05.02.2015 Views

What is synchrotron radiation?

What is synchrotron radiation?

What is synchrotron radiation?

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Synchrotron Radiation Techniques for<br />

Nanomaterials Study<br />

孙 旭 辉<br />

苏 州 大 学 功 能 与 软 物 质 研 究 院<br />

Institute of Functional Nano & Soft Materials (FUNSOM)<br />

Soochow University<br />

Tongji University, Nov 1, 2012


• SR techniques and its advantages in nano studies<br />

• Nanomaterials study by SR techniques<br />

o Electronic structure of nanomaterials (XAS, XES, STXM)<br />

o Optical property of nanomaterials (XEOL)<br />

o Crystal structure of nanomaterials (XRD)<br />

o Development of in-situ XAS techniques<br />

• Summary


<strong>What</strong> <strong>is</strong> <strong>synchrotron</strong> <strong>radiation</strong><br />

When an electron traveling at a speed close to the speed of light<br />

in an orbit, it emits a continuum of electromagnetic <strong>radiation</strong><br />

tangential to the orbit, which <strong>is</strong> Synchrotron light.<br />

3


Then they pass into the<br />

booster ring where they are<br />

accelerated to 99.9999% of<br />

the speed of light<br />

Electrons are<br />

generated here<br />

Creating the light<br />

And are finally transferred into the<br />

storage ring<br />

And initially<br />

accelerated in<br />

the LINAC<br />

Scheme of <strong>synchrotron</strong> <strong>radiation</strong> facility


NSRFII<br />

Diamond Light Source<br />

Shanghai Synchrotron Radiation Facility


Interior of the Canadian Light Source


Synchrotron Radiation Properties<br />

• Tunability (IR to hard x-rays, element specific)<br />

• Brightness (highly collimated, micro/nano beam)<br />

• Polarization (linear, circular, tunable, dichro<strong>is</strong>m)<br />

• Time structure (short pulse, dynamics)


Techniques of SR<br />

The fundamental parameters necessary for perception of physical world:<br />

• Energy (spectroscopy, state of matter)<br />

• Momentum (scattering)<br />

• Position (imaging, spatial d<strong>is</strong>tribution)<br />

• Time (dynamics)<br />

numerous techniques of SR<br />

Spectroscopy Scattering Imaging<br />

01 Low-Energy Spectroscopy 05 Hard X-Ray Diffraction 09 Hard X-Ray Imaging<br />

02 Soft X-Ray Spectroscopy 06 Macromolecular<br />

10 Soft X-Ray Imaging<br />

Crystallography<br />

03 Hard X-Ray Spectroscopy 07 Hard X-Ray Scattering 11 Infrared Imaging<br />

04 Optics/Calibration/Metrology 08 Soft X-Ray Scattering 12 Lithography


A Single Storage Ring Serves Many Scientific User Groups


Synchrotron Radiation Techniques at SSRF<br />

BL08U-A – Soft X-ray Spectromicroscopy (STXM)<br />

BL08U-B – X-ray Interference Lithography (XIL)<br />

BL14W – X-ray Absorption Fine Structure (XAFS)<br />

BL14B – X-ray Diffraction (XRD)<br />

BL15U – Hard X-ray Micro-focus<br />

BL16B – Small Angle X-ray Scattering (SAXS)<br />

BL10W – X-ray Imaging and Biomedical Application<br />

BL17U – Macromolecular Crystallography (MC)


<strong>What</strong> <strong>is</strong> X-ray absorption fine structures (XAFS) <br />

• As core electron <strong>is</strong> excited with hv the threshold<br />

(E o ), it <strong>is</strong> excited to a final state defined by the<br />

chemical environment, which modulates the<br />

absorption coefficient relative to that of a free<br />

atom. Th<strong>is</strong> modulation <strong>is</strong> known the XAFS,<br />

• XAFS contains all the information about the local<br />

structure and bonding of the absorbing atom<br />

• XAFS study requires a tunable X-ray source –<br />

<strong>synchrotron</strong> <strong>radiation</strong><br />

11


t<br />

<strong>What</strong> does XAFS look like<br />

Near edge<br />

XANES<br />

(NEXAFS)<br />

1s to LUMO<br />

(t3)<br />

EXAFS<br />

Si(CH3)4<br />

C<br />

Si<br />

Si K-edge<br />

12


Synchrotron Probe<br />

Spectroscopy<br />

Structure<br />

Valence<br />

Electrons<br />

Core Electrons<br />

Photon<br />

Energy<br />

Wavelength<br />

10eV 100eV 1keV 10keV<br />

100nm 10nm<br />

1nm 1Å<br />

Lithography<br />

Nanostructures<br />

Proteomics<br />

Protein<br />

Crystallography


Advantage of SR Techniques in Nano Study<br />

Comprehensive techniques (electron, ion,<br />

photon), various information<br />

New techniques: XAFS,<br />

XEOL, XES, RIXS,<br />

STXM, etc<br />

Individual nanomaterial<br />

characterization<br />

SR<br />

Techniques<br />

High Signal/No<strong>is</strong>e<br />

Ambient Conditions<br />

In-situ, dynamic<br />

Depth profile with SR X-ray<br />

(Surface & Interface)<br />

Less sample damage,<br />

reliable data


Absorption Techniques for Nano Studies<br />

• XAFS (X-ray Absorption Fine Structures)<br />

Measurement: Absorption coefficient above an edge<br />

Information: Conduction band, Local structure and<br />

bonding<br />

• XES (X-ray Em<strong>is</strong>sion Spectroscopy)<br />

Measurement: X-rays in, x-rays out<br />

Information: Valence band electron d<strong>is</strong>tribution<br />

• XEOL (X-ray Excited Optical Luminescence)<br />

Measurement: X-rays in, optical photons out<br />

Information: origin of luminescence, time dependent<br />

events (dynamics)


XANES<br />

XAFS, XEOL and XES<br />

E<br />

(III)<br />

PLY<br />

XEOL<br />

hv ex<br />

(I)<br />

Abs.<br />

CB<br />

VB<br />

(II)<br />

E F<br />

core<br />

Mono<br />

hv op<br />

hv f<br />

FLY<br />

Mono<br />

Channel<br />

Plate<br />

200 850<br />

Wavelength (nm)<br />

VB<br />

XES<br />

Energy (eV) E F


XANES and XES of Zn nanostructures<br />

500 nm


XEOL - Conversion of X-ray energy into optical em<strong>is</strong>sion<br />

X-ray phosphor<br />

thermalization<br />

hv >E o<br />

Recombination via<br />

exciton<br />

UV<br />

v<strong>is</strong>.<br />

Elliot & Gibson<br />

Solid State<br />

Physics Haper &<br />

Row, 1974<br />

o<br />

o<br />

hv ~ E o<br />

Core level<br />

Recombination via bound exciton,<br />

impurity and defect states


XEOL Techniques<br />

Energy Domain<br />

XEOL: Luminescence induced by selected excitation<br />

photon energy (usually across an absorption edge)<br />

Optical XAFS: Absorption across an edge monitored with<br />

the optical signal (photoluminescence yield )<br />

Time Domain<br />

Lifetime: Synchrotron pulse as the start/stop<br />

Time-gated XEOL: Luminescence within a selected time<br />

window between pulses<br />

Time-gated Optical XAFS: Photoluminescence yield<br />

with a time window


TRXEOL<br />

Photon Energy (eV)<br />

CLS-July 16, 2012<br />

Optical XAFS<br />

(time & wavelength selected)<br />

imaging


Normalized Intensity<br />

CdSe -Si Heteronanostructure<br />

Si<br />

CdSe<br />

CdSe-Si 1100 eV<br />

0.007<br />

0.006<br />

total<br />

Si CdSe<br />

0.005<br />

0.004<br />

0.003<br />

0.002<br />

slow<br />

(20-150 ns)<br />

fast<br />

(0-20 ns)<br />

0.001<br />

0.000<br />

300 400 500 600 700 800 900<br />

Wavelength (eV)<br />

hv = 1100 eV<br />

J. Phys. Chem. C, 111, 8475 (2007)


CdSe-Si Heterostructure: Se L 3,2 - edge<br />

Appl. Phys. Lett., 89, 243102 (2006)


• Advantages of SR techniques in nano studies<br />

• Nanomaterials study by SR techniques<br />

o Electronic structure of nanomaterials (XAS, XES, STXM)<br />

o Optical property of nanomaterials (XEOL)<br />

o Crystal structure of nanomaterials (XRD)<br />

o Development of in-situ XAS techniques<br />

• Summary


Electronic structure of nanomaterials<br />

by XAS, XES, and STXM


Probing solid state N-doping in graphene by XAS<br />

C K-edge<br />

GO: Graphene oxide<br />

GRA-x: Graphene-urea annealed<br />

at x degree<br />

A: C-C π* excitation<br />

B1: Amino C-N<br />

B2: C-O or C=O<br />

B3: Urea C=O π* excitation<br />

C: C-C σ* excitation<br />

Carbon 2012, 50, 321–341.


N K-edge<br />

GRA-x: Graphene-urea annealed<br />

at x degree<br />

N1: Pyridinic C-N<br />

N2: Amino C-N<br />

N3: Graphitic C-N<br />

N4: Urea C-N<br />

N5: C-N σ* excitation


Intensity(a.u.)<br />

Unpubl<strong>is</strong>hed<br />

Carbon nanocages (CNCs) studied by XAS and XES<br />

P-CNC<br />

N-CNC<br />

Pure CNCs<br />

282<br />

284<br />

286<br />

Photon Energy(eV)<br />

288<br />

290


Electronic Structure of Graphdiyne Probed by XAS and STXM<br />

JPCC, submitted


STXM and XANES study of N-doped CNTs sealed with N 2 gas<br />

J. Appl. Phys. 111, 124318 (2012)


Optical property of nanomaterials by XEOL


XEOL Study of PL Mechan<strong>is</strong>m of Nanostructures<br />

PL of Single Crystalline GeO2 Nanowires<br />

Ge:O≈1:1.8<br />

J. Phys. Chem. C, 115, 11420 (2011)


XAFS and XEOL of GeO2 Nanowires


Crystal structure of nanomaterials by XRD


SR-XRD study of In 2 Se 3 nanowires<br />

In:Se≈2:3<br />

TEM image and corresponding EDS spectra of an individual In 2 Se 3<br />

nanowire. Scare bar <strong>is</strong> 100 nm<br />

Appl. Phys. Lett., 89 (2006) 233121


SR-XRD of In 2 Se 3 nanowires<br />

JCPDS PDF 341279<br />

J. Mater. Chem., 21 (2011) 6944


In2Se3 Nanowires: HR-TEM Image<br />

(a)<br />

(b)<br />

α-phase<br />

κ-phase


In-situ phase transition of In 2 Se 3 nanowires


Electrical Res<strong>is</strong>tances of In 2 Se 3 Nanowires<br />

I-V character<strong>is</strong>tics of two devices fabricated with<br />

nanowires of as- synthesized and after annealing


Summary<br />

Synchrotron <strong>radiation</strong> techniques including absorption<br />

spectroscopy such as XAFS, (XANES and EXFAS), deexcitation<br />

spectroscopy such as XEOL, TRXEOL, and XES<br />

(RIXS), XRD and spectro-microscoy (STXM) have<br />

provided unprecedented research opportunities in probing<br />

the structure and electronic properties of nanomaterials.


Acknowledgements:<br />

Soochow-Western Joint Center for Synchrotron Radiation Research<br />

SR Team @ FUNSOM, Soochow University<br />

Prof. Suidong Wang<br />

Prof. Youyong Li<br />

Dr. Jun Zhong<br />

Dr. Xiujuan Zhang<br />

Prof. Steffen Duhm<br />

Dr. Keith Gilmore<br />

University of Western Ontario & Canadian Light Source<br />

Profs. T. K. Sham, X. L. Sun, Y. Song<br />

Dr. Yongfeng Hu, Tom Reger<br />

Shanghai Synchrotron Radiation Facility<br />

Dr. Xingtai Zhou<br />

Dr. Renzhong Tai<br />

Dr. Zheng Jiang<br />

Dr. Wen Wen<br />

Advanced Light Source, Berkeley Lawrence<br />

National Lab<br />

Dr. Jinghua Guo, Dr. Zhi Liu, Dr. Xiaosong Liu<br />

National Synchrotron Radiation Lab (Hefei)<br />

Prof. Ziyu Wu,Dr. Zhiyun Pan


Thank you for your attention!


Acknowledgements:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!