05.02.2015 Views

PART 5_2 Chemical contaminants and ecotoxicology

PART 5_2 Chemical contaminants and ecotoxicology

PART 5_2 Chemical contaminants and ecotoxicology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Environmental Chemistry<br />

Part 5 Biospheric Chemistry<br />

5.2 <strong>Chemical</strong> <strong>contaminants</strong><br />

<strong>and</strong> <strong>ecotoxicology</strong>


Ecotoxicology<br />

• Ecotoxicological study is a multi-step<br />

process, involving:<br />

– The entry, distribution <strong>and</strong> fate of<br />

pollutants within the environment;<br />

– The entry <strong>and</strong> fate of pollutants in living<br />

(biota) organisms within an ecosystem;<br />

<strong>and</strong><br />

– The harmful effects of the chemical<br />

pollutants on the constituents (biotic &<br />

abiotic) of ecosystems (which include<br />

man).


Beyond our toxin trail<br />

Is the grave deeper than we thought<br />

Transport<br />

<strong>and</strong> fate<br />

Ingested<br />

Metabolized<br />

<strong>and</strong>/or stored<br />

Toxin<br />

emitted<br />

Ecosystem<br />

effects<br />

Contacts<br />

human<br />

Reaches<br />

an organ<br />

Community<br />

effects<br />

Population<br />

effects<br />

Physiological<br />

chain of events


Toxicology <strong>and</strong> Ecotoxicology are<br />

similar but not identical<br />

Toxicology<br />

• Absorption<br />

• Distribution<br />

• Metabolism<br />

• Elimination<br />

Ecotoxicology<br />

Release into environment<br />

Fate <strong>and</strong> disposition<br />

Metabolism<br />

No counterpart


There are also differences.<br />

Toxicology<br />

• Host defense<br />

mechanisms<br />

• Individual<br />

susceptibility states<br />

• Single effects<br />

• Cumulative<br />

exposure<br />

Ecotoxicology<br />

• Bioaccumulation<br />

• Bioconcentration<br />

(in water)<br />

• Biomagnification<br />

• Never single<br />

effects<br />

• Movement<br />

between media (air,<br />

water)


Ecological bases of Ecotoxicology<br />

• The basis for determining the effects of<br />

<strong>contaminants</strong> on ecosystem is at<br />

organism level<br />

• At organism level, response can be:<br />

– Acute toxicity causing mortality<br />

– Chronically accumulating damage ultimately<br />

causing death<br />

– Sublethal impairment of various aspects of<br />

physiology <strong>and</strong> morphology<br />

– Sublethal behavioral effects<br />

– Measurable biochemical changes


•At population level, response can be:<br />

–Size <strong>and</strong> dynamics (based on birth rates, death<br />

rates, gains, from immigration <strong>and</strong> losses from<br />

emigration)<br />

–Cause a reduction or an increase in the natural<br />

flowchart of numbers, in the biomass, sex ratio, etc.<br />

•At community level, response can be:<br />

–species diversity<br />

–predator prey relationship, etc<br />

•Change in ecosystem<br />

–nutrient cycling rates, patterns of nutrient flow,<br />

–physical-chemical conditions etc.


Underst<strong>and</strong>ing <strong>ecotoxicology</strong>


Assessment of Structural Changes<br />

changes in species / population structure<br />

- appearance/disappearance of an<br />

indicator species<br />

- number of individuals of a species<br />

- biomass of a species<br />

- presence or absence of a species<br />

Biomass-a quantitative estimate of the total mass of<br />

living plant or animal materials


changes in community/ecosystem structure<br />

- biomass<br />

- abundance<br />

- biotic indices (e.g. trophic types)<br />

- species richness / diversity<br />

- dominance<br />

- food chain length/complexity


<strong>Chemical</strong>s of Ecotoxicological<br />

interest<br />

• They are toxic <strong>and</strong> in many cases their<br />

metabolites are also harmful e.g. DDT & DDE<br />

(metabolite of DDT)<br />

• They are very stable both chemically <strong>and</strong><br />

environmentally<br />

• Their stability has lead to their persistence <strong>and</strong><br />

ubiquitous nature in the environment<br />

• Almost all chemicals of ecotoxicologigal interest<br />

are bioavailable <strong>and</strong> in most cases undergo<br />

bioaccumluation <strong>and</strong> biomagnification (food<br />

chain)


<strong>Chemical</strong> behavior <strong>and</strong> Bioavailability<br />

Bioconcentration (from external<br />

environment)<br />

Bioaccumulation (from external<br />

environment/food )<br />

Biomagnification (at higher tropic level)


Bioavailabiltiy The fraction of a chemical<br />

that is in an available form to an organism<br />

e.g. fish: food, absorption from water<br />

Bioconcentration - where the chemical<br />

concentration in an organism exceeds the<br />

concentration in the surrounding media (i.e.<br />

aquatic environment) as a result of exposure<br />

through the respiratory surfaces (i.e. gills/dermal<br />

surfaces) - not food!<br />

Bioconcentration Factor = conc. in organism<br />

conc. in ambient medium (usually water)


Bioaccumulation - where the chemical<br />

concentration in an organism achieves a level<br />

that exceeds that in the water/media as a result<br />

of chemical uptake through all routes of<br />

exposure.<br />

Bioaccumulation factor = Conc. in organism<br />

Conc. in food<br />

(or ingested water)<br />

•Bio-accumulation of Cd is higher than most<br />

metals as it is assimilated rapidly <strong>and</strong><br />

excreted slowly<br />

•depends on the rate of excretion


Biomagnification - where the chemical<br />

concentration in an organism achieves a<br />

level that exceeds that in the organism’s diet<br />

due to dietary absorption. i.e. higher trophic<br />

levels accumulate more chemical<br />

Biomagnification Factor =<br />

Conc. in predator<br />

Conc. in prey


Factors that influence bioaccumulation<br />

•Environmental persistence<br />

•Lipophilicity<br />

•Biotransformation


ECOSYSTEMS: Fate of Metals<br />

• The ultimate compartment is the whole<br />

planet but compartment can be<br />

– individual organism or<br />

– as small as single cells<br />

– Or even organelles within a cell<br />

• Metals are non-biodegradable<br />

• However there is the formation <strong>and</strong><br />

degradation of organometallic<br />

compounds e.g. MeHg,


Fate of Metals<br />

• Certain metals are assimilated by<br />

organisms to a greater extent than others<br />

• Bio-accumulation of Cd is higher than most<br />

metals as it is assimilated rapidly <strong>and</strong><br />

excreted slowly<br />

• Bio-availability is another reason for a high<br />

bio-concentration factor in that the<br />

chemical in question may be more bioavailable


Fate of Metals<br />

• pH is very important when it comes<br />

to metal bio-availability<br />

• Some metals e.g. Al is insoluble at<br />

normal to slightly acidic pH but<br />

below pH 4.5 its solubility increases<br />

dramatically <strong>and</strong> becomes most<br />

important responsible for fish kills<br />

in acidified lakes


ECOSYSTEMS: Terrestrial<br />

• Soils are contaminated<br />

– by metals <strong>and</strong> radioactive isotopes<br />

resulting from<br />

• industrial, mining or other activity or<br />

deposition from agricultural practices such<br />

as application of<br />

– metal-containing pesticides or<br />

– metal-contaminated sewage sludge<br />

– or wet or dry deposition from smelting<br />

activity, lead-containing car exhaust,<br />

atmospheric nuclear weapon testing or<br />

accidents such as Chernobyl.


ECOSYSTEMS: Terrestrial<br />

• Mobility of metals in soils is dictated<br />

largely by<br />

– clay content<br />

– amount of organic matter<br />

– pH<br />

• In general the higher the clay <strong>and</strong>/or<br />

organic matter content <strong>and</strong> pH, the more<br />

firmly bound are the metals <strong>and</strong> the longer<br />

is their residence time in soil<br />

• Acid rain helps in leaching nutrient<br />

(magnesium in European soil) from top to<br />

lower soil (inaccessible to root system)


ECOSYSTEMS: Terrestrial<br />

• Contamination of soils by radioactive<br />

materials is largely due to nuclear<br />

weapon testing (Australian <strong>and</strong><br />

Nevada deserts)<br />

• Accident has also contributed to that<br />

e.g. Chernobyl fallout outside the<br />

former Soviet Union.<br />

• When soils are contaminated<br />

organisms living in soils are affected


ECOSYSTEMS: Aquatic<br />

• The ultimate “sink” for metal is the ocean<br />

but difficult to estimate effect on biota due<br />

to massive dilution<br />

• Effect of metals on biota is much felt in<br />

estuaries especially those receiving water<br />

from contaminated sites<br />

• In estuaries the flow rate diminishes,<br />

suspended sediments settled <strong>and</strong> dissolved<br />

metals precipitated<br />

• Contaminated water affect organisms living<br />

in it


Biomarkers<br />

A xenobiotically induced alteration in<br />

cellular or biochemical components or<br />

processes, structures, or functions that is<br />

measurable in a biological system or<br />

sample.<br />

Types of Biomarkers<br />

Biomarkers of exposure<br />

Biomarkers of effect<br />

Biomarkers of susceptibility


1. Biomarkers of exposure<br />

Biomarkers of exposure include exogenous<br />

chemicals, metabolites, or products of<br />

interactions between environmental toxicants<br />

<strong>and</strong> target molecules or cells that are measured<br />

in a compartment within an organism (Travis,<br />

1993).


Internal dosimeters-<br />

1. measure the amount of a toxicant or its metabolite<br />

present in cells, tissues, or body fluids. Ex.<br />

urinary nitrophenol concentration used as a<br />

marker for methyl parathion exposure.<br />

2. account for individual differences in absorption<br />

<strong>and</strong> bioaccumulation of the xenobiotic <strong>and</strong> are<br />

relatively easy to measure.<br />

The biologically effective dose is the amount of the<br />

internal dose necessary to elicit a response or<br />

health effect.


2. Biomarkers of Effect<br />

Biomarkers of effect are measurable alterations<br />

of an organism that can indicate a potential or<br />

established health impairment or disease (Travis,<br />

1993). These can include an alteration in a tissue or<br />

organ, an early event in a biologic process that is<br />

predictive of disease, a health impairment or clinical<br />

disease, or a response parallel to the disease<br />

process, but correlated with it, <strong>and</strong> able to predict<br />

health impairment. Ex. the change in blood<br />

cholinesterase activity after exposure to anticholinesterase<br />

organophosphorous pesticides.


hypersensitivity)<br />

Nonspecific<br />

The induction of mixed function oxidase<br />

The formation of DNA adducts<br />

Sister chromatid exchange<br />

Str<strong>and</strong> breakage<br />

Porphyrin profile alteration<br />

Induction of vitellogenin in oviparous vertebrates<br />

Immunochanges (immunosupression,


Biomarkers in order of decreasing specificity<br />

Source: Walker et al. Principles of Ecotoxicology (2001) 2nd Edition [DUHS-P]


3. Biomarkers of Susceptibility<br />

Biomarkers of susceptibility indicate individual factors<br />

that can affect response to an environmental toxicant<br />

(Bearer, 1998). They are indicators of inherent or<br />

acquired properties of an organism that may lead to an<br />

increase or decrease in the internal dose of the<br />

xenobiotic or an increased or decreased level of the<br />

response resulting from the exposure.<br />

Genetic polymorphisms fall into this category of<br />

biomarkers.<br />

P450 1A1 induction<br />

Decreases in conjugated enzymes<br />

Inhibit the activity of immune system


Biomarker interpretation<br />

• Species different-ex.P450 induction<br />

• to integrate multiple chemical exposure across<br />

an area with a variety of chemical <strong>contaminants</strong><br />

•Relationship between biomarker <strong>and</strong> disease<br />

pathology<br />

•To predict disease<br />

•To predict environmental <strong>and</strong> genetic risk


Toxic Effects<br />

• The biochemical (molecular in nature) or<br />

physiological (observed at organ <strong>and</strong> whole<br />

organism levels) changes which adversely<br />

affect individual organisms’ birth, growth<br />

or mortality rates.<br />

• Both biochemical <strong>and</strong> physiological<br />

changes could lead to behavioral (whole<br />

organism level) changes


Example<br />

• The pollutant binding to a receptor<br />

• Followed by biochemical response at<br />

both cellular <strong>and</strong> organ levels<br />

• Leading to physiological responses<br />

• Finally, behavioral changes on the<br />

individual leading to effects on the<br />

population, community <strong>and</strong> the<br />

ecosystem.


BEHAVIORAL EFFECTS:<br />

– Migration,<br />

– intraspecific attraction,<br />

– aggregation,<br />

– aggression,<br />

– predation,<br />

– vulnerability,<br />

– mating


• Binding:<br />

– Reversible vs. Irreversible binding<br />

• Irreversible binding (covalent) causes harmful<br />

effects.<br />

• Types of bonding:<br />

– Covalent > ionic > Hydrogen binding > V<strong>and</strong>erwaals ><br />

hydrophilic<br />

• Biochemical responses:<br />

– Biochemical response could be protective or nonprotective<br />

(may or may not cause harmful effect).<br />

• Non-protective biochemical responses have<br />

Carcinogenic, Mutagenic, Teratogenic <strong>and</strong><br />

Neurotoxic potentials.


• Protective biochemical responses:<br />

– Monoxygenase (OCs <strong>and</strong> PAHs)<br />

– Induction <strong>and</strong> binding to metalothionein (Cu,<br />

Cd, Zn <strong>and</strong> Hg)<br />

– Binding to blood plasma, bones <strong>and</strong> hair<br />

(Metals <strong>and</strong> xenobiotics)<br />

– Dissolving in fat (organics- e.g. OCs)<br />

– Mineralization ( e.g. MeHg to Hg 2+)<br />

– Demineralization (As to MeAs)


Protective biochemical response<br />

• Heavy metals for example can be stored <strong>and</strong><br />

detoxified by organisms either by binding to<br />

specific proteins e.g. metallothioneins (-SH<br />

proteins)<br />

• In some cases it is mineralized to inorganic<br />

form, which is less toxic: e.g. Hg bound to Se<br />

is a mineralized Hg (detoxified Hg: MeHg to<br />

Hg). On the other h<strong>and</strong>, the inorganic form,<br />

which is more toxic can be methylated to a<br />

less toxic form e.g. As.


Protective biochemical response<br />

PHASE 1 REACTION.<br />

• Organic pollutants could also be metabolized <strong>and</strong><br />

detoxified by Cytochrome P450 enzymes<br />

(Microsomal Monoxygenase; MMO).<br />

PHASE 2 REACTION<br />

• The metabolites undergo conjugation with<br />

endogenous molecules e.g. GSH.<br />

• For some chemicals the metabolites/conjugated<br />

form are more toxic than the parent compound <strong>and</strong><br />

can lead to cancer formation.


Non-protective response<br />

– Binding to DNA (DNA adduct)<br />

– DNA Structural damage (str<strong>and</strong>s break)<br />

induced by genotoxic compounds<br />

– Binding to SH-Protein (Protein adduct);<br />

enzymes <strong>and</strong> proteins<br />

– Nerotoxicity: prolongation of K <strong>and</strong> Na flow<br />

<strong>and</strong> inhibition of AChE activity in the brain


Non-protective response<br />

– Mitochondrial Poison (lost of proton<br />

gradient)<br />

– Inhibition of vitamin K cycle (competition<br />

with vit K binding site)<br />

– Inhibition of Thyroxine (competition with<br />

thyrosine binding site)<br />

– Inhibition of ATPase (enzymes for<br />

transport of ions e.g. K, Na, Ca)


Non-protective response<br />

• Environmental Estrogens (eg DDT) <strong>and</strong><br />

<strong>and</strong>rogens (tributhyl Tin)<br />

• Endocrine disrupters (binding to endocrine<br />

receptors)<br />

• Photosystems of Plants (interruption of<br />

electron flow)<br />

• Plant growth regulation


Physiological changes<br />

Non-protective biochemical responses lead to<br />

Physiological changes which could be<br />

observed at organ <strong>and</strong> organism levels<br />

• Organ level:<br />

– accumulation of Cd in kidney, which could cause<br />

cell death (cytotoxicity), resulting in dysfunction of<br />

the kidney<br />

– PAHs <strong>and</strong> Lung cancer<br />

• Organism level:<br />

– decrease in production (growth <strong>and</strong> reproduction)<br />

– changes in gene frequency<br />

– decrease in resources acquisition <strong>and</strong> uptake


Behavioral Changes<br />

– Either or both physiological <strong>and</strong> biochemical<br />

effects could lead to behavioral effects at<br />

organism level-<br />

– e.g. caring for young ones <strong>and</strong> avoidance of<br />

predator.<br />

Biochemical, Physiological <strong>and</strong> Behavioral<br />

effects on the individual organism culminate<br />

effects observed at the Population,<br />

Community <strong>and</strong> Ecosystem levels.


Population Changes<br />

• Changes in population may come about as a<br />

result of direct changes in numbers of<br />

individual organism <strong>and</strong> gene frequency<br />

(resistance)<br />

• By indirect means (decrease in<br />

population of predators due to toxic<br />

chemicals could lead to increase in<br />

numbers of its prey).


Diclofenac residues as the cause of<br />

vulture population decline in Pakistan.<br />

Nature. 2004 Feb 12;427(6975):630-3.<br />

• Diclofenac<br />

causes kidney<br />

damage,<br />

increased serum<br />

uric acid<br />

concentrations,<br />

visceral gout, <strong>and</strong><br />

death.


• Changes in community structure<br />

– change in pyhtoplankton assemblage due to<br />

eutrophication<br />

– acid rain affecting microorganisms in the soil,<br />

aquatic life<br />

• Changes in Ecosystem level (earth as<br />

an ecosystem)<br />

– carbon dioxide increase<br />

– ozone depletion


Some General effects of pollution on an<br />

Ecosystem<br />

• Decrease in the suitability of the abiotic<br />

component as a habitat for the biotic<br />

components of the ecosystem, which have<br />

been naturally established <strong>and</strong> adapted to<br />

that ecosystem<br />

• Detrimental impact on part of the biotic<br />

component (vulnerable species) as related to<br />

the intensity <strong>and</strong> type of pollution<br />

• Alteration to the community structure <strong>and</strong> in<br />

most cases, there is a declined in the number<br />

of species present


Some General effects of pollution<br />

on an Ecosystem<br />

• Matter <strong>and</strong> Energy flow within the<br />

ecosystem changes<br />

• Removal of larger organisms with longer<br />

life spans<br />

• The appearance of opportunistic species<br />

with short life spans exhibiting large<br />

population fluctuations in time <strong>and</strong><br />

space


What is an Endocrine<br />

Disruptor <br />

“An exogenous agent that interferes<br />

with the synthesis, secretion,<br />

transport, binding, action, or<br />

elimination of natural hormones in<br />

the body that are responsible for the<br />

maintenance of homeostasis,<br />

reproduction, development <strong>and</strong>/or<br />

behavior. “


Mechanisms of endocrine disrupting<br />

compounds<br />

1) Binding <strong>and</strong> activating the estrogen receptor<br />

2) Binding but not activating the estrogen<br />

receptor (therefore acting as an anti-estrogen)<br />

3) Binding other receptors<br />

4) Modifying the metabolism of natural<br />

hormones<br />

5) Modifying the number of hormone receptors<br />

in a cell<br />

6) Modifying the production of natural hormones


Hormone regulation <strong>and</strong> feedback control<br />

Estrogen levels depend on<br />

Estrodiol serum-binding proteins<br />

α-fetoprotein (AFP)<br />

Testosterone-estradiol binding globulin<br />

Xenoestrogens (ex. DES)<br />

100-fold lower affinity than E2 to these binding<br />

protein<br />

Bioavailability increased


Non-genomic mechanisms of ED<br />

action<br />

• Compounds of the azole type, such as<br />

ketoconazole <strong>and</strong> the fungicide fenarimol,<br />

inhibit these CYP isoforms <strong>and</strong><br />

consequently can also affect steroid<br />

synthesis while the now-banned anti-fouling<br />

agent tributyltin <strong>and</strong> its metabolites, which<br />

have strong ED potential, are thought to act<br />

by the same mechanism, probably by<br />

inhibition of aromatase.


Genomic mechanisms of ED action<br />

• bind to oestrogen receptors <strong>and</strong> so act as<br />

pseudoestrogens in vivo, giving feminising effects<br />

• tamoxifen <strong>and</strong> diethylstilbestrol) <strong>and</strong> industrial<br />

chemicals (e.g. octylphenol <strong>and</strong> bisphenol-A<br />

• fungicide vinclozolin binds competitively to the<br />

<strong>and</strong>rogen receptor (Shono et al., 2004), blocking<br />

the cellular actions of testosterone on <strong>and</strong>rogendependent<br />

tissue growth <strong>and</strong> behaviour patterns<br />

• chlordecone, inhibit binding to the oestrogen <strong>and</strong><br />

progesterone receptors (Guzelia, 1982), whereas<br />

bisphenol-A can block lig<strong>and</strong> binding to the thyroid<br />

receptor


Timing, duration, <strong>and</strong> amount of exposure.<br />

Organization vs. activation<br />

Timing, duration, <strong>and</strong> amount of exposure are each<br />

important determinants of the outcome. There are<br />

windows of vulnerability during fetal development in<br />

which small exposures to endocrine disruptors may<br />

have profound effects not observed in adults.<br />

Studies of the intrauterine position of mice during<br />

fetal development show that slight fluctuations of<br />

steroid hormone levels influence genital morphology,<br />

timing of puberty, sexual attractiveness, sexual<br />

behavior, aggressiveness, <strong>and</strong> activity level of<br />

offspring.


Various Classes of EDCs<br />

Flame Retardants<br />

Fungicides<br />

Herbicides<br />

Insecticides<br />

Metals<br />

Pharmaceuticals<br />

Phenols<br />

Plasticizers<br />

Polyaromatic<br />

Hydrocarbons<br />

Soy Products<br />

Surfactants<br />

Polybrominated diphenyl ether<br />

Vinclozolin<br />

Atrazine<br />

Methoxychlor<br />

Tributyltin<br />

Ethynyl Estradiol<br />

Bisphenol A<br />

Phthalates<br />

PCBs, dioxins<br />

Genistein<br />

Alkylphenol<br />

Ethoxylates


PBDEs( 多 溴 二 苯 基 醚 )<br />

• Polybrominated diphenyl ethers (PBDEs)<br />

are a class of recalcitrant <strong>and</strong><br />

bioaccumulative halogenated<br />

compounds that have emerged as a<br />

major environmental pollutant. PBDEs<br />

are used as a flame-retardant <strong>and</strong> are<br />

found in consumer goods such as<br />

electrical equipment, construction<br />

materials, coatings, textiles <strong>and</strong><br />

polyurethane foam (furniture padding).


Bioavailability of PBDEs<br />

‣Found in animals<br />

‣Increase in fish<br />

‣Increase in whales<br />

‣Sewage sludge<br />

‣PCBs Found in Lake Washington<br />

Fish (PBDEs next)<br />

‣Found in human (breast milk)


PBDEs Breast Milk - Sweden<br />

(Norén <strong>and</strong> Mieronyté, 1998)


Health Effects of PBDEs<br />

‣Similar to PCBs (Polychlorinated biphenyls)<br />

‣PBT (Persistent Bioaccumulative Toxicant)<br />

‣No human data<br />

‣Animals studies indicate<br />

‣Effects thyroid hormone levels<br />

‣Neurobehavioral toxicity<br />

‣Effects development - alters Behavior<br />

‣Impairs memory <strong>and</strong> learning<br />

‣Delays sexual development


Vinclozolin<br />

• Vinclozolin is a fungicide that has been<br />

shown to cause Leydig cell tumors <strong>and</strong><br />

atrophy of the accessory sex gl<strong>and</strong>s in<br />

adult rodents. In addition, exposure of<br />

rats during pregnancy causes a pattern<br />

of malformations in the male urogenital<br />

tract .<br />

• Androgen receptor antagonist


Atrazine<br />

• A chlorotriazine herbicide, is used to control<br />

annual grasses <strong>and</strong> broadleaf weeds.<br />

• suppression of the luteinizing hormone surge<br />

during the estrus cycle by atrazine leads to the<br />

maintenance of elevated blood levels of 17betaestradiol<br />

(E2) <strong>and</strong> prolactin.<br />

• The mechanism for tumor development may<br />

include one or more of the following: the induction<br />

of aromatase (CYP19) <strong>and</strong>/or other P450<br />

oxygenases, an antagonist action at the estrogen<br />

feedback receptor in the hypothalamus, an<br />

agonist action at the mammary gl<strong>and</strong> estrogen<br />

receptor or an effect on adrenergic neurons in the<br />

hypothalamic-pituitary pathway.


双 酚 A<br />

Bisphenol-A<br />

BPA is used in the manufacture of<br />

polycarbonate plastics <strong>and</strong> epoxy resins from<br />

which food <strong>and</strong> beverage containers <strong>and</strong> dental<br />

materials are made. Perinatal exposure to<br />

environmentally relevant BPA doses results in<br />

morphological <strong>and</strong> functional alterations of the<br />

male <strong>and</strong> female genital tract <strong>and</strong> mammary<br />

gl<strong>and</strong>s that may predispose the tissue to earlier<br />

onset of disease, reduced fertility <strong>and</strong> mammary<br />

<strong>and</strong> prostate cancer


聚 氯 乙 烯 (PVC)<br />

让 长 牙 的 婴 儿 咬 玩 得 固 齿 器 、 洗 澡 玩 得 软 性 玩 具 、 价 格 不 贵 的 流<br />

行 卡 通 玩 具 常 常 是 PVC 制 品 , 在 使 用 中 可 能 释 放 出 邻 苯 二 甲 酸<br />

(phthalates) 这 类 有 致 癌 性 的 环 境 荷 尔 蒙 。<br />

【 安 全 替 代 品 】 仔 细 查 看 成 分 标 示 , 凡 是 婴 幼 儿 可 能 放 在 口 中 把<br />

玩 的 玩 具 一 定 选 择 PE( 聚 乙 烯 ) 制 品 。<br />

苯 乙 烯 alkylphenol ( 烷 基 酚 )<br />

摊 贩 、 自 助 餐 店 、 速 食 店 的 热 饮 杯 ( 装 汤 、 茶 、 咖 啡 )、 方 便<br />

面 的 面 碗 及 面 杯 绝 大 多 数 都 是 使 用 聚 苯 乙 烯 (polystyren) 的 塑<br />

胶 容 器 , 简 称 PS。 其 原 料 单 体 叫 苯 乙 烯 , 是 已 知 致 癌 物 。 并 且<br />

制 造 过 程 所 添 加 的 增 塑 剂 alkylphenol( 烷 基 酚 ) 也 是 会 干 扰 内<br />

分 泌 的 环 境 荷 尔 蒙 , 二 者 在 使 用 过 程 中 很 容 易 溶 出 到 食 物 中 。


化 妆 品 中 的 环 境 荷 尔 蒙<br />

多 数 的 化 妆 品 、 卸 妆 用 清 洁 用 品 含 有 几 类 的 环 境<br />

荷 尔 蒙 :<br />

• 壬 基 苯 酚 乙 烯 ( 一 种 非 离 子 表 面 活 性 剂 )<br />

• 邻 苯 二 甲 酸 (phthalates)<br />

• 烷 基 酚 (alkylphenol)


Tributyltin (TBT)<br />

三 丁 基 锡 是 一 种 有 机 锡 化 合 物 ,<br />

常 被 添 加 于 船 舶 油 漆 中 , 以 防 止 贝 类<br />

及 藻 类 附 着 于 船 身 , 由 于 具 有 杀 菌 效<br />

果 , 所 以 也 可 以 作 为 杀 菌 剂 使 用 。


收 到 三 丁 基 锡 或 三 苯 基 锡 污 染 的 雌 岩 螺 , 因 生 殖 孔 阻 塞 受<br />

精 卵 无 法 排 出 , 堆 积 在 生 殖 管 道 内 变 红 变 黑 形 成 坏 死 组 织 ,<br />

此 时 长 出 阴 茎 的 雌 化 作 用 也 同 时 引 发 。


许 多 生 物 对 有 机 锡 的 代 谢 能 力 低 , 在 低 浓<br />

度 长 时 间 的 污 染 下 , 负 面 效 果 即 能 呈 现 , 有 机<br />

锡 累 积 在 食 物 链 顶 端 的 鲸 豚 肝 脏 也 普 遍 存 在<br />

(up to 10 mg/kg)。 鉴 于 有 机 锡 污 染 对 海 域 生<br />

态 的 威 胁 , 全 世 界 将 禁 止 三 丁 基 锡 作 为 油 漆 添<br />

加 物 。<br />

此 外 , 有 机 锡 还 有 致 畸 胎 作 用 。


Phthalates 邻 苯 二 甲 酸 酯<br />

• 软 化 剂 , 广 泛 存 在 于 化 妆 品 、 儿 童 玩 具<br />

和 食 品 包 装 袋 中<br />

• 聚 氯 乙 烯 PVC 制 品 在 使 用 中 可 释 放 出 邻<br />

苯 二 甲 酸 酯<br />

• male infertility<br />

• Interfere with cholesterol uptake <strong>and</strong><br />

<strong>and</strong>rogen biosynthesis


Alkylphenol( 烷 基 酚 )<br />

• 聚 苯 乙 烯 制 品 制 造 过 程 中 所 添 加 的 增 塑 剂<br />

alkylphenol( 烷 基 酚 ) 也 是 会 干 扰 内 分 泌 的 环<br />

境 荷 尔 蒙 disrupted reproduction in pikeperch<br />

• In juvenile fish a decrease in the percentage<br />

of males <strong>and</strong> an increase of intersex fish was<br />

observed in relation to dose of NP <strong>and</strong> time of<br />

exposure to this alkylphenol.<br />

• Exposure of adult males to the NP led to the<br />

reduction in fecundity, milt quality <strong>and</strong> fertility.


EDSTAC Tier 1 Assays<br />

Concerned with detecting<br />

• Receptor binding assays (ER <strong>and</strong> AhR)<br />

• Uterotrophic<br />

• Hershberger<br />

• Pubertal female<br />

• Steroidogenesis<br />

• Frog metamorphosis<br />

• Fish reproductive screen


EDSTAC Tier 2<br />

dose-response relationship<br />

• Mammal development <strong>and</strong><br />

reproduction<br />

• Bird development <strong>and</strong> reproduction<br />

• Mysid shrimp life cycle<br />

• Fish reproduction <strong>and</strong> development<br />

• Amphibian development <strong>and</strong><br />

reproduction


Species-dependent sex determination<br />

Mammal XY/XX<br />

synthesis of testosterone/functional <strong>and</strong>rogen receptors<br />

estrogen receptor in the brain<br />

Birds WZ/WW<br />

The ability to synthesize <strong>and</strong> recognize 17β-estradiol is<br />

necessary for female CNS <strong>and</strong> gonadal sexual<br />

development to occur<br />

Reptile<br />

temperature-dependent sex determination (aromatase<br />

related)


Temperature-dependent sex determination<br />

thermosensitive period (TSP)


Temperature<br />

determines their<br />

sex. A nest<br />

temperature of<br />

73.5 degrees<br />

would develop<br />

males. If it heats<br />

up to 83.5,<br />

hormones would<br />

trigger changes<br />

causing the<br />

embryonic cells<br />

to differentiate<br />

as females.


III. Field studies<br />

Manipulative<br />

Observational (biomonitoring)<br />

This sections looks briefly at the field of microcosm<br />

<strong>and</strong> mesocosm toxicity testing.<br />

Microcosms - laboratory systems that are<br />

intended to physically simulate an ecosystem or a<br />

major subsystem of an ecosystem. They are an<br />

attempt to create systems that display ecosystem<br />

properties while permitting control of conditions <strong>and</strong><br />

replication of treatments at reasonable cost.


There are two types of microcosms, assembled <strong>and</strong><br />

excised.<br />

One of the more common assembled type is the aqutic<br />

microcosm developed by Taub (see Suter, 1993). This<br />

system consists of ten species of algae, five<br />

zooplankters (cladoceran, amphipod, ostracod,<br />

protozoan, <strong>and</strong> rotifer), <strong>and</strong> a bacterium in a defined<br />

aqueous medium with serile s<strong>and</strong> sediment all contained<br />

in gallon jar under fluorescent lights. The advantage of<br />

the system is that it is st<strong>and</strong>ardized, similar results can<br />

be achieved from different labs, researchers can<br />

compare results with different chemicals, <strong>and</strong> the limited<br />

<strong>and</strong> constant array of species makes it more likely that<br />

the cause of observed responses can be determined<br />

making it possible to model the ecosystem level<br />

interactions for extrapolation to the field. However, they<br />

are very much oversimplified.


Excised microcosms are segments of ecosystems that<br />

have been removed from the environment as a unit or a<br />

few units <strong>and</strong> placed in containers in the laboratory.<br />

They contain natural assemblages of biota, natural<br />

median <strong>and</strong> are more realistic. The are also less<br />

amenable to quality control <strong>and</strong> to comparisons.<br />

Examples include:<br />

•Mixed flask culture - mixed culture of microbes <strong>and</strong><br />

microinvertebrates derived from one or more natural<br />

communities <strong>and</strong> held in the lab.<br />

•Pond microcosm - water, sediment, macrophytes, <strong>and</strong><br />

associated biota obtained from a shallow pond or the<br />

littoral zone of a lake or slow-moving river<br />

•Site-specific aquatic microcosm - large tank of<br />

ambient water, a sediment core suspended in the water,<br />

<strong>and</strong> associated biota


Mesocosms - outdoor experimental systems that are<br />

delimited <strong>and</strong> to some extent enclosed.<br />

These systems offer more realism than microcosms due<br />

to their larger size <strong>and</strong> more natural physical conditions<br />

but can still provide replication, control of chemical<br />

exposure, <strong>and</strong> some control of biotic components.<br />

Mesocosm studies are currently a requirement for<br />

pesticide registration in the U.S. Mesocosms are also<br />

either assembled such as artificial ponds <strong>and</strong> streams or<br />

delimited such as limnocorrals <strong>and</strong> other enclosures of<br />

portions of an ecosystem.


Biomonitoring


生 物 監 測 (Biomonitoring) 在 歐 洲 國 家 於 20 世 紀<br />

初 首 先 使 用 藻 類 腐 水 指 標 系 統 監 測 水 質 , 其 後 陸 續<br />

建 立 底 棲 生 物 及 魚 類 指 標 監 測 方 法 。 一 般 河 川 水 質<br />

監 測 只 有 分 析 水 中 理 化 參 數 , 而 忽 略 水 中 生 物 之 存<br />

在 與 否 。Loeb 及 Spacie(1994) 指 出 , 水 中 生 物<br />

因 長 期 生 活 棲 息 之 水 中 環 境 , 任 何 外 來 物 質 刺 激<br />

(Stress), 他 們 首 當 其 衝 , 故 他 們 才 是 最 佳 環 境<br />

監 測 器 。 他 們 身 體 健 康 情 況 或 存 在 與 否 , 即 是 反 映<br />

水 質 好 壞 。<br />

河 川 生 物 監 測<br />

藻 類 評 估 水 質 使 用 之 方 法 為 藻 屬 指 數<br />

底 棲 水 生 昆 蟲 使 用 之 方 法 為 科 級 生 物 指 標 及 快 速 生<br />

物 評 估 法<br />

魚 類 評 估 方 法 有 魚 類 生 物 整 合 性 指 標 法 及 魚 類 指 標<br />


An Index of Biotic Integrity (IBI) is a tool (index) which<br />

we use to determine the health (integrity) of the fish<br />

community (biotic) in a given river. Webster's defines<br />

an index as "a ratio or other number derived from a<br />

series of observations <strong>and</strong> used as an indicator or<br />

measure". Biotic is defined as "of or relating to<br />

life". And integrity is defined as "the quality or state of<br />

completeness".<br />

The IBI examines three components of the fish<br />

community to determine its health. By knowing the<br />

abundance (total number of fish), the diversity<br />

(number of different species), <strong>and</strong> trophic (food chain)<br />

interactions, we get an idea of how healthy the fish<br />

community is in a given area.


Indicator species<br />

A species whose status provides information<br />

on the overall condition of the ecosystem <strong>and</strong><br />

of other species in that ecosystem.<br />

Particular tolerant or sensitive to<br />

environmental contamination.<br />

Ex. Ephemeroptera, Plecoptera, <strong>and</strong><br />

Trichoptera<br />

Biomarker responses to specific chemical<br />

are well characterized<br />

Accumulated environmental <strong>contaminants</strong>


Example 1<br />

• What will happen When Raw Domestic<br />

Sewage from a Sewered Community of<br />

40,000 people flows into a stream


Ecological Risk Assessment<br />

has three primary phases<br />

Problem formulation<br />

Analysis<br />

Risk characterization


•Data required to conduct an ecological risk<br />

assessment include the following:<br />

•Toxicity to wildlife, aquatic organisms, plants, an<br />

nontarget insects<br />

•Environmental fate<br />

•Environmental transport<br />

•Estimated environmental concentrations<br />

•Where <strong>and</strong> how the pesticide will be used<br />

•What animals <strong>and</strong> plants will be exposed<br />

•Climatologic, meterologic, <strong>and</strong> soil information

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!