<br />

Ref =<br />

1<br />

(1 + i) 2 = 1<br />

1 + 2i − 1 = 1 2i = −2i<br />

(2i)(−2i) = −2i<br />

4 = − i 2 .<br />

x 2 − y 2 − 2xyi<br />

(x 2 − y 2 + 2xyi)(x 2 − y 2 − 2xyi) = x2 − y 2 − 2xyi<br />

(x 2 − y 2 ) 2 + 4x 2 y 2<br />

x 2 − y 2<br />

(x 2 − y 2 ) 2 + 4x 2 y 2 , Imf = −2xyi<br />

(x 2 − y 2 ) 2 + 4x 2 y 2 .<br />

16. Let z = r.(cos θ + i. sin θ). Then z 2 = r 2 .(cos 2θ + i. sin 2θ). Because<br />

[Re(z 2 )]/|z| 2 = r 2 . cos 2θ/r 2 = cos 2θ,<br />

this function isn’t continuous at z = 0.<br />

17. Let z = r.(cos θ + i. sin θ). Then z 2 = r 2 .(cos 2θ + i. sin 2θ). Because<br />

[Im(z 2 )]/|z| = r 2 . sin 2θ/r = r. sin 2θ r→0 −→ 0,<br />

this function is continuous at z = 0.<br />

18. Let z = r.(cos θ + i. sin θ). Then z 2 = r 2 .(cos 2θ + i. sin 2θ) and Re( 1 z<br />

|z| 2 .Re( 1 z ) = r2 .r. cos θ/r 2 = r. cos θ r→0 −→ 0,<br />

r. cos θ<br />

) = . Because<br />

r 2<br />

this function is continuous at z = 0.<br />

19. Let z = r.(cos θ + i. sin θ). Then z 2 = r 2 .(cos 2θ + i. sin 2θ). Because<br />

this function is continuous at z = 0.<br />

20-24 Derivative:<br />

(Imz)/(1 − |z|) = r. sin θ/(1 − r) =<br />

20. ( z2 −9<br />

z 2 +1 )′ = (2z).(z2 +1)−(z 2 −9).(2z)<br />

(z 2 +1) 2 = 2z3 +2z−2z 3 +18z<br />

(z 2 +1) 2 = 20z<br />

(z 2 +1) 2 .<br />

21. [(z 3 + i) 2 ] ′ = 2.(z 3 + i).3z 2 = 6z 5 + 6z 2 i.<br />

22. ( 3z+4i<br />

1,5iz−2 )′ = 3.(1,5iz−2)−(3z+4i).1,5i = 4,5iz−6−4,5iz+6 = 0.<br />

(1,5iz−2) 2<br />

(1,5iz−2) 2<br />

23. (<br />

i<br />

(1−z) 2 ) ′ = −i.2.(1−z).(−1)<br />

(1−z) 4 = 2i<br />

(1−z) 3 .<br />

24. (<br />

z 2<br />

(z+i) 2 ) ′ = 2z.(z+i)2 −z 2 .2.(z+i)<br />

(z+i) 4 = 2zi<br />

(z+i) 3 .<br />

r r→0<br />

. sin θ −→ 0,<br />

1 − r<br />

13


13.4<br />

1-10 Cauchy-Riemann equations:<br />

1. For f(z) = z 4 , let z = x + iy.<br />

=⇒ (x + iy) 4 = x 4 + 4x 3 iy + 6x 2 i 2 y 2 + 4xi 3 y 3 + i 4 y 4<br />

= (x 4 − 6x 2 y 2 + y 4 ) + (4x 3 y − 4xy 3 )i<br />

Let u = x 4 − 6x 2 y 2 + y 4 and v = 4x 3 y − 4xy 3 .<br />

u x = 4x 3 − 12xy 2 , u y = −12x 2 y + 4y 3 , v x = 12x 2 y − 4y 3 and v y = 4x 3 − 12xy 2 .<br />

=⇒ u x = v y and u y = −v x =⇒ f is analytic.<br />

2. f(z) = Im(z 2 )<br />

z 2 = x 2 − y 2 + 2xyi =⇒ f(z) = 2xy.<br />

Let u = 2xy and v = 0. =⇒ u x = 2y, u y = 2x, v x = 0 and v y = 0.<br />

=⇒ u x ≠ v y and u y ≠ −v x =⇒ f isn’t analytic.<br />

3. e 2x .(cos y + i sin y) =⇒ Let be u = e 2x cos y and v = e 2x sin y<br />

u x = 2e 2x cos y, u y = −e 2x sin y, v x = 2e 2x sin y and v y = e 2x cos y.<br />

=⇒ u x ≠ v y , u y ≠ −v x =⇒ f isn’t analytic.<br />

4. f(z) = 1<br />

1−z 4 , 1 − z 4 ≠ 0 =⇒ z 4 ≠ 1 =⇒ When z ≠ ∓i and z ≠ ∓1, f is analytic.<br />

5. e −x (cos y − i sin y)<br />

Let u = e −x cos y and v = e −x sin y.<br />

=⇒ u x = −e −x cos y, u y = −e −x sin y, v x = e −x sin y and v y = −e −x cos y.<br />

=⇒ u x = v y and u y = −v x =⇒ f is analytic.<br />

6. f(z) = arg(πz)<br />

πz = πx + iπy =⇒ arg(πz) = arctan( y x )<br />

=⇒ u = arctan( y x ) and v = 0 =⇒ u x = x2<br />

x 2 +y 2<br />

7. f(z) = Rez + Imz = x + y =⇒ u = x + y and v = 0.<br />

=⇒ u x = 1 ≠ v y = 0 =⇒ f isn’t analytic function.<br />

8. f(z) = ln |z| + i. arg z, |z| = √ x 2 + y 2<br />

≠ v y = 0 =⇒ f isn’t analytic.<br />

f is analytic for every z ∈ C, |z| > 0 =⇒ ln |z| is defined =⇒ arg z = θ is defined. =⇒ f is analytic.<br />

9. f(z) = i<br />

z 8<br />

When z ≠ 0, f is analytic.<br />

10. f(z) = z 2 + 1 = z4 +1<br />

z 2 z 2<br />

When z ≠ 0, f is analytic.<br />

11. Let x = r cos θ, y = r sin θ and u x = v y , u y = −v x .<br />

∂u<br />

∂r = ∂u<br />

∂x .∂x ∂r + ∂u<br />

∂y .∂y ∂r = u x cos θ + u y sin θ = v y cos θ − v x sin θ<br />

14


∂u<br />

∂θ = ∂u<br />

∂x .∂x ∂θ + ∂u<br />

∂y .∂y ∂θ = u x(−r sin θ) + u y (r cos θ) = −rv y sin θ − rv x cos θ<br />

12-21 Harmonic functions:<br />

12. u = xy<br />

∂v<br />

∂r = ∂v<br />

∂x .∂x ∂r + ∂v<br />

∂y .∂y ∂r = v x cos θ + v y sin θ<br />

∂v<br />

∂θ = ∂v<br />

∂x .∂x ∂θ + ∂v<br />

∂y .∂y ∂θ = v x(−r sin θ) + v y (r cos θ)<br />

=⇒ u r = 1 r v θ and v r = − 1 r u θ.<br />

u xx = 0 and u yy = 0 =⇒ u xx + u yy = 0 =⇒ u is harmonic.<br />

u x = v y =⇒ y = v y =⇒ v = y2<br />

2 + h(x) =⇒ v x = dh<br />

dx<br />

u y = −v x =⇒ x = − dh<br />

x2<br />

y2<br />

dx<br />

=⇒ h(x) = −<br />

2<br />

+ c =⇒ f(z) = xy + (<br />

2 − x2<br />

2 + c)i.<br />

13. v = xy<br />

v xx = 0, v yy = 0 =⇒ v xx + v yy = 0 =⇒ v is harmonic.<br />

v x = −u y =⇒ u y = −y =⇒ u = − y2<br />

2 + h(x) =⇒ u x = dh<br />

dx .<br />

Since u x = v y = x, dh<br />

x2<br />

dx<br />

= x =⇒ h(x) =<br />

2 + c.<br />

=⇒ f(z) = − y2<br />

2 + x2<br />

2 + c + xyi.<br />

14. v = − y<br />

x 2 +y 2<br />

−u y = v x =<br />

2xy , u<br />

(x 2 +y 2 ) 2 x = v y = y2 −x 2<br />

(x 2 +y 2 ) 2<br />

=⇒ v xx = −6x2 y+2y 3<br />

(x 2 +y 2 ) 3 and v yy = 6x2 y−2y 3<br />

(x 2 +y 2 ) 3 =⇒ v xx + v yy = 0 =⇒ v is harmonic.<br />

u =<br />

x<br />

x 2 +y 2 + c =⇒ f(z) =<br />

15. u = ln |z| = ln √ x 2 + y 2<br />

v y = u x =<br />

x<br />

2(x 2 +y 2 ) , −v x = u y =<br />

x<br />

x 2 +y 2 + c + i<br />

y<br />

2(x 2 +y 2 )<br />

−y<br />

.<br />

x 2 +y 2<br />

=⇒ u xx = y2 −x 2<br />

2(x 2 +y 2 ) 2 and u yy = x2 −y 2<br />

2(x 2 +y 2 ) 2 =⇒ u xx + u yy = 0 =⇒ u is harmonic.<br />

v = 1 2 arctan( y x ) + h(x) =⇒ v x = −<br />

=⇒ f(z) = ln |z| + 1 2 arctan( y x ) + c.<br />

16. v = ln |z| = ln √ x 2 + y 2<br />

−u y = v x =<br />

x<br />

2(x 2 +y 2 ) , u x = v y =<br />

y<br />

2(x 2 +y 2 ) + dh<br />

dx<br />

y<br />

2(x 2 +y 2 )<br />

dh<br />

=⇒<br />

dx<br />

= 0 =⇒ h(x) = c.<br />

=⇒ v xx = y2 −x 2<br />

2(x 2 +y 2 ) 2 and v yy = x2 −y 2<br />

2(x 2 +y 2 ) 2 =⇒ v xx + v yy = 0 =⇒ v is harmonic.<br />

u = −1<br />

2 arctan( y x ) + h(x) =⇒ u x =<br />

=⇒ f(z) = −1<br />

2 arctan( y x<br />

) + c + i ln |z|.<br />

17. u = x 3 − 3xy 2<br />

v y = u x = 3x 2 − 3y 2 , −v x = u y = −6xy<br />

y<br />

2(x 2 +y 2 ) + dh<br />

dx<br />

=⇒ h(x) = c.<br />

=⇒ u xx = 6x and u yy = −6x =⇒ u xx + u yy = 0 =⇒ u is harmonic.<br />

v = 3x 2 y − y 3 + h(x) =⇒ v x = 6xy + dh<br />

dx<br />

=⇒ h(x) = c.<br />

15


=⇒ f(z) = x 3 − 3xy 2 + i(3x 2 y − y 3 + c).<br />

18. u = 1<br />

x 2 +y 2<br />

u x = −<br />

2x , u<br />

(x 2 +y 2 ) 2 y = −2y<br />

(x 2 +y 2 ) 2<br />

=⇒ u xx = 6x2 −2y 2<br />

(x 2 +y 2 ) 3 and u yy = 6y2 −2x 2<br />

(x 2 +y 2 ) 3 =⇒ u xx + u yy ≠ 0 =⇒ u isn’t harmonic.<br />

19. v = (x 2 − y 2 ) 2<br />

−u y = v x = 4x 3 − 4xy 2 , u x = v y = −4x 2 y + 4y 3<br />

=⇒ v xx = 12x 2 −4y 2 and v yy = −4x 2 +12y 2 =⇒ When x, y ≠ 0v xx +v yy ≠ 0 =⇒ v isn’t harmonic.<br />

20. u = cos x cosh y<br />

v y = u x = − sin x cosh y, −v x = u y = cos x sinh y<br />

=⇒ u xx = − cos x cosh y and u yy = cos x cosh y =⇒ u xx + u yy = 0 =⇒ u is harmonic.<br />

v = − sin x sinh y + h(x) =⇒ v x = − cos x sinh y + dh<br />

dx<br />

=⇒ h(x) = c.<br />

=⇒ f(z) = cos x cosh y − i sin x sinh y + c.<br />

21. u = e −x sin 2y<br />

u x = −e −x sin 2y, u y = 2e −x cos 2y<br />

=⇒ u xx = e −x sin 2y and u yy = −4e −x sin 2y =⇒ When y ≠ kπ, u xx + u yy = −3e −x sin 2y ≠ 0<br />

=⇒ u isn’t harmonic.<br />

22-24 Harmonic conjugate:<br />

22. u = e 3x cos ay harmonic =⇒ u xx + u yy = 0.<br />

u x = 3e 3x cos ay, u y = −ae 3x sin ay<br />

=⇒ u xx = 9e 3x cos ay and u yy = −a 2 e 3x cos ay =⇒ u xx +u yy = e 3x cos ay(9−a 2 ) = 0 =⇒ a = ∓3<br />

When a = −3, u = e 3x cos(−3y)<br />

v y = u x = 3e 3x cos(−3y), −v x = u y = 3e 3x sin(−3y) =⇒ v = −e 3x sin(−3y) + h(x)<br />

=⇒ v x = −3e 3x sin(−3y) + dh<br />

dx<br />

=⇒ h(x) = c.<br />

=⇒ v = −e 3x sin(−3y) + c.<br />

When a = 3, u = e 3x cos(3y)<br />

v y = u x = 3e 3x cos(3y), −v x = u y = −3e 3x sin(3y) =⇒ v = e 3x sin(3y) + h(x)<br />

=⇒ v x = 3e 3x sin(3y) + dh<br />

dx<br />

=⇒ h(x) = c.<br />

v = e 3x sin(3y) + c<br />

23. u = sin x cosh(cy) harmonic =⇒ u xx + u yy = 0.<br />

u x = cos x cosh(cy), u y = c sin x sinh(cy)<br />

=⇒ u xx = −sinx cosh(cy) and u yy = c 2 sin x cosh(cy) and u xx + u yy = 0 =⇒ c 2 − 1 = 0<br />

=⇒ c = ∓1<br />

When c = −1, u = sin x cosh(−y)<br />

16


v y = u x = cos x cosh(−y), −v x = u y = c − sin x sinh(−y) =⇒ v = − cos x sinh(−y) + h(x)<br />

=⇒ v x = sin x sinh(−y) + dh<br />

dx<br />

=⇒ h(x) = c<br />

=⇒ v = − cos x sinh(−y) + c.<br />

When c = 1, u = sin x cosh(y)<br />

v y = u x = cos x cosh(y), −v x = u y = c sin x sinh(y) =⇒ v = cos x sinh(y) + h(x)<br />

=⇒ v x = − sin x sinh(y) + dh<br />

dx<br />

=⇒ h(x) = c<br />

=⇒ v = cos x sinh(y) + c.<br />

24. u = ax 3 + by 3 harmonic =⇒ u xx + u yy = 0.<br />

u x = 3ax 2 , u y = 3by 2<br />

=⇒ u xx = 6ax and u yy = 6by =⇒ u xx + u yy = 0 and ax + by = 0 =⇒ a = b = 0.<br />

=⇒ u x = v y = 0 =⇒ v = h(x) =⇒ v x = dh<br />

dx<br />

=⇒ h(x) = c =⇒ v = c is constant.<br />

13.5<br />

1. e z = e x+iy = e x .e iy = e x (cos y + i sin y)<br />

u = e x cos y and v = e x sin y =⇒ u x = e x cos y, u y = −e x sin y, v x = e x sin y and v y = e x cos y.<br />

=⇒ u x = v y and u y = −v x .<br />

=⇒ e z is analytic for every z. =⇒ e z is entire.<br />

2-8 Values of e z :<br />

2. z = 3 + πi ⇒ e 3+πi = e 3 (cos π − i. sin π) = −e 3 ∼ = −20, 086 and |e 3+πi | ∼ = 20, 086.<br />

3. e 1+2i = e(cos 2 + i. sin 2) and |e 1+2i | = e √ cos 2 2 + i. sin 2 2.<br />

4. e √ 2− π 2 i = e √2 [cos( −π<br />

−π<br />

2<br />

) + i. sin(<br />

2 )] = −e√2 i ∼ = −4, 11325i and |e √ 2− π 2 i | ∼ = 4, 11325.<br />

5. e 7πi/2 = e 0 [cos(7πi/2) + i. sin(7πi/2)] = i and |e 7πi/2 | = |i| = 1.<br />

6. e (1+i)π = e π (cos π + i sin π) = −e π ∼ = −23, 1407 and |e (1+i)π | ∼ = 23, 1407.<br />

7. e 0,8−5i = e 0,8 .(cos(−5) + i. sin(−5)) = 2, 23.(0, 28 + i.0, 95) and |e 0,8−5i | ∼ = 2, 2.<br />

8. e 9πi/2 = e 0 [cos(9πi/2) + i. sin(9πi/2)] = i and |e 9πi/2 | = |i| = 1.<br />

9-12 Real and Imaginary parts: Let z = x + iy.<br />

9. e −2z = e −2x−2yi = e −2x (cos(−2y) + i. sin(−2y))<br />

⇒ Re(e −2z ) = e −2x (cos(2y) and Im(e −2z ) = −e −2x (sin(2y).<br />

10. e z3 = e (x+iy)3 = e (x3 −3xy 2 )+(3x 2 y−y 3 )i = e (x3 −3xy 2) (cos(3x 2 y − y 3 ) + i. sin(3x 2 y − y 3 ))<br />

⇒ Re(e z3 ) = e (x3 −3xy 2) cos(3x 2 y − y 3 ) and Im(e z3 ) = e (x3 −3xy 2) sin(3x 2 y − y 3 ).<br />

11. e z2 = e (x+iy)2 = e x2 −y 2 +2xyi = e x2 −y 2 (cos(2xy) + i. sin(2xy)).<br />

12. e 1 z = e 1<br />

x+iy<br />

= e x−iy<br />

x 2 +y 2 = e x<br />

x 2 +y 2 [cos(<br />

y<br />

) − i. sin( )].<br />

x 2 +y 2 x 2 +y 2<br />

17<br />

y


13-17 Polar form:<br />

13. z = √ i ⇒ √ √ √<br />

1<br />

i = ∓[<br />

2 + i. 1<br />

2 ] = ∓ √ 1<br />

2<br />

(1 + i) ⇒ |z| = 1, tan θ = 1 ⇒ θ = π 4 , 7π 4<br />

⇒ e π 4 and e 7π 4 .<br />

14. z = 1 + i ⇒ r = |z| = √ 2, tan θ = 1 and because z is in the 1. region, θ = π 4 , so that √ 2e πi<br />

4 .<br />

15. z = r.e iθ ⇒ n√ z = n√ r.e iθ = r 1 n .e iθ n .<br />

16. z = 3 + 4i ⇒ r = |z| = 5 and tan θ = 4 3 ⇒ θ = arctan( 4 3 ), so that 5ei. arctan( 4 3 ) .<br />

17. z = −9 ⇒ r = |z| = 9, because z is on the left of x-axis, θ = π, thus 9e iπ .<br />

18-21 Solution of equations: Let z = x + iy.<br />

18. e 3z = 4 ⇒ e 3x (cos 3y + i. sin 3y) = 4 ⇒ e 3x cos 3y = 4 and e 3x sin 3y = 0<br />

e 6x cos 2 3y + e 6x sin 2 3y = 16 ⇒ e 6x (cos 2 3y + sin 2 3y) = 16 ⇒ e 3x = 4 ⇒ x = ln 4<br />

3<br />

Thus, we get that z = ln 4<br />

3<br />

+ i.<br />

2kπ<br />

3 .<br />

tan 3y = 0 ⇒ y = 2kπ<br />

3 , k ∈ Z<br />

19. e z = −2 ⇒ e x (cos y + i. sin y) = −2 ⇒ e x cos y = −2 and e x sin y = 0<br />

e 2x cos 2 y + e 2x sin 2 y = 4 ⇒ e 2x (cos 2 y + sin 2 y) = 4 ⇒ e 2x = 4 ⇒ x = ln 2<br />

So, we have z = ln 2 + i.(2k − 1)π.<br />

tan y = 0 ⇒ y = (2k − 1)π, k ∈ Z<br />

20. e z = 0 ⇒ e x+iy = 0 ⇒ e x (cos y + i. sin y) = 0 ⇒ e x cos y = e x sin y = 0.<br />

We know that cos y = sin y = 0 isn’t possible at the same time. Hence there is no solution of e z = 0.<br />

21. e z = 4 − 3i ⇒ e x (cos y + i. sin y) = 4 − 3i ⇒ e x cos y = 4 and e x sin y = −3<br />

e 2x cos 2 y + e 2x sin 2 y = 16 ⇒ e 2x (cos 2 y + sin 2 y) = 9 ⇒ e 2x = 25 ⇒ x = ln 5<br />

tan y = −3<br />

4<br />

Finally, we have z = ln 5 − i. arctan( 4 3 ).<br />

⇒ y = − arctan( 3 4 )<br />

1.<br />

13.6<br />

cos z = eiz + e −iz<br />

2<br />

⇒ d dz cos z = i 2 (eiz − e −iz ) = − sin z<br />

cos z is defined and differentiable at all points of C. So, cos z is entire.<br />

sin z = eiz − e −iz<br />

2i<br />

⇒ d dz sinz = ieiz + ie −iz<br />

2i<br />

= eiz + e −iz<br />

2<br />

= cos z<br />

18


sin z is defined and differentiable at all points of C. Hence sin z is entire.<br />

cosh z = ez + e −z<br />

⇒ d 2 dz coshz = ez − e −z<br />

= sinh z<br />

2<br />

cosh z is defined and differentiable at all points of C. So cosh z is entire.<br />

sinh z = ez − e −z<br />

⇒ d 2 dz sinhz = ez + e −z<br />

= cosh z<br />

2<br />

sinh z is defined and differentiable at all points of C. Therefore sinh z is entire.<br />

2. Let z = x + iy. Then we can write<br />

cos z = cos x cosh y − i sin x sinh y<br />

Re(cos z) = cos x cosh y. Let u(x, y) = cos x cosh y and v(x, y) = 0.<br />

u x = − sin x cosh y,<br />

u y = cos x sinh y,<br />

u xx = − cos x cosh y<br />

u yy = cos x cosh y<br />

Then we obtain that ∇ 2 u = u xx + u yy = − cos x cosh y + cos x cosh y = 0.<br />

v xx , v yy = 0 because v(x, y) = 0. So, ∇ 2 v = v xx + v yy = 0.<br />

Hence Re(cos z) is harmonic.<br />

We know that<br />

sin z = sin x cosh y + i cos x sinh y<br />

Then Im(sin z) = cos x sinh y. Let u(x, y) = cos x sinh y and v(x, y) = 0.<br />

u x = − sin x sinh y,<br />

u y = cos x cosh y,<br />

u xx = − cos x sinh y<br />

u yy = cos x sinh y<br />

∇ 2 u = u xx + u yy = − cos x sinh y + cos x sinh y = 0.<br />

Because of v(x, y) = 0, v xx and v yy is zero. Hence ∇ 2 v = v xx + v yy = 0. Im(sin z) is harmonic.<br />

3. We know that cosiz = coshz and siniz = isinhz. Furthermore cos z = cos x cosh y − i sin x sinh y.<br />

cosh z = cos iz = cos(i(x + iy)) = cos(−y + ix) = cos(−y) cosh(x) − i sin(−y) sinh(x)<br />

= cos y cosh x + i sin y sinh x<br />

We know that sin z = sin x cosh y + i cos x sinh y Then,<br />

sinh z =<br />

sin iz<br />

i<br />

= −i sin(iz) = −i sin(−y + ix) = −i(sin(−y) cosh(x) + i cos(−y) sinh(x))<br />

= −i(− sin y cosh x + i cos y sinh x) = cos y sinh x + i sin y cosh x.<br />

4. We know that cos iz = cosh z and sin iz = i sinh z. If we use<br />

cos(z 1 + z 2 ) = cos z 1 cos z 2 − sin z 1 sin z 2<br />

19


then,<br />

cosh(z 1 + z 2 ) = cos(i(z 1 + z 2 ))<br />

= cos(iz 1 + iz 2 )<br />

= cos(iz 1 ) cos(iz 2 ) − sin(iz 1 ) sin(iz 2 )<br />

= cosh z 1 cosh z 2 − i sinh z 1 .i sinh z 2<br />

= cosh z 1 cosh z 2 + sinh z 1 sinh z 2 .<br />

If we use<br />

sin(z 1 + z 2 ) = sin z 1 cos z 2 + sin z 2 cos z 2<br />

then,<br />

sinh(z 1 + z 2 ) = sin(i(z 1+z 2 ))<br />

i<br />

= −i(sin(iz 1 + iz 2 ))<br />

= −i[sin(iz 1 ) cos(iz 2 ) + sin(iz 2 ) cos(iz 1 )]<br />

= −i[i sinh z 1 cosh z 2 + i sinh z 2 . cosh z 1 ]<br />

= sinh z 1 cosh z 2 + cosh z 1 sinh z 2 .<br />

5. cosh 2 z − sinh 2 z = ( ez +e −z<br />

2<br />

) 2 − ( ez −e −z<br />

2<br />

) 2 = e2z +e −2z +2−e 2z −e −2z +2<br />

4<br />

= 4 4 = 1<br />

6. cosh 2 z + sinh 2 z = ( ez +e −z<br />

2<br />

) 2 + ( ez −e −z<br />

2<br />

) 2 = e2z +e −2z +2+e 2z +e −2z −2<br />

4<br />

= e2z+e−2z<br />

2<br />

= cosh 2z<br />

7-15: Function Values<br />

7. cos(1 + i) = ei(1+i) +e −i(1+i)<br />

2<br />

= e−1+i +e 1−i<br />

2<br />

= e−1 (cos 1+i sin 1)+e(cos(−1)+i sin(−1))<br />

2<br />

= e−1 cos 1+e −1 i sin 1+e cos 1−ei sin 1<br />

2<br />

= ( e−1 +e 1<br />

2<br />

). cos 1 + i( e−1 −e<br />

2<br />

). sin 1<br />

= cos1.cos1 + i.(− sin 1). sin 1<br />

= cos 2 1 − i sin 2 1.<br />

8. sin(1 + i) = ei(1+i) −e −i(1+i)<br />

2i<br />

= e−1+i −e 1−i<br />

2i<br />

= e−1 (cos 1+i sin 1)−e 1 (cos(−1)+i sin(−1))<br />

2i<br />

= cos 1( e−1 −e<br />

2i<br />

) + i sin 1( e−1 +e<br />

2i<br />

)<br />

= cos 1.(− sin 1) + i sin 1. cos 1<br />

i<br />

= − cos 1 sin 1 + cos 1 sin 1<br />

= 0<br />

9. sin 5i = ei(5i) −e −i(5i)<br />

2i<br />

= e−5 −e 5<br />

2i<br />

= −2i.(e−5 −e 5 )<br />

4<br />

= −i.(e−5 −e 5 )<br />

2<br />

= −i(− sinh 5) = i sinh 5.<br />

20


10. cos 3πi = ei(3πi) +e −i(3πi)<br />

2<br />

= e−3π +e 3π<br />

2<br />

= cosh 3π.<br />

11. cosh(−2 + 3i) = e−2+3i +e 2−3i<br />

2<br />

= e−2 (cos 3+i sin 3)+e 2 (cos(−3)+isin(−3))<br />

2<br />

= cos 3( e−2 +e 2<br />

2<br />

) + i sin 3( e−2 −e 2<br />

2<br />

)<br />

= cos 3 cosh 2 − i sin 3sinh2.<br />

12. • −i sinh(−π + 2i) = −i( e−π+2i −e π−2i<br />

2<br />

)<br />

• sin(2 + πi) =<br />

= −i( e−π (cos 2+i sin 2)−e π (cos(−2)+i sin(−2))<br />

2<br />

)<br />

= −i(cos 2( e−π −e π<br />

2<br />

) + i sin 2( e−π +e π<br />

2<br />

))<br />

= −i(cos 2(− sinh π) + i sin 2 cosh π)<br />

= sin 2 cosh π + i cos 2 sinh π.<br />

sinh i(2+πi)<br />

i<br />

= sinh(−π+2i)<br />

i<br />

13. cosh(2n + 1)πi = e(2n+1)πi +e −(2n+1)πi<br />

2<br />

=<br />

−i sinh(−π+2i)<br />

1<br />

= i cos 2 sinh π + sin 2 cosh π.<br />

= e0 (cos((2n+1)π)+i sin((2n+1)π))+e 0 (cos((−2n−1)π)+i sin((−2n−1)π)<br />

2<br />

= cos((2n+1)π)+cos((−2n−1)π)<br />

2<br />

= cos(π)+cos(−π)<br />

2<br />

= −1, n = 1, 2, ...<br />

14. sinh(4 − 3i) = e4−3i −e −4+3i<br />

2<br />

= e4 (cos(−3)+i sin(−3))−e −4 (cos 3+i sin 3)<br />

2<br />

= cos 3( e4 −e −4<br />

2<br />

) + i sin 3( −e4 −e −4<br />

2<br />

)<br />

= cos 3 sinh 4 − i sin 3 cosh 4.<br />

15. cosh(4 − 6πi) = e4−6πi −e −4+6πi<br />

2<br />

= e4 (cos(−6π)+i sin(−6π))+e −4 (cos(6π)+i sin(6π))<br />

2<br />

= e4 +e −4<br />

2<br />

= cosh 4.<br />

16. We know that tan a = sin a<br />

cos a<br />

tan a+tan b<br />

and tan(a + b) =<br />

1−tan a tan b .<br />

tan z = tan(x + iy) =<br />

tan x+tan iy<br />

1−tan x tan iy =<br />

sin x sin iy<br />

+ cos x cos iy<br />

1− sin x<br />

cos x<br />

.<br />

sin iy<br />

cos iy<br />

=<br />

sin x cos iy+sin iy cos x<br />

cos x cos iy<br />

cos x cos iy−sin x sin iy<br />

cos x cos iy<br />

=<br />

sin x cos iy+sin iy cos x<br />

cos x cos iy−sin x sin iy<br />

=<br />

sin x cosh y+i sinh y cos x<br />

cos x cosh y−i sin x sinh y = sin x cos x cosh2 y+i cos 2 x cosh y sinh y+i sin 2 x sinh y cosh y−sinh 2 y cos x sin x<br />

cos 2 x cosh 2 y+sin 2 x sinh 2 y<br />

= cosh y sinh y(i(cos2 x+sin 2 x))+cos x sin x(cosh 2 y−sinh 2 y)<br />

cos 2 x(1+sinh 2 y)+sin 2 x sinh 2 y<br />

=<br />

i cosh y sinh y+cos x sin x<br />

cos 2 x+cos 2 x sinh 2 y+sin 2 x sinh 2 y<br />

=<br />

cos x sin x+i cosh y sinh y<br />

cos 2 x+sinh 2 y(cos 2 x+sin 2 x) =<br />

Hence we get Re(tan z) =<br />

17-21: Equations<br />

cos x sin x cosh y sinh y<br />

+ i<br />

cos 2 x+sinh 2 y<br />

cos x sin x<br />

and Im(tan z) =<br />

cos 2 x+sinh 2 y<br />

17. 0 = cosh z = ez +e −z<br />

2<br />

= 1 2 (ez + 1<br />

e<br />

) = 1 e 2z +1<br />

z 2 e<br />

. z<br />

cos 2 x+sinh 2 y<br />

cosh y sinh y<br />

cos 2 x+sinh 2 y .<br />

21


Then we obtain that<br />

e 2z + 1 = 0 ⇒ e 2z = −1 ⇒ e 2z = (i) 2 ⇒ e z = i ⇒ ln e z = ln i ⇒ z = ln i.<br />

We know that ln z = ln |z| + i(Arg(z) + 2kπ), k ∈ Z. Then,<br />

z k = ln i = ln |i| + i(Arg(i) + 2kπ) = ln 1 + i( π 2 + 2kπ) = i(π 2 + 2kπ)<br />

So, z k = i (4k+1)π<br />

2<br />

, k ∈ Z.<br />

18. 100 = sin z = eiz −e −iz<br />

2i<br />

Let t = e iz . Then we can write t 2 − 200it − 1 = 0.<br />

⇒ 200i = e2iz −1<br />

e iz ⇒ 200i.e iz = e 2iz − 1 ⇒ e 2iz − 200i.e iz − 1 = 0.<br />

△ = b 2 − 4ac, a = 1, b = −200i, c = −1 ⇒ △ = −39996<br />

t 1,2 = −b+√ △<br />

2a<br />

= 200i+199,9i<br />

2<br />

⇒ t 1 = 399,9i<br />

2<br />

and t 2 = 0,1i<br />

2<br />

• t 1 = e iz 1<br />

⇒ ln t 1 = ln e iz 1<br />

= iz 1 ⇒ z 1 = 1 i [ln |t 1| + i(Arg(t 1 ) + 2kπ)]<br />

= −i[ln( 399,9<br />

2<br />

) + i( π 399,9<br />

2<br />

+ 2kπ)] = −i ln(<br />

2<br />

) + 4k+1<br />

2<br />

π, k ∈ Z<br />

• t 2 = e iz 2<br />

⇒ ln t 2 = ln e iz 2<br />

= iz 2 ⇒ z 2 = 1 i [ln |t 2| + i(Arg(t 2 ) + 2kπ)]<br />

= −i[ln( 1<br />

20 ) + i( π 1<br />

2<br />

+ 2kπ)] = −i ln(<br />

20 ) + 4k+1<br />

2<br />

π, k ∈ Z<br />

19. 2i = cos z = eiz +e −iz<br />

2<br />

= 1 2 ( e2iz +1<br />

e iz ) ⇒ e 2iz − 4ie iz + 1 = 0<br />

Let t = e iz . Then we obtain t 2 − 4it + 1 = 0.<br />

△ = b 2 − 4ac, a = 1, b = −4i, c = 1 ⇒ △ = −20<br />

t 1,2 = −b+√ △<br />

2a<br />

= 4i+2√ 5i<br />

2<br />

= i(2+ √ 5) ⇒ t 1 = i(2 + √ 5) and t 2 = i(2 − √ 5)<br />

• t 1 = e iz 1<br />

⇒ ln t 1 = ln e iz 1<br />

= iz 1 ⇒ z 1 = 1 i [ln |t 1| + i(Arg(t 1 ) + 2kπ)]<br />

= −i[ln(2 + √ 5) + i( π 2 + 2kπ)] = −i ln(2 + √ 5) + 4k+1<br />

2<br />

π, k ∈ Z<br />

• t 2 = e iz 2<br />

⇒ ln t 2 = ln e iz 2<br />

= iz 2 ⇒ z 2 = 1 i [ln |t 2| + i(Arg(t 2 ) + 2kπ)]<br />

= −i[ln(2 − √ 5) + i(− π 2 + 2kπ)] = −i ln(√ 5 − 2) + 4k−1<br />

2<br />

π, k ∈ Z<br />

20. −1 = cosh z = ez +e −z<br />

2<br />

⇒ e 2z + 2e z + 1 = 0<br />

Let t = e z . Then we obtain<br />

t 2 + 2t + 1 = 0 ⇒ (t + 1) 2 = 0 ⇒ (t + 1) = 0 ⇒ t = −1<br />

22


e z = t = −1 ⇒ ln e z = ln(−1)<br />

⇒ z = ln(−1) = ln | − 1| + i(Arg(−1) + 2kπ) k ∈ Z<br />

⇒ z = ln 1 + i(2k + 1)π, k ∈ Z<br />

21. 0 = sinh z = ez −e −z<br />

2<br />

⇒ e z − e −z = 0 ⇒ e 2z = 1<br />

ln e 2z = ln 1 ⇒ 2z = ln |1| + i(Arg(1) + 2kπ), k ∈ Z<br />

⇒ 2z = ln 1 + i(0 + 2kπ), k ∈ Z<br />

⇒ z = kπi, k ∈ Z.<br />

13.7<br />

1-9 Find Ln(z) when z equals:<br />

1. Ln(−10) = ln | − 10| + i.Arg(−10) = ln 10 + πi.<br />

2. Ln(2 + 2i) = ln |2 + 2i| + i.Arg(2 + 2i) = ln( √ 2 2 + 2 2 ) + i. arctan( 2 2 ) = ln(√ 8) + i. arctan(1) =<br />

1<br />

2 ln 8 + i. π 4 .<br />

3. Ln(2 − 2i) = ln |2 − 2i| + i.Arg(2 − 2i) = 1 2 ln 8 + i. 7π 4 .<br />

4. Ln(−5 ∓ 0.1i) = ln | − 5 ∓ 0.1i| + i.Arg(−5 ∓ 0.1i) = ln(5.001) ∓ i.0.02<br />

5. Ln(−3 − 4i) = ln | − 3 − 4i| + i.Arg(−3 − 4i) = ln 5 + i. arctan( 4 3 ).<br />

6. Ln(−100) = ln | − 100| + i.Arg(−100) = ln 100 + i.π = 4.605 + 3.142i.<br />

7. Ln(0.6 + 0.8i) = ln |0.6 + 0.8i| + i.Arg(0.6 + 0.8i) = ln 1 + i. arctan( 4 3 ) = arctan( 4 3 )i.<br />

8. Ln(−ei) = ln | − ei| + i.Arg(−ei) = ln e + i. −π<br />

2 = 1 − π 2 i.<br />

9. Ln(1 − i) = ln |1 − i| + i.Arg(1 − i) = 1 2 ln 2 + 7π 2 i.<br />

10-16 Find all values and graph some of them in the complex plane:<br />

10. z = ln 1 ⇒ e z = 1 ⇒ e x+iy = 1 ⇒ e x . cos y = 1 and e x . sin y = 0<br />

⇒ y = ∓2kπ, k ∈ Z, x = 0 ⇒ ∓2kπi.<br />

11. z = ln(−1) ⇒ e z = −1 ⇒ e x+iy = 1 ⇒ e x . cos y = −1 and e x . sin y = 0<br />

⇒ y = ∓(2k − 1)π, k ∈ Z, x = 0 ⇒ ∓(2k − 1)πi.<br />

12. z = ln e ⇒ e z = e ⇒ e x+iy = 1 ⇒ e x . cos y = e and e x . sin y = 0<br />

⇒ y = ∓2kπ, k ∈ Z, e x = e ⇒ x = 1 ⇒ 1 ∓ 2kπi.<br />

13. z = ln(−6) ⇒ e z = −6 ⇒ e x+iy = −6 ⇒ e x . cos y = −6 and e x . sin y = 0<br />

⇒ y = ∓(2k − 1)π, k ∈ Z, e x = 6 ⇒ x = ln 6 ⇒ ln 6 ∓ (2k − 1)πi.<br />

14. z = ln(4 + 3i) ⇒ e z = 4 + 3i ⇒ e x+iy = 4 + 3i ⇒ e x . cos y = 4 and e x . sin y = 3<br />

⇒ y = arctan 3 4 ∓ 2nπ, n ∈ Z, e2x = 25 ⇒ e x = 5 ⇒ x = ln 5<br />

⇒ ln 5 + (arctan 3 4 ∓ 2nπ)i.<br />

15. z = ln(−e −i ) ⇒ e z = −e −i ⇒ e x+iy = − cos(1) + i. sin(1)<br />

23


⇒ e x . cos y = − cos(1) and e x . sin y = sin(1).<br />

Because suitable x and y couldn’t be found, there is no solution.<br />

16. z = ln(e 3i ) ⇒ e z = e 3i ⇒ e x+iy = cos(3) + i. sin(3)<br />

⇒ e x . cos y = cos(3) and e x . sin y = sin(3) ⇒ y = 3, e 2x = 1 ⇒ x = 0 ⇒ 3i.<br />

Show that the set of values of ln(i 2 ) differs from the set of values of 2 ln i:<br />

17. z = ln(i 2 ) ⇒ e z = −1 ⇒ e x+iy = −1 ⇒ e x . cos y = −1 and e x . sin y = 0<br />

⇒ y = ∓(2k − 1)π, k ∈ Z, e 2x = 1 ⇒ x = 0 ⇒ ∓(2k − 1)πi ... (I).<br />

On the other hand, z = 2 ln i ⇒ e z 2 = i ⇒ e x 2 . cos( y 2 ) = 0 and e x 2 . sin( y 2 ) = 1<br />

Hence (I) ≠ (II).<br />

18-21 Solve for z:<br />

⇒ y = ∓(4k + 1)π, k ∈ Z, e x = 1 ⇒ x = 0 ⇒ ∓(4k + 1)πi ... (II).<br />

18. ln z = (2 − 1 2 i)π ⇒ z = e(2− 1 2 i)π = e 2π .(cos(− π 2 ) + i. sin(− π 2 )) = −e2π i.<br />

19. ln z = 0.3 + 0.7i ⇒ z = e 0.3+0.7i = e 0.3 .(cos(0.7) + i. sin(0.7)).<br />

20. ln z = e − πi ⇒ z = e e−πi = e e .(cos(−π) + i. sin(−π)) = −e e ∼ = −15, 154.<br />

21. ln z = 2 + π 4 i ⇒ z = e2+ π 4 i = e 2 .(cos( π 4 ) + i. sin( π 4 )) = √<br />

2<br />

2 e2 (1 + i).<br />

22-28 Find the principal value of:<br />

22. i 2i = e 2iLni = e 2i.i. π 2 = e −π ,<br />

(2i) i = e iLn2i = e i(ln 2+ π 2 i) = e − π 2 [cos(ln 2) + i. sin(ln 2)].<br />

23. 4 3+i = e (3+i) ln 4 = e 3 ln 4+ln 4i = e 3 ln 4 (e ln 4i ) = e 3 ln 4 (i. sin(ln 4)).<br />

24. (1 − i) 1+i = e (1+i)Ln(1−i) = e (1+i)(ln √ 2− π 4 i) = √ 2e π 4 [cos(− π 4 + ln √ 2) + i. sin(− π 4 + ln √ 2))].<br />

25. (1 + i) 1−i = e (1−i)Ln(1+i) = e (1−i)(ln √ 2+ π 4 i) = √ 2e π 4 [cos( π 4 − ln √ 2) + i. sin( π 4 − ln √ 2))].<br />

26. (−1) 1−2i = e (1−2i)Ln(−1) = e (1−2i)(ln |−1|+i.Arg(−1)) = e πi+2π = e 2π (cos π + i. sin π) = −e 2π .<br />

27. i 1/2 = e (1/2)Ln(i) = e (1/2)(ln |1|+i.Arg(i)) = e π 4 i √<br />

= 2<br />

2<br />

(1 + i).<br />

28. (3 − 4i) 1/3 = e (1/3)Ln(3−4i) = e (1/3)(ln 5+i. arctan 4 3 ) = 3√ 5[cos( 1 3 arctan 4 3 ) − i. sin( 1 3 arctan 4 3 )] ∼ =<br />

1, 6289 − 0, 5202.i.<br />

CHAPTER 14 - COMPLEX INTEGRATION<br />

14.1<br />

1-9: Parametric Representations<br />

1. z(t) = t + i3t, 1 ≤ t ≤ 4 ⇒ x(t) = t, y(t) = 3t<br />

• t = 1 ⇒ x(1) = 1, y(1) = 3 ⇒ starting point:(1, 3)<br />

• t = 4 ⇒ x(4) = 4, y(4) = 12 ⇒ ending point:(4, 12)<br />

We can sketch as follows:<br />

24


2. z(t) = 5 − 2it, −3 ≤ t ≤ 3 ⇒ x(t) = 5, y(t) = −2t<br />

• t = −3 ⇒ x(−3) = 5, y(−3) = 6 ⇒ starting point:(5, 6)<br />

• t = 3 ⇒ x(3) = 5, y(3) = −6 ⇒ ending point:(5, −6)<br />

Then we obtain figure below:<br />

3. z(t) = z 0 + re it , 0 ≤ t ≤ 2π denotes the circle of radius r with center z 0 .<br />

For z(t) = 4 + i + 3e it , we find z 0 = 4 + i and r = 3.<br />

z(t) = 4 + i + 3(cos t + i sin t) = (4 + 3 cos t) + i(1 + 3 sin t) ⇒ x(t) = 4 + 3 cos t, y(t) = 1 + 3 sin t<br />

For finding orientation, we should determine z(t) at some points.<br />

• t = 0 ⇒ z(0) = 4 + i + 3e 0 = 7 + i<br />

• t = π ⇒ z(π) = 4 + i + 3e iπ = 4 + i + 3(cos π + i sin π) = 4 + i + 3(−1 + i.0) = 1 + i<br />

• t = 2π ⇒ z(2π) = 4 + i + 3e i2π = 4 + i + 3(cos 2π + i sin 2π) = 4 + i + 3(1 + i.0) = 7 + i<br />

25


4. z(t) = 1 + i + e −πit , 0 ≤ t ≤ 2 denotes the circle of radius r = 1 with center z 0 = 1 + i.<br />

z(t) = 1 + i + e −πit = 1 + i + cos(−πt) + i sin(−πt) = (1 + cos(πt)) + i(1 − sin(πt))<br />

⇒ x(t) = 1 + cos(πt), y(t) = 1 − sin(πt)<br />

For finding orientation, we should determine z(t) at some points.<br />

• t = 0 ⇒ z(0) = 1 + i + e 0 = 2 + i<br />

• t = 1 ⇒ z(1) = 1 + i + e −iπ = 1 + i + (cos(−π) + i sin(−π)) = 1 + i + (cos(π) − i sin(π))<br />

= 1 + i − 1 + 0 = i<br />

• t = 2 ⇒ z(2) = 1 + i + e −i2π = 1 + i + (cos(−2π) + i sin(−2π)) = 1 + i + (cos(2π) − i sin(2π))<br />

= 1 + i + 1 + 0 = 2 + i<br />

5. z(t) = e it denotes the circle of radius r = 1 with center z 0 = 0.<br />

z(t) = e it = cos t + i sin t ⇒ x(t) = cos t, y(t) = sin t<br />

For finding orientation and the range of graphic, we will determine z(t) at t = 0 and t = π.<br />

• t = 0 ⇒ z(0) = e 0 = 1<br />

• t = π ⇒ z(π) = e iπ = cos π + i sin π = −1 + 0 = −1<br />

Hence we obtain the figure below:<br />

6. z(t) = 3 + 4i + 5e it denotes the circle of radius r = 5 with center z 0 = 3 + 4i.<br />

z(t) = 3 + 4i + 5e it = 3 + 4i + 5(cos t + i sin t) = (3 + 5 cos t) + i(4 + 5 sin t)<br />

⇒ x(t) = 3 + 5 cos t, y(t) = 4 + 5 sin t, π ≤ t ≤ 2π<br />

We will determine z(t) at t = π and z = 2π for finding orientation and range of path.<br />

26


• t = π ⇒ z(π) = 3 + 4i + 5e iπ = 3 + 4i + 5(cos π + i sin π) = −2 + 4i<br />

• t = 2π ⇒ z(2π) = 3 + 4i + 5e i2π = 3 + 4i + 5(cos 2π + i sin 2π) = 8 + 4i<br />

7. z(t) = 6 cos 2t + i5 sin 2t, 0 ≤ t ≤ π. Let x(t) = 6 cos 2t and y(t) = 5 sin 2t.<br />

• t = 0 ⇒ z(0) = 6<br />

• t = π 2<br />

⇒ z( π 2 ) = −6<br />

• t = π ⇒ z(π) = 6<br />

This parametric equation denotes the ellipse below:<br />

8. z(t) = 1 + 2t + 8it 2 , −1 ≤ t ≤ 1 denotes parabola.<br />

• t = −1 ⇒ z(−1) = −1 + 8i<br />

• t = 0 ⇒ z(0) = 1<br />

• t = 1 ⇒ z(1) = 3 + 8i<br />

9. z(t) = 1 + 1 2 it3 , −1 ≤ t ≤ 2<br />

• t = −1 ⇒ z(−1) = −1 − 1 2 i 27


• t = 0 ⇒ z(0) = 0<br />

• t = 2 ⇒ z(2) = 2 + 4i<br />

So we obtain figure below:<br />

10. • The starting point is 1 + i. We can write as (1, 1).<br />

• The ending point is 4 − 2i. We can write as (4, −2).<br />

• How far does 1 have to move to get to 4 3 units. So x(t) = 1 + 3t.<br />

• How far does 1 have to move to get to −2 −3 units. So y(t) = 1 − 3t.<br />

We obtain z(t) = x(t) + iy(t) = (1 + 3t) + i(1 − 3t).<br />

11. Let’s find parametric equation of the unit circle with center z 0 = x 0 + iy 0 .<br />

z(t) = z 0 + 1.e it = x 0 + iy 0 + cos t + i sin t = (x 0 + cos t) + i(y 0 + sin t), 0 ≤ t ≤ 2π<br />

Hence we obtain x(t) = x 0 + cos t, y(t) = y 0 + sin t, 0 ≤ t ≤ 2π.<br />

12. Let starting point z 0 = a + ib and ending point z 1 = c + id.<br />

28


So, we get x(t) = a + (c − a)t and y(t) = b + (d − b)t. Hence<br />

z(t) = x(t) + iy(t) = (a + (c − a)t) + i(b + (d − b)t)<br />

13. Let x(t) = t and y(t) = 1 t . Then we obtain parametric equation z(t) = t + i 1 t .<br />

14. The equation of an ellipse whose major and minor axess coincide with the cartesian axis is<br />

( x a )2 + ( y b )2 = 1<br />

Because of y ≥ 0 we obtain following graphic:<br />

Parametric equation is x(t) = a cos t, y(t) = b sin t, y ≥ 0.<br />

15. At first we determine y at x = −1, x = 0 and x = 1 for helping us to get graphic.<br />

29


• x = −1 ⇒ y = 4 − 4 = 0<br />

• x = 0 ⇒ y = 4<br />

• x = 1 ⇒ y = 0<br />

Now we can sketch as follows:<br />

Parametric equation: x(t) = t, y(t) = 4 − 4t 2 , −1 ≤ x ≤ 1<br />

16. |z − 2 + 3i| = 4 denotes the circle of radius r = 4 with center at z 0 = 2 − 3i.<br />

If z 0 = 2 − 3i and r = 4, then<br />

z(t) = 2 − 3i + 4e it = 2 − 3i + 4(cos t + i sin t) = 2 − 4 cos t + i(−3 + sin t)<br />

So we get x(t) = 2 − 4 cos t, y(t) = −3 + sin t, 0 ≤ t ≤ 2π.<br />

17. |z + a + ib| = r denotes the circle of radius r with center at z 0 = −a − ib.<br />

z(t) = −a − ib + re it = −a − ib + r(cos t + i sin t) = (−a + r cos t) + i(−b + r sin t)<br />

30


Hence we get x(t) = −a + r cos t, y(t) = −b + r sin t, −2π ≤ t ≤ 0.<br />

18. 4(x − 1) 2 + 9(y + 2) 2 = 36 denotes an ellips.<br />

Hence we get ellips below:<br />

4(x − 1) 2 + 9(y + 2) 2 = 36 ⇒ ( x − 1 ) 2 + ( y + 2<br />

3 2 )2 = 1<br />

x 0 − 1 = 0, y 0 + 2 = 0 ⇒ x 0 = 1, y 0 = −2 ⇒ z 0 = (1, −2)<br />

Parametric equation: x(t) = 3 cos t + 1, y(t) = 2 sin t − 2, 0 ≤ y ≤ 2π<br />

19-29 Integration:<br />

19. Let z = x + iy. Then f(z) = Rez = x is analytic in C. So we can use the first method:<br />

∫ z1<br />

z 0<br />

f(z)dz = F (z 1 ) − F (z 0 ), F (z) analytic, F ′ (z) = f(z)<br />

Let F (z) = x2<br />

2 . F ′ (z) = 2 x 2 = x = f(x).<br />

∫ 1+i<br />

20. We can sketch C as follows:<br />

0<br />

f(z)dz =<br />

∫ 1+i<br />

0<br />

xdz = F (1 + i) − F (0) = 1 2<br />

If z = x + iy, then f(z) = Rez = x is analytic in C. So we can use the first method.<br />

F (z) = x2<br />

2 is analytic in C and F ′ (z) = 2 x 2 = x = f(x).<br />

∫ ∫ 1+i ∫ 1+i<br />

Rez = f(z)dz = xdz = F (1 + i) − F (0) = 1 2<br />

C<br />

21.<br />

31<br />

0<br />

0


f(z) = e 2z is analytic in C. So we can use the first method. Let F (z) = 1 2 e2z . F (z) is is analytic in C<br />

and F ′ (z) = 1 2 2e2z = f(z). So,<br />

∫ 2πi<br />

πi<br />

e 2z dz = F (2πi) − F (πi) = 1 2 e4πi − 1 2 e2πi = 1 (cos 4π + i sin 4π − cos 2π − i sin 2π) = 0<br />

2<br />

22. f(z) = sin z is analytic function. Hence we can use first method to find the integral.<br />

Let F (z) = − cos z. F (z) is analytic also and F ′ (z) = sin z = f(z). So we obtain,<br />

∫<br />

C<br />

sin zdz =<br />

∫ 2i<br />

23. At first, we sketch C:<br />

0<br />

sin zdz = F (2i) − F (0) = − cos 2i − (− cos 0) = − cos 2i + 1 = 1 − cosh 2<br />

f(z) = cos 2 z =<br />

Let F (z) =<br />

cos 2z+1<br />

2<br />

is analytic in C. So, we can use first method.<br />

sin 2z+z<br />

2<br />

. F (z) is analytic in C and F ′ cos 2z+1<br />

(z) =<br />

2<br />

= f(z). Hence we get<br />

∫C f(z)dz = ∫ πi<br />

−πi cos2 zdz<br />

= F (πi) − F (−πi)<br />

= sin(2πi)+πi<br />

2<br />

− − sin(2πi)−πi<br />

2<br />

= sin(2πi)<br />

= i sinh(2π)<br />

24. We can’t use first method here because f(z) = z + z −1 isn’t defined at z = 0. Hence f(z) isn’t<br />

analytic in C. We should use second method:<br />

32


∫C f(z)dz = ∫ a<br />

b f(z(t))z′ (t)dt,<br />

z ′ = dz<br />

dt<br />

C : z(t) = cos t + i sin t, 0 ≤ t ≤ 2π<br />

z ′ (t) = ie it<br />

f(z(t)) = z(t) + 1<br />

z(t) = eit + e −it<br />

∫C z + z−1 dz = ∫ 2π<br />

0 (eit + e −it ).ie it<br />

= ∫ 2π<br />

0<br />

i.(e 2it + 1)dt<br />

= i.( 1 2i e2it + t) ∣ ∣ 2π<br />

0<br />

= ( 1 2 e2it + it) ∣ ∣ 2π<br />

0<br />

= 1 2 e4iπ + 2iπ − 1 2 e0 − 0<br />

= 1 2 (cos 4π + i sin 4π) + 2iπ − 1 2<br />

= 1 2 + 2iπ − 1 2<br />

= 2iπ<br />

25. f(z) = cosh 4z is analytic in C. So, we use first method. Let F (z) = 1 4<br />

sinh 4z. F (z) is analytic also<br />

and F ′ (z) = 1 4<br />

.4. cosh 4z = cosh 4z = f(z).<br />

∫C cosh 4zdz = ∫ πi<br />

8<br />

cosh 4z<br />

− πi<br />

8<br />

= F ( πi<br />

8<br />

= 1 4<br />

) − F (−<br />

πi<br />

8 )<br />

4πi<br />

sinh(<br />

8 ) − 1 −4πi<br />

4<br />

sinh(<br />

8<br />

)<br />

= 1 4 (i sin π 2 + i sin π 2 )<br />

= 1 4 .2i<br />

= i 2<br />

26. z(t) = t + it 2 , (−1 ≤ t ≤ 1), z ′ (t) = 1 + 2it, ¯z = t − it 2 , so that<br />

∫ 1<br />

−1<br />

(t − it 2 )(1 + 2it)dt =<br />

∫ 1<br />

−1<br />

(2t 3 + it 2 + t)dt = 1 3 it3 ∣ ∣∣∣<br />

1<br />

33<br />

−1<br />

= 2 3 i.


27. z(t) = ( π 4 − t) + ti, (0 ≤ t ≤ π 4 ), z′ (t) = (−1 + i), so that<br />

∫ π<br />

4<br />

0<br />

sec 2 [( π 4 − t) + ti](−1 + i)dt = ∫ πi<br />

4<br />

0<br />

sec 2 udu = tan u<br />

∣<br />

πi<br />

4<br />

0<br />

= tan πi<br />

4 .<br />

28. Imz 2 = 2xy is 0 on the axes. Thus the only contribution to the integral comes from the segment<br />

from 1 to i, represented by, say,<br />

z(t) = 1 − t + it (0 ≤ t ≤ 1).<br />

Hence z ′ (t) = −1 + i, and the integral is<br />

∫ 1<br />

0<br />

2(1 − t)t(−1 + i)dt = 2(−1 + i)<br />

∫ 1<br />

29. z(t) = (1 − t) + it, (0 ≤ t ≤ 1), z ′ (t) = −1 + i, so that<br />

∫ 1<br />

0<br />

ze z2 2 (−1 + i)dz = (−1 + i)<br />

∫ 1<br />

2<br />

0<br />

∣ 1<br />

e u du = (−1 + i) eu ∣∣∣ 2<br />

u ′<br />

0<br />

(t − t 2 )dt = 1 (−1 + i).<br />

3<br />

0<br />

= (−1 + i) e( 1 2<br />

= (1 − i)(e −1<br />

2 i + e 1 2 ).<br />

− t + i(1 − t)t)<br />

(1 − t) + it<br />

∣<br />

1<br />

0<br />

14.2<br />

1,2,6 :<br />

1.<br />

f(z) = Rez is defined and differentiable at all points of D.<br />

=⇒ f(z) is analytic. Then by Cauchy’s integral theorem ∫ Rezdz = 0.<br />

2.<br />

f(z) = 1<br />

3z−Πi and let C be the unit circle. 3z − πi = 0 =⇒ z = π 3 i.<br />

Since this point lies outside C, f is defined and differentiable on C and inside C.<br />

34


=⇒ f is analytic. Then by Cauchy’s integral theorem ∫ dz<br />

3z−π = 0.<br />

6.<br />

f(z) = sec( z 1<br />

2<br />

) =⇒ f(z) =<br />

cos( z 2 )<br />

cos( z 2<br />

) = 0 =⇒ z = (2k + 1)π, k ∈ Z<br />

But these points lie outside the unit circle. Then f is defined and differentiable on C and inside C.<br />

=⇒ f is analytic. Then by Cauchy’s integral theorem ∫ sec( z 2<br />

)dz = 0.<br />

12-17 :<br />

12.<br />

a) f(z) = 1<br />

z 2 +4<br />

z 2 + 4 = 0 =⇒ z 2 = −4 =⇒ z = ±2i.<br />

These points lie outside the region.<br />

=⇒ f is analytic.<br />

=⇒ ∫ dz<br />

z 2 +4 = 0.<br />

b) f(z) = 1<br />

z 2 +4<br />

35


z 2 + 4 = 0 =⇒ z 2 = −4 =⇒ z = ±2i.<br />

These points lie inside the region. =⇒ f isn’t analytic in the region.<br />

13.<br />

Since z 2 is differentiable in the region, it is analytic. By Cauchy’s integral theorem ∫ z 2 dz = 0.<br />

14.<br />

a) f(z) = 1 z<br />

From here if z = 0, f isn’t analytic.<br />

=⇒ When z ≠ 0, f is analytic.<br />

İf z ≠ 0, İntegral of f is 0.<br />

b) f(z) = cos z<br />

z 6 −z 2<br />

z 6 − z 2 = 0 =⇒ z 2 (z 4 − 1) = 0 =⇒ z = 0, z = ±i, z = ±1.<br />

=⇒ When z ≠ 0, z ≠ ±i and z ≠ ±1, f is analytic.<br />

İf z ≠ 0, z ≠ ±i and z ≠ ±1, İntegral of f is 0.<br />

c) f(z) = e 1 z<br />

z 2 +9<br />

z 2 + 9 = 0 =⇒ z 2 = −9 =⇒ z = ±3i<br />

From e 1 z , z = 0.<br />

=⇒ When z ≠ 0 and z ≠ ±3i, f is analytic.<br />

İf z ≠ 0 and z ≠ ±3i, İntegral of f is 0.<br />

36


15. We shall remember Example 4:<br />

∫<br />

C<br />

dz<br />

z 2 = 0<br />

where C is the unit circle. This result does not follow from Cauchy’s theorem, because f(z) = 1<br />

z 2<br />

not analytic at z = 0. Hence the condition that f be analytic in D is sufficient rather than necessary for<br />

Cauchy’s integral theorem to be true.<br />

Then they can be deformed each other. So integral of f is 0.<br />

16. İf C is the unit circle, ∫ f(z)dz = 3<br />

İf C is |z| = 2, ∫ f(z)dz = 5.<br />

is<br />

f isn’t analytic in the annulus 1 < |z| < 2 because of the principle of deformation of path.<br />

17.<br />

a) C 1 : x : 0 → π and y : 0 → π<br />

y = x =⇒ dy = dx.<br />

İf z = x + iy, dz = dx + idy.<br />

=⇒ ∫ C 1<br />

cos zdz = ∫ cos(x + iy)(dx + idy) = ∫ π<br />

0 cos((1 + i)x)(1 + i)dx = sin((1 + i)x)∣ ∣ π 0 =<br />

sin((1 + i)π) − sin 0 = sin(π + iπ) = − sin(iπ).<br />

b) ∫ C cos zdz = ∫ C 2<br />

+ ∫ C 3<br />

C 2 : x : 0 → π and y = 0 =⇒ dy = 0<br />

İf z = x + iy, dz = dx + idy = dx.<br />

=⇒ ∫ C cos zdz = ∫ π<br />

0 cos(x + iy)dx = ∫ π<br />

0 cos xdx = sin x∣ ∣ π 0 = sin π = 0<br />

C 3 : x = π =⇒ dx = 0 and y : 0 → π<br />

37


İf z = x + iy, dz = dx + idy = idy.<br />

=⇒ ∫ C 3<br />

cos zdz = ∫ π<br />

0 cos(x + iy)idy = ∫ π<br />

0 i cos(π + iy)dy = sin(π + iy)∣ ∣ π 0<br />

sin π = − sin(iπ).<br />

=⇒ ∫ C<br />

cos zdz = 0 − sin(iπ) = − sin(iπ).<br />

Then integral of cos z is independent of path.<br />

= sin(π + iπ) −<br />

19-21 :<br />

19.<br />

2z − i = 0 =⇒ z = i 2<br />

lies inside the region.<br />

Then let be |2z − i| = ε.<br />

=⇒ 2z − i = εe iθ<br />

=⇒ z = 1 2 (i + εeiθ )<br />

=⇒ dz = 1 2 (iεeiθ )dθ<br />

=⇒ ∫ dz<br />

2z−i = ∫ 2π<br />

0<br />

20.<br />

1<br />

2 iεeiθ dθ<br />

= 1 εe iθ 2i2π = πi.<br />

∫<br />

C tanh zdz = ∫ C<br />

sinh z<br />

cosh z dz<br />

cosh z = 0 =⇒ z = ± πi<br />

2 , ± 3πi<br />

2 , ...<br />

All these points lie outside C.<br />

=⇒ tanh z is analytic in the region.<br />

=⇒ ∫ C tanh zdz = 0. 38


21.<br />

İf z = x + iy, then f(z) = Re2z = 2x is analytic.<br />

=⇒ ∫ C<br />

Re2zdz = 0.<br />

14.3<br />

1.We should use Cauchy’s integral formula to solve this question.<br />

We can sketch C : |z − i| = 2 as follows:<br />

∮<br />

C<br />

f(z)<br />

z−z 0<br />

dz = 2πif(z 0 )<br />

Let g(z) = z2 −4<br />

z 2 +4 .We know that z2 + 4 = (z − 2i)(z + 2i).<br />

z 0 − 2i = 0 ⇒ z 0 = 2i<br />

z 1 + 2i = 0 ⇒ z 1 = −2i<br />

C encloses the point z 0 = 2i but don’t encloses the point z 1 = −2i, where g(z) is not analytic. Let<br />

f(z) = z2 −4<br />

z+2i<br />

, D be the union of C and the interior part of C. f(z) is analytic in D. So we can use the<br />

formula.<br />

∮<br />

z 2 −4<br />

C z 2 +4 dz = ∮ z 2 −4<br />

C z+2i . 1<br />

z−2i dz = 2πi.f(2i) = 2πi. (2i)2 −4<br />

2i+2i<br />

= 2πi. 4i2 −4<br />

4i<br />

= 2πi. −8<br />

4i<br />

== −4π<br />

4. We sketch C : |z| = π/2 as follows:<br />

39


Let D be the union of C and the interior part of C. π/2 = 1, 57079633 , −2i, 2i /∈ D and therefore<br />

f(z) = z2 −4<br />

is analytic in D. By using Cauchy’s integral theorem, we obtain<br />

z 2 +4<br />

∮<br />

z 2 − 4<br />

z 2 + 4 dz = 0<br />

5-17: Contour Integration<br />

C<br />

5. C : |z − 1| = 2<br />

Let g(z) = z+2<br />

z−2 . If z − 2 = 0, then the singular point z 0 = 2 is enclosed by C. Let D be the union of C<br />

and the interior part of C. f(z) = z + 2 is analytic in D. Hence, by use of Cauchy’s integral formula, we<br />

obtain<br />

6. C : |z| = 1<br />

∮<br />

C<br />

z + 2<br />

dz = 2πi.f(2) = 2πi.4 = 8πi<br />

z − 2<br />

g(z) =<br />

e3z 1<br />

3z − i = 3 e3z<br />

z − i 3<br />

Let D be the union of C and the interior part of C.<br />

z − i 3 ⇒ z 0 = i 3 ∈ D<br />

f(z) = 1 3 e3z is analytic in D. Hence by use of Cauchy integral formula, we get<br />

∮ ∮ 1<br />

3<br />

g(z)dz =<br />

e3z<br />

C<br />

C z − i dz = 2πi.f( i 3 ) = 2πi.1 3 e3 i 2<br />

3 =<br />

3 πiei<br />

3<br />

7. C : |z| = 1<br />

40


g(z) =<br />

sinh πz<br />

z 2 − 3z<br />

=<br />

sinh πz<br />

z(z − 3)<br />

Singular points of g are z 0 = 0 and z 1 = 3. Let D be the union of C and the interior part of C. Then<br />

z 1 = 3 /∈ D but z 0 = 0 ∈ D. f(z) =<br />

we get<br />

12.<br />

∮<br />

C<br />

∮<br />

g(z)dz =<br />

C<br />

sinh πz<br />

z−3<br />

is analytic in D. Hence by use of Cauchy integral formula,<br />

sinh πz<br />

z − 3 .1 0<br />

dz = 2πi.f(0) = 2πisinh<br />

z −3<br />

= 2π sin(i.0) = 0<br />

−3<br />

Let g(z) = tan z<br />

z−i . Singular point z 0 = i is enclosed by C. f(z) = tan z is analytic in D when D is the<br />

union of C and the interior part of C. So by the use of Cauchy integral formula, we get<br />

∮<br />

tan z<br />

dz = 2πi tan i<br />

z − i<br />

13.<br />

C<br />

g(z) = e−3πz 1<br />

2z + i = 2 e−3πz<br />

z + i 2<br />

Singular point z 0 = − i 2 is enclosed by C. f(z) = 1 2 e−3πz is analytic in D when D is the union of C and<br />

the interior part of C. So by use of Cauchy integral formula, we get<br />

∮<br />

e −3πz<br />

1<br />

2z + i<br />

∮C<br />

dz = dz = 2πi. 1 2 e− 3 2 πi =<br />

2 e−3πz<br />

C<br />

z + i 2<br />

15. We sketch C : |z − 4| = 2 as follows:<br />

41<br />

πi<br />

3<br />

2 (cos π + i sin π) = −2 3 πi


Let g(z) = ln(z−1)<br />

z−5<br />

. Singular point z 0 = 5 is enclosed by C. Let D be the union of C and the interior<br />

part of C, f(z) = ln(z − 1). Then f(z) is analytic in D. Therefore, by use of Cauchy integral formula,<br />

we get<br />

∮<br />

C<br />

ln(z − 1)<br />

dz = 2πif(5) = 2πi ln 4<br />

z − 5<br />

16. Let C 1 : |z| = 3 and C 2 : |z| = 1. We sketch C = C 1 ∪ C 2 = 2 as follows:<br />

g(z) =<br />

sin z<br />

z 2 − 2iz =<br />

sin z<br />

z(z − 2i)<br />

Singular points of g are 0 and 2i. Only z 0 = 2i is contained in the ring-shaped domain bounded by C 1<br />

and C 2 . f(z) = sin z<br />

z<br />

is analytic on that domain. Hence by use of Cauchy integral formula, we get<br />

∫<br />

sin z<br />

2i<br />

z 2 dz = 2πi.f(2i) = 2πi.sin = π sin 2i<br />

− 2iz 2i<br />

18.Let C a simple closed path enclosing z 1 and z 2 .<br />

C<br />

By use of Cauchy integral formula, we obtain<br />

∮<br />

C (z − z 1) −1 (z − z 2 ) −1 dz = ∮ 1<br />

C (z−z 1 )(z−z 2 ) dz = ∮ 1 1<br />

C 1 z−z 2<br />

.<br />

z−z 1<br />

dz + ∮ 1 1<br />

C 2 z−z 1<br />

.<br />

z−z 2<br />

dz<br />

= 2πi[<br />

1<br />

z−z 2<br />

] z=z1 + 2πi[<br />

1<br />

z−z 1<br />

] z=z2 = 2πi<br />

1<br />

z 1 −z 2<br />

+ 2πi<br />

1<br />

z 2 −z 1<br />

= 2πi(<br />

1<br />

z 1 −z 2<br />

− 1<br />

z 1 −z 2<br />

) = 0<br />

14.4<br />

1-8: Contour Integration Let C : |z| = 2 and D be the union of C and the interior part of C.<br />

42


1. We use Theorem 1 on the page 658.<br />

f(z) = cosh 3z is analytic in D.<br />

f n (z 0 ) = n! ∮<br />

2πi C<br />

Because n + 1 = 5, we need to know f (4) (z):<br />

z 5 0 = 0 ⇒ z 0 = 0 ∈ D<br />

f(z)<br />

(z − z 0 )<br />

∮C<br />

n+1 ⇒ f(z)<br />

(z − z 0 ) n = f n (z 0 ).2πi<br />

, n = 1, 2, ...<br />

n!<br />

f (1) (z) = 3 sinh 3z, f (2) (z) = 9 cosh 3z, f (3) (z) = 27 sinh 3z, f (4) (z) = 81 cosh 3z<br />

Hence, we get<br />

∮<br />

C<br />

cosh 3z<br />

z 5 dz = f 4 (0).2πi 81 cosh 0.2πi<br />

= = 81.1.2πi<br />

4! 4.5.2.1 4.3.2.1 = 27πi<br />

4<br />

2. z 0 = πi<br />

2 ∈ D. f(z) = sin z is analytic in D. We need to know f (3) (z):<br />

f (1) (z) = cos z, f (2) (z) = − sin z, f (3) (z) = − cos z<br />

Hence, we obtain<br />

∮<br />

C<br />

sin z<br />

(z − πi dz = f (3) ( πi<br />

2 ).2πi<br />

2 )4 3!<br />

=<br />

πi<br />

− cos(<br />

2 ).2πi =<br />

3!<br />

πi<br />

− cos(<br />

2 ).πi = − cosh( π 2 ).πi<br />

3<br />

3<br />

3. z 0 = πi<br />

2 ∈ D and f(z) = ez cos z is analytic in D.<br />

f(z) = e z cos z ⇒ f (1) (z) = e z cos z − e z sin z = e z (cos z − sin z)<br />

So,<br />

∮<br />

C<br />

e z cos z<br />

(z − π dz = f (1) ( π 2 ).2πi = e π π<br />

2 (cos<br />

2 )2 1!<br />

2 − sin π 2 ).2πi = −e π 2 .2πi<br />

4. z 0 = 0 ∈ D and f(z) = cos z is analytic in D.<br />

f (1) (z) = − sin z, f (2) (z) = − cos z, f (3) (z) = sin z,<br />

f (4) (z) = cos z, f (5) (z) = − sin z, f (6) (z) = − cos z,<br />

· · ·<br />

43


Hence we see that<br />

when k ∈ {0, 1, 2, ...}.<br />

∮<br />

n = 2 2k ⇒<br />

C<br />

∮<br />

n = 2 2k−1 ⇒<br />

n = 2 2k ⇒ f (2n) (z) = − cos z<br />

n = 2 2k−1 ⇒ f (2n) (z) = cos z<br />

cos z<br />

z 2n+1 dz = f (2n) (0).2πi − cos 0.2πi<br />

= = −2πi<br />

2n!<br />

2n! (2n)!<br />

C<br />

cos z<br />

z 2n+1 dz = f (2n) (0).2πi cos 0.2πi<br />

= = 2πi<br />

2n! 2n! (2n)!<br />

9.Let C : |z| = 1 and D be the union of C and the interior part of C.<br />

(1 + 2z) cos z<br />

(2z − 1) 2 =<br />

f(z) = 1 4<br />

.(1 + 2z) cos z is analytic in D.<br />

1<br />

4<br />

.(1 + 2z) cos z<br />

(z − 1 2 )2<br />

f (1) (z) =<br />

2. cos z + (1 + 2z).(− sin z)<br />

4<br />

=<br />

2 cos z − (1 + 2z) sin z<br />

4<br />

Hence, we get<br />

∮<br />

C<br />

(1+2z) cos z<br />

dz = ∮ (2z+1) 2 C<br />

1<br />

4<br />

.(1+2z) cos z<br />

dz = f (1) ( 1<br />

(z− 1 2 ).2πi<br />

2 )2<br />

1!<br />

= ( 2 cos 1 2 −2 sin 2<br />

1 ).2πi<br />

4<br />

1<br />

= πi(cos 1 2 − sin 1 2 )<br />

10. Let C 1 : |z| = 5 (counterclockwise), C 2 : |z − 3| = 3 2 (clockwise) and C = C 1 ∪ C 2<br />

Let g(z) =<br />

sin 4z<br />

. z<br />

(z−4) 3 0 = 4 isn’t contained the ring-shaped domain bounded by C 1 and C 2 . By use of<br />

Cauch’s integral theorem we get<br />

∫<br />

C<br />

sin 4z<br />

(z − 4) 3 dz = 0<br />

11. We can the sketch ellipse C : 16x 2 + y 2 = 1 as follows:<br />

44


z 0 = 0 ∈ D. If we take f(z) = tan πz then f(z) is analytic in D and f (1) (z) = 1 π sec2 πz.<br />

∮<br />

tan πz<br />

z 2 dz = 1 π sec2 0.2πi = 1<br />

cos 2 .2i = 2i<br />

0<br />

15.1<br />

1-3 Sequences :<br />

C<br />

CHAPTER 15 - POWER SERIES, TAYLOR SERIES<br />

1. Let z n = (−1) n + i<br />

2 n . z n is bounded because<br />

As<br />

and by ratio test, we get z n is convergent.<br />

2. Let z n = e −nπi/4 . z n is bounded since<br />

Because<br />

|z n | = |(−1) n + i<br />

√<br />

2 n | = (−1) 2n + 1<br />

√<br />

2 2n = 1 + 1<br />

√<br />

lim<br />

n→∞<br />

1 + 1 = 1.<br />

22n √<br />

∣ z n+1<br />

∣ |z n+1 | 1 + 1<br />

2<br />

= = √<br />

2n+2<br />

< 1<br />

z n |z n |<br />

1 + 1<br />

2 2n<br />

|z n | = |e −nπi/4 | =<br />

√<br />

cos 2 ( nπ 4 ) + sin2 ( nπ 4 ) = 1.<br />

2 2n<br />

∣ z n+1<br />

∣ ∣ = e −(n+1)πi/4<br />

√<br />

∣ = |e −πi/4<br />

z n e −nπi/4 | = cos 2 ( π 4 ) + sin2 ( π 4 ) = 1<br />

and by ratio test, we have z n is convergent.<br />

3. Let z n = (−1)n<br />

n+i . z n is bounded as<br />

|z n | = | (−1)n<br />

n + i | = 1<br />

|n + i| = 1<br />

√<br />

n 2 + 1<br />

45


Because<br />

lim<br />

n→∞<br />

1<br />

√<br />

n 2 + 1 = 0.<br />

∣ z √<br />

n+1<br />

∣ ∣ = n + i<br />

∣<br />

|n + i| n =<br />

z n n + 1 + i |n + 1 + i| = 2 + 1<br />

√<br />

(n + 1) 2 + 1 < 1<br />

and from ratio test, we have z n is convergent.<br />

16-18 Series :<br />

16. Let<br />

∞∑ (10 − 15i) n<br />

n=0<br />

n→∞<br />

n!<br />

lim ∣ z n+1<br />

∣ = lim ∣<br />

z n n→∞<br />

and by ratio test we get this result.<br />

17. Let<br />

and z n = (−1)n (1+2i) 2n+1<br />

(2n+1)!<br />

. This serie is convergent from ratio test because<br />

18. Let<br />

∞∑ (−1) n (1 + 2i) 2n+1<br />

n=0<br />

∞∑<br />

n=0<br />

n→∞<br />

and we know that<br />

15.2<br />

(2n + 1)!<br />

and z n = (10−15i)n<br />

n!<br />

. This serie is convergent because<br />

(10−15i) n+1<br />

(n+1)!<br />

(10−15i) n<br />

n!<br />

∣ = lim<br />

n→∞<br />

∣<br />

√<br />

10 − 15i<br />

∣ = lim<br />

n + 1 n→∞<br />

325<br />

(n + 1) 2 = 0<br />

lim ∣ z n+1<br />

∣ ∣<br />

(1 + 2i)<br />

= lim ∣(−1)<br />

2 ∣<br />

z n n→∞ (2n + 3)(2n + 2)<br />

i n<br />

n 2 − 2i and z n =<br />

∞∑<br />

n=0<br />

3-5 Radius of Convergence :<br />

∣ = lim<br />

n→∞<br />

5<br />

(2n + 3)(2n + 2) = 0.<br />

in . This serie is convergent, we now explain this situation :<br />

n 2 −2i<br />

∣<br />

i n<br />

n 2 − 2i | = |in |<br />

|n 2 − 2i| = 1<br />

|n 2 − 2i| ≤ 1 n 2<br />

1<br />

is convergent. Then via comparison test, we can say that this serie is convergent.<br />

n2 ∞∑ (z + i) n<br />

3. Let<br />

. First, we determine the center.<br />

n=1<br />

n 2<br />

z + i = 0 ⇒ z = −i<br />

is the center point. On the other hand, z n = (z+i)n<br />

n 2<br />

and because<br />

lim<br />

n→∞<br />

radius of convergence is 1.<br />

∣<br />

1<br />

n 2<br />

1<br />

n→∞<br />

(n+1) 2 | = lim<br />

∣<br />

(n + 1)2 ∣ n 2 + 2n + 1<br />

= lim<br />

n 2 n→∞ n 2 = 1,<br />

46


∞∑<br />

4. Let<br />

n=0<br />

n n<br />

n! (z + 2i)n . First of all, center is −2i since<br />

Let z n = nn<br />

n! (z + 2i)n .As<br />

lim<br />

n→∞<br />

∣<br />

n n<br />

n!<br />

(n+1) ( n+1)<br />

(n+1)!<br />

radius of convergence is 1 e .<br />

| = lim<br />

n→∞<br />

z + 2i = 0 ⇒ z = −2i.<br />

n n (n + 1)<br />

= lim<br />

(n + 1) n+1 n→∞<br />

n n<br />

(n + 1) n = lim<br />

( n ) n 1 =<br />

n→∞ n + 1 e ,<br />

5. Let<br />

∞∑<br />

n=0<br />

n!<br />

n n (z + 1)n . The center point is −1 since<br />

Let z n = n!<br />

n n (z + 1) n . Then<br />

lim<br />

n→∞<br />

we say that radius of convergence is e.<br />

∣<br />

z + 1 = 0 ⇒ z = −1.<br />

n!<br />

n n<br />

(n+1)!<br />

(n+1) ( n+1)<br />

| = lim<br />

n→∞<br />

(n + 1) n = e,<br />

n<br />

15.3<br />

1-3 Radius of convergence by differentiation or integration :<br />

1. Let<br />

∞∑<br />

n=2<br />

n(n − 1)<br />

3 n (z − 2i) n . Since<br />

lim<br />

n→∞<br />

we say that radius of convergence is 1 4 .<br />

∣<br />

4 n<br />

n(n+1)<br />

4 n+1<br />

(n+1)(n+2)<br />

n + 2<br />

| = lim<br />

n→∞ 4n = 1 4 ,<br />

2. Let<br />

∞∑<br />

n=1<br />

4 n<br />

n(n + 1) zn . Because<br />

radius of convergence is found that 3.<br />

3. Let<br />

∞∑<br />

n=1<br />

lim ∣ n(n−1)<br />

3 n<br />

n→∞<br />

| = lim<br />

n(n+1) n→∞<br />

3 n+1<br />

3n − 3<br />

n + 1 = 3,<br />

n<br />

2 n (z + i)2n . Radius of convergence for this serie is 2 in that<br />

lim<br />

n→∞<br />

∣<br />

n<br />

2 n<br />

n+1<br />

n→∞<br />

2 n+1 | = lim<br />

47<br />

2n<br />

n + 1 = 2.


15.4<br />

1-3 Taylor and Maclaurin series :<br />

1. Let center be 0 for e −2z . We know that<br />

e z =<br />

∞∑<br />

n=0<br />

z n<br />

n! = 1 + z + z2<br />

2! + . . .<br />

at z = 0. But here the function is e −2z , then Maclaurin serie for this function is<br />

∞∑<br />

e −2z (−2z) n<br />

=<br />

n!<br />

n=0<br />

Radius of convergence for this serie is ∞ in that<br />

= 1 + (−2z) + 4z2<br />

2!<br />

+ . . .<br />

lim R = lim<br />

n→∞ n→∞<br />

∣<br />

∣ (−2)n<br />

n!<br />

(−2) n+1<br />

(n+1)!<br />

n=0<br />

−(n + 1)<br />

| = lim = ∞.<br />

n→∞ 2<br />

1<br />

2. Let center be 0 for<br />

(1−z 3 ) . 1<br />

∞<br />

1 − z = ∑<br />

z n = 1 + z + z 2 + z 3 + . . .<br />

is known at 0. Then Maclaurin serie for<br />

1<br />

(1−z 3 ) is<br />

1<br />

∞<br />

1 − z 3 = ∑<br />

z 3n = 1 + z 3 + z 6 + z 9 + . . .<br />

n=0<br />

Radius of convergence for this serie is 1 since<br />

3. Let center be −2i for e z .We know that<br />

e z =<br />

∞∑<br />

n=0<br />

lim R = 1<br />

n→∞<br />

z n<br />

n! = 1 + z + z2<br />

2! + . . .<br />

at z = 0. But here the center is −2i, then Taylor serie for this function is<br />

e z =<br />

∞∑<br />

n=0<br />

z n<br />

n!<br />

Radius of convergence for this serie is ∞ in that<br />

= 1 + (z + 2i) +<br />

(z + 2i)2<br />

2!<br />

+ . . .<br />

lim<br />

n→∞<br />

∣<br />

1<br />

n!<br />

1<br />

(n+1)!<br />

| = lim<br />

n→∞ n + 1 = ∞.<br />

15.5<br />

48


1-3 Uniform Convergence :<br />

1. Let<br />

∞∑<br />

(z − 2i) 2n and |z − 2i| ≤ 0.999. We know that<br />

n=0<br />

1<br />

1 − z = 1 + z + z2 + z 3 + . . .<br />

1<br />

∞<br />

1 − (z − 2i) 2 = ∑<br />

(z − 2i) 2n = 1 + (z − 2i) 2 + (z − 2i) 4 + (z − 2i) 6 + . . .<br />

n=0<br />

Because |z − 2i| ≤ 0.999, this serie converges uniformly.<br />

2. Let<br />

∞∑<br />

n=0<br />

z 2n+1<br />

(2n + 1)! and |z| ≤ 1010 .999. Since<br />

sinh z =<br />

∞∑<br />

n=0<br />

z 2n+1<br />

(2n + 1)! = z + z3<br />

3! + z5<br />

5! + . . .<br />

this Maclaurin series of sinh z converges uniformly on every bounded set.<br />

3. Let<br />

∞∑<br />

n=0<br />

π n<br />

n 4 z2n and |z| ≤ 0.56. From ratio test, we have<br />

lim L = lim<br />

n→∞ n→∞<br />

∣<br />

π n+1<br />

(n+1) 4<br />

π n<br />

n 4<br />

∣ ∣ = lim<br />

n→∞<br />

and |z| ≤ 0.56, this serie converges uniformly on everywhere.<br />

πn 4<br />

(n + 1) 4 = π > 1,<br />

9-11 Power series :<br />

9. Let<br />

∞∑ (z + 1 − 2i) n<br />

4 n . By ratio test, we get<br />

n=0<br />

lim L = lim<br />

n→∞ n→∞<br />

∣<br />

1<br />

4 ( n+1)<br />

1<br />

4 n ∣ ∣ = lim<br />

n→∞<br />

then we can say that this serie converges uniformly on everywhere.<br />

10. Let<br />

∞∑<br />

n=0<br />

(z − i) 2n<br />

. Since<br />

(2n)!<br />

cosh z =<br />

∞∑<br />

n=0<br />

1<br />

4 = 1 4 < 1,<br />

z 2n<br />

(2n)! = 1 + z2<br />

2! + z4<br />

4! + . . .<br />

this Taylor series of cosh z with center i converges uniformly on every bounded set.<br />

49


∞∑<br />

11. Let<br />

n=1<br />

(−1) n<br />

2 n n zn . By ratio test, we get<br />

lim L = lim<br />

n→∞ n→∞<br />

∣<br />

(−1) n+1<br />

2 n+1 (n+1)<br />

(−1) n<br />

2 n n<br />

∣ = lim<br />

n→∞<br />

−2n − 2<br />

n<br />

then we can say that this serie converges uniformly on everywhere.<br />

= −2 < 1,<br />

50

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!