08.02.2015 Views

Relative Quantification - CRN2M

Relative Quantification - CRN2M

Relative Quantification - CRN2M

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Relative</strong> <strong>Quantification</strong><br />

Applied Biosystems 7300 Real-Time PCR System<br />

Applied Biosystems 7500 & 7500 Fast Real-Time<br />

PCR System<br />

<strong>Relative</strong> <strong>Quantification</strong><br />

No standard curve if slopes are equal and close to 3.32<br />

<br />

Calculation of results by comparison of Ct values<br />

– „Comparative Ct method“<br />

<br />

Definition of:<br />

– Endogenous Control<br />

– Calibrator<br />

2<br />

¢¡¤£ £ ¥§¦©¨ ¨


Validation Experiment using Comparative Ct Method<br />

35<br />

30 Target gene: s = - 3.35<br />

Ct<br />

25<br />

20<br />

15<br />

EC: s = - 3.39<br />

10<br />

0 2 4 6 8 10<br />

Log (amount of cDNA)<br />

• Ct remains constant!<br />

• Optimal slope is – 3.3 to –3.4<br />

3<br />

¢¡¤£ £ ¥§¦©¨ ¨ <br />

What if the Slopes are not Equal <br />

Ct<br />

35<br />

30<br />

25<br />

20<br />

15<br />

Endogenous<br />

control<br />

s= -3.31<br />

Target gene<br />

s = -4.03<br />

Change your target assay !<br />

10<br />

0 2 4 6 8 10<br />

Log (amount of cDNA)<br />

4<br />

¢¡¤£ £ ¥§¦©¨ ¨


Impact of Efficiency on Results<br />

<br />

<br />

<br />

Fact: the more similar the efficiency of two assays is, and<br />

the closer to 1, the more accurate results will be<br />

The scope of your study determines what difference you<br />

can/want to accept (screening vs. small fold change<br />

detection)<br />

Do not forget about the other factors which may influence<br />

your result!<br />

7<br />

¢¡¤£ £ ¥§¦©¨ ¨ <br />

Selection of <strong>Quantification</strong> Method<br />

<br />

Standard curve method<br />

– Must be used if difference in (properly measured!!!) PCR<br />

efficiencies can not be accepted (e.g. long amplicons)<br />

– Will introduce an error; the better the standard curve is<br />

done, the smaller the error will be<br />

– Efficiency on standards must be identical to samples<br />

8<br />

¢¡¤£ £ ¥§¦©¨ ¨


Selection of <strong>Quantification</strong> Method<br />

<br />

Comparative Ct method<br />

– Easy to use, even for large gene numbers<br />

– Good design process will result in very high assay<br />

efficiencies<br />

– Added amount of sample must not cause inhibition<br />

• The goal must be to optimize extraction, RT and PCR<br />

conditions to avoid inhibition<br />

9<br />

¢¡¤£ £ ¥§¦©¨ ¨ <br />

Endogenous Control (EC)<br />

<br />

<br />

<br />

The perfect EC reflects the amount of cDNA per well<br />

EC has a constant expression level in all samples<br />

which are used in that study<br />

The EC normalizes for<br />

– RNA input measurement errors<br />

– RT efficiency variations<br />

10<br />

¢¡¤£ £ ¥§¦©¨ ¨


Endogenous Control<br />

<br />

<br />

<br />

Often ”house-keeping genes” are used but they don’t<br />

necessarily need to be suitable EC’s<br />

There is no universal EC<br />

Validate RT before looking into EC’s<br />

11<br />

¢¡¤£ £ ¥§¦©¨ ¨ <br />

Endogenous Control Selection<br />

Approach I:<br />

– Selection of candidates (TaqMan® assays)<br />

– Select ”study-representative” samples<br />

– Run RT with equal amounts of RNA in parallel, load<br />

equal amounts of cDNA<br />

– Choose gene with little / no variation<br />

• Variation seen with this gene determines the limit<br />

of fold change detection, e.g. 2 Cts variation equal<br />

a factor of 4 range/error<br />

• Tip: Try other candidates if no gene delivers<br />

acceptable results<br />

12<br />

¢¡¤£ £ ¥§¦©¨ ¨


TaqMan® Human Endogenous Control Plate Results<br />

YES<br />

YES<br />

NO<br />

NO<br />

13<br />

¢¡¤£ £ ¥§¦©¨ ¨ <br />

∆C T (cycles)<br />

14<br />

TaqMan® Human Endogenous Control Plate<br />

Results<br />

2.00<br />

1.00<br />

0.00<br />

-1.00<br />

-2.00<br />

-3.00<br />

-4.00<br />

-5.00<br />

0.12<br />

0.06<br />

-0.19<br />

IPC<br />

18S<br />

huPO<br />

huβA<br />

huCYC<br />

-0.57<br />

-0.39<br />

-0.18<br />

-2.58<br />

-2.89<br />

-1.09<br />

-1.75<br />

-2.82<br />

-0.77<br />

-2.77<br />

-2.94<br />

-0.04<br />

0.97<br />

0.75<br />

-0.98<br />

-2.44<br />

-1.35<br />

-2.03<br />

-2.35<br />

-2.14<br />

-1.35<br />

huGAPDH<br />

huPGK<br />

¢¡¤£ £ ¥§¦©¨ ¨ <br />

huβ2m<br />

huGUS<br />

huHPRT<br />

huTBP<br />

-2.65<br />

-4.05<br />

-1.64<br />

-2.16<br />

-1.21<br />

-0.03<br />

-4.67<br />

-1.94<br />

-0.66<br />

0.81<br />

0.08<br />

-0.79<br />

huTfR<br />

Choose endogenous control with minimal variation


Endogenous Control Selection<br />

<br />

Approach IIa<br />

Run several candidates throughout the entire study and<br />

choose one for normalisation at the end:<br />

• Often done e.g. on TaqMan® arrays<br />

<br />

Approach IIb<br />

Run several endogenous controls throughout the study and<br />

average results at the end:<br />

• Has been published (Qbase, Normfinder, Real Time<br />

StatMiner sw)<br />

• May introduce errors<br />

15<br />

¢¡¤£ £ ¥§¦©¨ ¨ <br />

Replicates and Controls<br />

<br />

<br />

<br />

Number of PCR replicates required is given by the<br />

precision you demand<br />

– No replicates no statistics possible<br />

– no useful results<br />

– Required to detect ”low”-fold differences<br />

– Required to get low expression correctly quantified<br />

Run no template controls (NTC‘s) for each assay<br />

used on the plate<br />

RT minus controls for the detection of genomic<br />

DNA contamination<br />

16<br />

¢¡¤£ £ ¥§¦©¨ ¨


Biological Variation<br />

<br />

What factors may have an impact on the situation found in<br />

the sample<br />

– Gender<br />

– Age of the individual<br />

– Whether sample was taken during the day or in the night<br />

– Single cell type or mixture of cells (whole tissue)<br />

– ...<br />

– Biological variation within a „normal“ or<br />

affected/disease/treated group<br />

17<br />

¢¡¤£ £ ¥§¦©¨ ¨ <br />

During the Study<br />

<br />

Load equal amount of RNA (converted to cDNA) into all<br />

wells<br />

– Endogenous control should be almost equally expressed in<br />

all samples<br />

– All samples will have almost identical Ct values for the<br />

endogenous control = quality control<br />

18<br />

¢¡¤£ £ ¥§¦©¨ ¨


Repetitions of an Experiment<br />

19<br />

<br />

<br />

Experimental precision<br />

– Identical replicates: mix sample with TaqMan®<br />

Universal PCR Master Mix and load 50µl mix/well =<br />

monitor precision of instrument<br />

– Experimental replicates: load 45µl TaqMan® Universal<br />

Master Mix and add 5µl sample = monitor true<br />

experimental precision<br />

Consider: replicates of other steps ”from cell<br />

to Ct”<br />

– E.g. two samplings from the same sample<br />

– Parallel extractions<br />

– Reveal variation of entire process<br />

¢¡¤£ £ ¥§¦©¨ ¨ <br />

TRIPLICATES<br />

<br />

<br />

Triplicates are mandatory for any statistics<br />

Minimum for the Grubbs algorithm<br />

20<br />

¢¡¤£ £ ¥§¦©¨ ¨


Calibrator Concept: an Example Using four<br />

Samples<br />

<br />

<br />

<br />

The calibrator is one of the sample of the study.<br />

The calibrator is usually the normal physiological state of<br />

the study : i.e<br />

– Untreated cells<br />

– Normal glycemia<br />

– Non tumoral tissue<br />

If working on animals, multiple samples can be<br />

considered as calibrator<br />

21<br />

¢¡¤£ £ ¥§¦©¨ ¨ <br />

Calibrator Concept: an Example Using four Samples<br />

Calibrator<br />

t=0 t=12 t=24 t=48<br />

time<br />

total RNA<br />

total RNA<br />

total RNA<br />

total RNA<br />

cDNA<br />

cDNA<br />

cDNA<br />

cDNA<br />

22<br />

¢¡¤£ £ ¥§¦©¨ ¨


Comparison of Target Gene and Endogenous<br />

Control<br />

∆Rn<br />

∆Ct = 24 – 14 = 10<br />

Ct =14 Ct = 24<br />

Cycles<br />

23<br />

Endogenous control<br />

Target gene<br />

¢¡¤£ £ ¥§¦©¨ ¨ <br />

What if we Added the Double Amount of cDNA<br />

∆Rn<br />

∆Ct = 23 – 13 = 10<br />

Ct =14 Ct = 24<br />

Ct = 13 Ct = 23<br />

Cycles<br />

24<br />

Endogenous control<br />

Target gene<br />

¢¡¤£ £ ¥§¦©¨ ¨


Comparative Ct Method: an Example Using the Four<br />

Samples<br />

∆Rn<br />

t=0<br />

∆Rn<br />

t=12 h<br />

Ct=15<br />

Ct=35<br />

Cycles<br />

Ct=15<br />

Ct=30<br />

Cycles<br />

∆Rn<br />

t=24 h ∆Rn<br />

t=48 h<br />

Ct=9 Ct=24 Cycles<br />

Ct=14<br />

Endogenous control<br />

Target gene<br />

25<br />

¢¡¤£ £ ¥§¦©¨ ¨ <br />

Ct=34<br />

Cycles<br />

Comparative Ct Method Calculation Steps<br />

step 1: Normalization to endogenous control<br />

Ct Target gene – Ct Endogenous control = ∆Ct<br />

Do both for calibrator and samples<br />

step 2: Normalization to calibrator sample<br />

∆Ct Sample – ∆Ct Calibrator = ∆∆Ct<br />

step 3: use the formula<br />

2<br />

-∆∆Ct<br />

26<br />

¢¡¤£ £ ¥§¦©¨ ¨


<strong>Relative</strong> <strong>Quantification</strong> Result of the Four Samples<br />

<br />

x-fold Expression<br />

<br />

<br />

<br />

<br />

1<br />

32 32<br />

1<br />

"!&%('*)<br />

"!+'-,.)<br />

"!/,¢0$)<br />

"!$#<br />

27<br />

Calibrator<br />

t=0<br />

Samples<br />

¢¡¤£ £ ¥§¦©¨ ¨ <br />

Exercise 1<br />

Brain<br />

Liver<br />

18S rRNA Ct 14<br />

IL-10 Ct 32<br />

18S rRNA Ct 16<br />

IL-10 Ct 28<br />

Which cDNA is higher concentrated,<br />

and how many times higher<br />

Brain, 4 times higher (2 2 )<br />

28<br />

¢¡¤£ £ ¥§¦©¨ ¨


Exercise 2<br />

Brain<br />

(Calibrator)<br />

Liver<br />

18S rRNA Ct 14<br />

IL-10 Ct 32<br />

18S rRNA Ct 16<br />

IL-10 Ct 28<br />

How does the expression of IL-10 differ<br />

in Liver and Brain<br />

∆Ct Brain = 18<br />

∆Ct Liver = 12 12 -18 = -6 2 6 = 64<br />

IL-10 is 64-times higher expressed in Liver!<br />

30<br />

¢¡¤£ £ ¥§¦©¨ ¨ <br />

Exercises: <strong>Relative</strong> <strong>Quantification</strong><br />

ABI PRISM ® 7300/7500 SDS<br />

System


Legal Statements<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

For Research Use Only. Not for use in diagnostic procedures.<br />

NOTICE TO PURCHASER:<br />

PLEASE REFER TO THE USER'S GUIDE OR PACKAGE INSERT OF THE PRODUCTS NAMED HEREIN FOR LIMITED LABEL LICENSE<br />

OR DISCLAIMER INFORMATION.<br />

Applera, Applied Biosystems, AB (Design), and ABI PRISM are registered trademarks of Applera Corporation or its subsidiaries in the US<br />

and/or certain other countries.<br />

TaqMan is a registered trademark of Roche Molecular Systems, Inc.<br />

All other trademarks are the sole property of their respective owners.<br />

© 2008 Applied Biosystems. All rights reserved.<br />

59<br />

¢¡¤£ £ ¥§¦©¨ ¨

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!