Parthasarathi Majumdar - Saha Institute of Nuclear Physics

Parthasarathi Majumdar - Saha Institute of Nuclear Physics Parthasarathi Majumdar - Saha Institute of Nuclear Physics

05.02.2015 Views

Critical mass of Neutron Star : an Entropic View Parthasarathi Majumdar, Saha Institute of Nuclear Physics, Kolkata, India Neutron Stars : inside and outside Kolkata, 18-19 October, 2012 October 18, 2012

Critical mass <strong>of</strong> Neutron Star : an Entropic View<br />

<strong>Parthasarathi</strong> <strong>Majumdar</strong>,<br />

<strong>Saha</strong> <strong>Institute</strong> <strong>of</strong> <strong>Nuclear</strong> <strong>Physics</strong>, Kolkata, India<br />

Neutron Stars : inside and outside<br />

Kolkata, 18-19 October, 2012<br />

October 18, 2012


Created with pptalk Slide 2<br />

Neutron stars with masses>> ξ M ⊙ , ξ = O(1) not observed<br />

⇒ M ns > M crit ≃ ξ M ⊙ → unstable wrt gravitational collapse to black<br />

hole<br />

How does one determine M crit Most contemporary efforts → variations<br />

on the theme <strong>of</strong> the Chandrasekhar bound for White Dwarfs<br />

Chandrasekhar’s Nobel Lecture December 1983 : (adapted to deg neutron<br />

cores)<br />

( ) c 3/2<br />

M ns < M crit = ξ m −2 n ≃ ξ M ⊙<br />

G<br />

Hydrost equil betweenP core due to gravity andP deg the Fermi pressure <strong>of</strong><br />

relativistic degenerate neutrons :<br />

Solve Einstein eq G ab = 8πG<br />

c 4 T ab with sph symm ansatz for perfect<br />

barotropic fluid→Tolman-Oppenheimer-Volkov eq


Created with pptalk Slide 2<br />

Neutron stars with masses>> ξ M ⊙ , ξ = O(1) not observed<br />

⇒ M ns > M crit ≃ ξ M ⊙ → unstable wrt gravitational collapse to black<br />

hole<br />

How does one determine M crit Most contemporary efforts → variations<br />

on the theme <strong>of</strong> the Chandrasekhar bound for White Dwarfs<br />

Chandrasekhar’s Nobel Lecture December 1983 : (adapted to deg neutron<br />

cores)<br />

( ) c 3/2<br />

M ns < M crit = ξ m −2 n ≃ ξ M ⊙<br />

G<br />

Hydrost equil betweenP core due to gravity andP deg the Fermi pressure <strong>of</strong><br />

relativistic degenerate neutrons :<br />

Solve Einstein eq G ab = 8πG<br />

c 4 T ab with sph symm ansatz for perfect<br />

barotropic fluid→Tolman-Oppenheimer-Volkov eq


Created with pptalk Slide 2<br />

Neutron stars with masses>> ξ M ⊙ , ξ = O(1) not observed<br />

⇒ M ns > M crit ≃ ξ M ⊙ → unstable wrt gravitational collapse to black<br />

hole<br />

How does one determine M crit Most contemporary efforts → variations<br />

on the theme <strong>of</strong> the Chandrasekhar bound for White Dwarfs<br />

Chandrasekhar’s Nobel Lecture December 1983 : (adapted to deg neutron<br />

cores)<br />

( ) c 3/2<br />

M ns < M crit = ξ m −2 n ≃ ξ M ⊙<br />

G<br />

Hydrost equil betweenP core due to gravity andP deg the Fermi pressure <strong>of</strong><br />

relativistic degenerate neutrons :<br />

Solve Einstein eq G ab = 8πG<br />

c 4 T ab with sph symm ansatz for perfect<br />

barotropic fluid→Tolman-Oppenheimer-Volkov eq


Created with pptalk Slide 2<br />

Neutron stars with masses>> ξ M ⊙ , ξ = O(1) not observed<br />

⇒ M ns > M crit ≃ ξ M ⊙ → unstable wrt gravitational collapse to black<br />

hole<br />

How does one determine M crit Most contemporary efforts → variations<br />

on the theme <strong>of</strong> the Chandrasekhar bound for White Dwarfs<br />

Chandrasekhar’s Nobel Lecture December 1983 : (adapted to deg neutron<br />

cores)<br />

( ) c 3/2<br />

M ns < M crit = ξ m −2 n ≃ ξ M ⊙<br />

G<br />

Hydrost equil betweenP core due to gravity andP deg the Fermi pressure <strong>of</strong><br />

relativistic degenerate neutrons :<br />

Solve Einstein eq G ab = 8πG<br />

c 4 T ab with sph symm ansatz for perfect<br />

barotropic fluid→Tolman-Oppenheimer-Volkov eq


Created with pptalk Slide 2<br />

Neutron stars with masses>> ξ M ⊙ , ξ = O(1) not observed<br />

⇒ M ns > M crit ≃ ξ M ⊙ → unstable wrt gravitational collapse to black<br />

hole<br />

How does one determine M crit Most contemporary efforts → variations<br />

on the theme <strong>of</strong> the Chandrasekhar bound for White Dwarfs<br />

Chandrasekhar’s Nobel Lecture December 1983 : (adapted to deg neutron<br />

cores)<br />

( ) c 3/2<br />

M ns < M crit = ξ m −2 n ≃ ξ M ⊙<br />

G<br />

Hydrost equil betweenP core due to gravity andP deg the Fermi pressure <strong>of</strong><br />

relativistic degenerate neutrons :<br />

Solve Einstein eq G ab = 8πG<br />

c 4 T ab with sph symm ansatz for perfect<br />

barotropic fluid→Tolman-Oppenheimer-Volkov eq


Created with pptalk Slide 2<br />

Neutron stars with masses>> ξ M ⊙ , ξ = O(1) not observed<br />

⇒ M ns > M crit ≃ ξ M ⊙ → unstable wrt gravitational collapse to black<br />

hole<br />

How does one determine M crit Most contemporary efforts → variations<br />

on the theme <strong>of</strong> the Chandrasekhar bound for White Dwarfs<br />

Chandrasekhar’s Nobel Lecture December 1983 : (adapted to deg neutron<br />

cores)<br />

( ) c 3/2<br />

M ns < M crit = ξ m −2 n ≃ ξ M ⊙<br />

G<br />

Hydrost equil betweenP core due to gravity andP deg the Fermi pressure <strong>of</strong><br />

relativistic degenerate neutrons :<br />

Solve Einstein eq G ab = 8πG<br />

c 4 T ab with sph symm ansatz for perfect<br />

barotropic fluid→Tolman-Oppenheimer-Volkov eq


Created with pptalk Slide 2<br />

Neutron stars with masses>> ξ M ⊙ , ξ = O(1) not observed<br />

⇒ M ns > M crit ≃ ξ M ⊙ → unstable wrt gravitational collapse to black<br />

hole<br />

How does one determine M crit Most contemporary efforts → variations<br />

on the theme <strong>of</strong> the Chandrasekhar bound for White Dwarfs<br />

Chandrasekhar’s Nobel Lecture December 1983 : (adapted to deg neutron<br />

cores)<br />

( ) c 3/2<br />

M ns < M crit = ξ m −2 n ≃ ξ M ⊙<br />

G<br />

Hydrost equil betweenP core due to gravity andP deg the Fermi pressure <strong>of</strong><br />

relativistic degenerate neutrons :<br />

Solve Einstein eq G ab = 8πG<br />

c 4 T ab with sph symm ansatz for perfect<br />

barotropic fluid→Tolman-Oppenheimer-Volkov eq


Created with pptalk Slide 3<br />

[ ]<br />

dP<br />

dr = −(P +ρ) 4πr 3 P +2m<br />

r(r−2m)<br />

where, m(r) ≡ ∫ r<br />

0<br />

dr ′ 4πr ′2 ρ(r ′ ) , G = c = 1. Assuming uniform ρ(r) =<br />

ρ 0 ⇒ m(r) = M core (r/R) 3 ⇒<br />

⎡<br />

(<br />

P core = P(r = 0) = ρ 0 c 2 1− R )<br />

⎤<br />

1/2−1<br />

S<br />

⎢ R ⎣ (<br />

1−3 1− R )<br />

⎥<br />

1/2 ⎦<br />

S<br />

R<br />

where,R S = 2GM core /c 2<br />

Degenerate neutron gas : Fermi pressure<br />

P deg =<br />

∫ pF<br />

0<br />

n tot (p) v(p) dp<br />

where,n tot (p F ) ≡ ∫ p F<br />

0<br />

n(p) dp = (8π/3 3 ) p 3 F


Created with pptalk Slide 3<br />

[ ]<br />

dP<br />

dr = −(P +ρ) 4πr 3 P +2m<br />

r(r−2m)<br />

where, m(r) ≡ ∫ r<br />

0<br />

dr ′ 4πr ′2 ρ(r ′ ) , G = c = 1. Assuming uniform ρ(r) =<br />

ρ 0 ⇒ m(r) = M core (r/R) 3 ⇒<br />

⎡<br />

(<br />

P core = P(r = 0) = ρ 0 c 2 1− R )<br />

⎤<br />

1/2−1<br />

S<br />

⎢ R ⎣ (<br />

1−3 1− R )<br />

⎥<br />

1/2 ⎦<br />

S<br />

R<br />

where,R S = 2GM core /c 2<br />

Degenerate neutron gas : Fermi pressure<br />

P deg =<br />

∫ pF<br />

0<br />

n tot (p) v(p) dp<br />

where,n tot (p F ) ≡ ∫ p F<br />

0<br />

n(p) dp = (8π/3 3 ) p 3 F


Created with pptalk Slide 3<br />

[ ]<br />

dP<br />

dr = −(P +ρ) 4πr 3 P +2m<br />

r(r−2m)<br />

where, m(r) ≡ ∫ r<br />

0<br />

dr ′ 4πr ′2 ρ(r ′ ) , G = c = 1. Assuming uniform ρ(r) =<br />

ρ 0 ⇒ m(r) = M core (r/R) 3 ⇒<br />

⎡<br />

(<br />

P core = P(r = 0) = ρ 0 c 2 1− R )<br />

⎤<br />

1/2−1<br />

S<br />

⎢ R ⎣ (<br />

1−3 1− R )<br />

⎥<br />

1/2 ⎦<br />

S<br />

R<br />

where,R S = 2GM core /c 2<br />

Degenerate neutron gas : Fermi pressure<br />

P deg =<br />

∫ pF<br />

0<br />

n tot (p) v(p) dp<br />

where,n tot (p F ) ≡ ∫ p F<br />

0<br />

n(p) dp = (8π/3 3 ) p 3 F


Created with pptalk Slide 4<br />

Sp Rel : v(p) < c<br />

P deg < 1 8<br />

Hydrostat equilP core = P deg ⇒<br />

M crit < ξ<br />

( c<br />

G<br />

where,M P = (c/G) 1/2 ∼ 10 19 Gev<br />

(<br />

ρ0<br />

m n<br />

) 4/3<br />

) 3/2<br />

m −2 n = M2 P<br />

m 2 n<br />

M P associated with scale <strong>of</strong> quantum grav (Planck length l P =<br />

(G/c 3 ) 1/2 = 10 −33 cm)<br />

Why does M P emerge from cl grav + QM Is there a hint that quantum<br />

gravity is somehow sneaking in


Created with pptalk Slide 4<br />

Sp Rel : v(p) < c<br />

P deg < 1 8<br />

Hydrostat equilP core = P deg ⇒<br />

M crit < ξ<br />

( c<br />

G<br />

where,M P = (c/G) 1/2 ∼ 10 19 Gev<br />

(<br />

ρ0<br />

m n<br />

) 4/3<br />

) 3/2<br />

m −2 n = M2 P<br />

m 2 n<br />

M P associated with scale <strong>of</strong> quantum grav (Planck length l P =<br />

(G/c 3 ) 1/2 = 10 −33 cm)<br />

Why does M P emerge from cl grav + QM Is there a hint that quantum<br />

gravity is somehow sneaking in


Created with pptalk Slide 4<br />

Sp Rel : v(p) < c<br />

P deg < 1 8<br />

Hydrostat equilP core = P deg ⇒<br />

M crit < ξ<br />

( c<br />

G<br />

where,M P = (c/G) 1/2 ∼ 10 19 Gev<br />

(<br />

ρ0<br />

m n<br />

) 4/3<br />

) 3/2<br />

m −2 n = M2 P<br />

m 2 n<br />

M P associated with scale <strong>of</strong> quantum grav (Planck length l P =<br />

(G/c 3 ) 1/2 = 10 −33 cm)<br />

Why does M P emerge from cl grav + QM Is there a hint that quantum<br />

gravity is somehow sneaking in


Created with pptalk Slide 4<br />

Sp Rel : v(p) < c<br />

P deg < 1 8<br />

Hydrostat equilP core = P deg ⇒<br />

M crit < ξ<br />

( c<br />

G<br />

where,M P = (c/G) 1/2 ∼ 10 19 Gev<br />

(<br />

ρ0<br />

m n<br />

) 4/3<br />

) 3/2<br />

m −2 n = M2 P<br />

m 2 n<br />

M P associated with scale <strong>of</strong> quantum grav (Planck length l P =<br />

(G/c 3 ) 1/2 = 10 −33 cm)<br />

Why does M P emerge from cl grav + QM Is there a hint that quantum<br />

gravity is somehow sneaking in


Created with pptalk Slide 4<br />

Sp Rel : v(p) < c<br />

P deg < 1 8<br />

Hydrostat equilP core = P deg ⇒<br />

M crit < ξ<br />

( c<br />

G<br />

where,M P = (c/G) 1/2 ∼ 10 19 Gev<br />

(<br />

ρ0<br />

m n<br />

) 4/3<br />

) 3/2<br />

m −2 n = M2 P<br />

m 2 n<br />

M P associated with scale <strong>of</strong> quantum grav (Planck length l P =<br />

(G/c 3 ) 1/2 = 10 −33 cm)<br />

Why does M P emerge from cl grav + QM Is there a hint that quantum<br />

gravity is somehow sneaking in


Created with pptalk Slide 5<br />

Stability upper bound<br />

• For densitiesρ > 10 13 gm/cc , EoS P = P(ρ) poorly known<br />

• Need model for strong nucleonic interactions involving also hyperons/resonances<br />

and perhaps also quarks<br />

• LE effective models based on SRQFT in flat Minkowski space. P core<br />

computed using GR → inconsistent ! Fortuitous : Chandrasekhar’s<br />

derivation agrees with most observations !<br />

• Chandrasekhar limit for Neutron stars : Right answer using ‘invalid’<br />

theory Similar to Mitchell’s (1784) derivation <strong>of</strong> Schwarzschild rad<br />

R S = 2GM/c 2 before GR; or Bohr’s derivation <strong>of</strong> Bohr radius a 0 =<br />

2 /me 2 before QM. Also, Bethe’s derivation <strong>of</strong> Lamb Shift in H-atom<br />

using NRQM. Pointers to the right theory discovered subsequently.<br />

• But GRQFT → formidable, since many SRQFT properties (e.g., Spin-<br />

Statistics Theorem) invalid in general.


Created with pptalk Slide 5<br />

Stability upper bound<br />

• For densitiesρ > 10 13 gm/cc , EoS P = P(ρ) poorly known<br />

• Need model for strong nucleonic interactions involving also hyperons/resonances<br />

and perhaps also quarks<br />

• LE effective models based on SRQFT in flat Minkowski space. P core<br />

computed using GR → inconsistent ! Fortuitous : Chandrasekhar’s<br />

derivation agrees with most observations !<br />

• Chandrasekhar limit for Neutron stars : Right answer using ‘invalid’<br />

theory Similar to Mitchell’s (1784) derivation <strong>of</strong> Schwarzschild rad<br />

R S = 2GM/c 2 before GR; or Bohr’s derivation <strong>of</strong> Bohr radius a 0 =<br />

2 /me 2 before QM. Also, Bethe’s derivation <strong>of</strong> Lamb Shift in H-atom<br />

using NRQM. Pointers to the right theory discovered subsequently.<br />

• But GRQFT → formidable, since many SRQFT properties (e.g., Spin-<br />

Statistics Theorem) invalid in general.


Created with pptalk Slide 5<br />

Stability upper bound<br />

• For densitiesρ > 10 13 gm/cc , EoS P = P(ρ) poorly known<br />

• Need model for strong nucleonic interactions involving also hyperons/resonances<br />

and perhaps also quarks<br />

• LE effective models based on SRQFT in flat Minkowski space. P core<br />

computed using GR → inconsistent ! Fortuitous : Chandrasekhar’s<br />

derivation agrees with most observations !<br />

• Chandrasekhar limit for Neutron stars : Right answer using ‘invalid’<br />

theory Similar to Mitchell’s (1784) derivation <strong>of</strong> Schwarzschild rad<br />

R S = 2GM/c 2 before GR; or Bohr’s derivation <strong>of</strong> Bohr radius a 0 =<br />

2 /me 2 before QM. Also, Bethe’s derivation <strong>of</strong> Lamb Shift in H-atom<br />

using NRQM. Pointers to the right theory discovered subsequently.<br />

• But GRQFT → formidable, since many SRQFT properties (e.g., Spin-<br />

Statistics Theorem) invalid in general.


Created with pptalk Slide 5<br />

Stability upper bound<br />

• For densitiesρ > 10 13 gm/cc , EoS P = P(ρ) poorly known<br />

• Need model for strong nucleonic interactions involving also hyperons/resonances<br />

and perhaps also quarks<br />

• LE effective models based on SRQFT in flat Minkowski space. P core<br />

computed using GR → inconsistent ! Fortuitous : Chandrasekhar’s<br />

derivation agrees with most observations !<br />

• Chandrasekhar limit for Neutron stars : Right answer using ‘invalid’<br />

theory Similar to Mitchell’s (1784) derivation <strong>of</strong> Schwarzschild rad<br />

R S = 2GM/c 2 before GR; or Bohr’s derivation <strong>of</strong> Bohr radius a 0 =<br />

2 /me 2 before QM. Also, Bethe’s derivation <strong>of</strong> Lamb Shift in H-atom<br />

using NRQM. Pointers to the right theory discovered subsequently.<br />

• But GRQFT → formidable, since many SRQFT properties (e.g., Spin-<br />

Statistics Theorem) invalid in general.


Created with pptalk Slide 5<br />

Stability upper bound<br />

• For densitiesρ > 10 13 gm/cc , EoS P = P(ρ) poorly known<br />

• Need model for strong nucleonic interactions involving also hyperons/resonances<br />

and perhaps also quarks<br />

• LE effective models based on SRQFT in flat Minkowski space. P core<br />

computed using GR → inconsistent ! Fortuitous : Chandrasekhar’s<br />

derivation agrees with most observations !<br />

• Chandrasekhar limit for Neutron stars : Right answer using ‘invalid’<br />

theory Similar to Mitchell’s (1784) derivation <strong>of</strong> Schwarzschild rad<br />

R S = 2GM/c 2 before GR; or Bohr’s derivation <strong>of</strong> Bohr radius a 0 =<br />

2 /me 2 before QM. Also, Bethe’s derivation <strong>of</strong> Lamb Shift in H-atom<br />

using NRQM. Pointers to the right theory discovered subsequently.<br />

• But GRQFT → formidable, since many SRQFT properties (e.g., Spin-<br />

Statistics Theorem) invalid in general.


Created with pptalk Slide 5<br />

Stability upper bound<br />

• For densitiesρ > 10 13 gm/cc , EoS P = P(ρ) poorly known<br />

• Need model for strong nucleonic interactions involving also hyperons/resonances<br />

and perhaps also quarks<br />

• LE effective models based on SRQFT in flat Minkowski space. P core<br />

computed using GR → inconsistent ! Fortuitous : Chandrasekhar’s<br />

derivation agrees with most observations !<br />

• Chandrasekhar limit for Neutron stars : Right answer using ‘invalid’<br />

theory Similar to Mitchell’s (1784) derivation <strong>of</strong> Schwarzschild rad<br />

R S = 2GM/c 2 before GR; or Bohr’s derivation <strong>of</strong> Bohr radius a 0 =<br />

2 /me 2 before QM. Also, Bethe’s derivation <strong>of</strong> Lamb Shift in H-atom<br />

using NRQM. Pointers to the right theory discovered subsequently.<br />

• But GRQFT → formidable, since many SRQFT properties (e.g., Spin-<br />

Statistics Theorem) invalid in general.


Created with pptalk Slide 6<br />

EoS-independent approach to critical neutron mass Rhoades & Ruffini 1974<br />

Begin with TOV equations relating P(r) and m(r). Total M =<br />

∫ R<br />

0<br />

4πρ(r)r 2 dr.<br />

Assume EoS known everywhere except ρ ∈ [ρ 0 ,ρ 1 ] and corresponding<br />

pressures.<br />

Divide up M = M 1 (ρ c ,ρ 1 )+ ∫ ρ 1<br />

ρ 0<br />

4πr 2 ρ(dr/dρ)dρ+M 1 (rho 0 )<br />

MaximiseM subject to constraintv 2 s ≡ dP/dρ ∈ [0,1]<br />

Match allowed region with Harrison-Wheeler EoS for ρ ∼ 10 14 g/cc<br />

M < 3.2M ⊙


Created with pptalk Slide 6<br />

EoS-independent approach to critical neutron mass Rhoades & Ruffini 1974<br />

Begin with TOV equations relating P(r) and m(r). Total M =<br />

∫ R<br />

0<br />

4πρ(r)r 2 dr.<br />

Assume EoS known everywhere except ρ ∈ [ρ 0 ,ρ 1 ] and corresponding<br />

pressures.<br />

Divide up M = M 1 (ρ c ,ρ 1 )+ ∫ ρ 1<br />

ρ 0<br />

4πr 2 ρ(dr/dρ)dρ+M 1 (rho 0 )<br />

MaximiseM subject to constraintv 2 s ≡ dP/dρ ∈ [0,1]<br />

Match allowed region with Harrison-Wheeler EoS for ρ ∼ 10 14 g/cc<br />

M < 3.2M ⊙


Created with pptalk Slide 6<br />

EoS-independent approach to critical neutron mass Rhoades & Ruffini 1974<br />

Begin with TOV equations relating P(r) and m(r). Total M =<br />

∫ R<br />

0<br />

4πρ(r)r 2 dr.<br />

Assume EoS known everywhere except ρ ∈ [ρ 0 ,ρ 1 ] and corresponding<br />

pressures.<br />

Divide up M = M 1 (ρ c ,ρ 1 )+ ∫ ρ 1<br />

ρ 0<br />

4πr 2 ρ(dr/dρ)dρ+M 1 (rho 0 )<br />

MaximiseM subject to constraintv 2 s ≡ dP/dρ ∈ [0,1]<br />

Match allowed region with Harrison-Wheeler EoS for ρ ∼ 10 14 g/cc<br />

M < 3.2M ⊙


Created with pptalk Slide 6<br />

EoS-independent approach to critical neutron mass Rhoades & Ruffini 1974<br />

Begin with TOV equations relating P(r) and m(r). Total M =<br />

∫ R<br />

0<br />

4πρ(r)r 2 dr.<br />

Assume EoS known everywhere except ρ ∈ [ρ 0 ,ρ 1 ] and corresponding<br />

pressures.<br />

Divide up M = M 1 (ρ c ,ρ 1 )+ ∫ ρ 1<br />

ρ 0<br />

4πr 2 ρ(dr/dρ)dρ+M 1 (rho 0 )<br />

MaximiseM subject to constraintv 2 s ≡ dP/dρ ∈ [0,1]<br />

Match allowed region with Harrison-Wheeler EoS for ρ ∼ 10 14 g/cc<br />

M < 3.2M ⊙


Created with pptalk Slide 6<br />

EoS-independent approach to critical neutron mass Rhoades & Ruffini 1974<br />

Begin with TOV equations relating P(r) and m(r). Total M =<br />

∫ R<br />

0<br />

4πρ(r)r 2 dr.<br />

Assume EoS known everywhere except ρ ∈ [ρ 0 ,ρ 1 ] and corresponding<br />

pressures.<br />

Divide up M = M 1 (ρ c ,ρ 1 )+ ∫ ρ 1<br />

ρ 0<br />

4πr 2 ρ(dr/dρ)dρ+M 1 (rho 0 )<br />

MaximiseM subject to constraintv 2 s ≡ dP/dρ ∈ [0,1]<br />

Match allowed region with Harrison-Wheeler EoS for ρ ∼ 10 14 g/cc<br />

M < 3.2M ⊙


Created with pptalk Slide 6<br />

EoS-independent approach to critical neutron mass Rhoades & Ruffini 1974<br />

Begin with TOV equations relating P(r) and m(r). Total M =<br />

∫ R<br />

0<br />

4πρ(r)r 2 dr.<br />

Assume EoS known everywhere except ρ ∈ [ρ 0 ,ρ 1 ] and corresponding<br />

pressures.<br />

Divide up M = M 1 (ρ c ,ρ 1 )+ ∫ ρ 1<br />

ρ 0<br />

4πr 2 ρ(dr/dρ)dρ+M 1 (rho 0 )<br />

MaximiseM subject to constraintv 2 s ≡ dP/dρ ∈ [0,1]<br />

Match allowed region with Harrison-Wheeler EoS for ρ ∼ 10 14 g/cc<br />

M < 3.2M ⊙


Created with pptalk Slide 6<br />

EoS-independent approach to critical neutron mass Rhoades & Ruffini 1974<br />

Begin with TOV equations relating P(r) and m(r). Total M =<br />

∫ R<br />

0<br />

4πρ(r)r 2 dr.<br />

Assume EoS known everywhere except ρ ∈ [ρ 0 ,ρ 1 ] and corresponding<br />

pressures.<br />

Divide up M = M 1 (ρ c ,ρ 1 )+ ∫ ρ 1<br />

ρ 0<br />

4πr 2 ρ(dr/dρ)dρ+M 1 (rho 0 )<br />

MaximiseM subject to constraintv 2 s ≡ dP/dρ ∈ [0,1]<br />

Match allowed region with Harrison-Wheeler EoS for ρ ∼ 10 14 g/cc<br />

M < 3.2M ⊙


Created with pptalk Slide 7<br />

Reexpress critical bound as<br />

( )<br />

Mcrit<br />

M P<br />

< ξ<br />

(<br />

λCn<br />

l P<br />

) 2<br />

Planck scalel P appears nonperturbatively : rhs ր as l P ց<br />

Contrast with perturbative QG effects∼ O(l P ) !<br />

Reminiscent <strong>of</strong> black hole entropy :<br />

S bh = A hor<br />

4l 2 P<br />

+quantum corr.<br />

• Is the mass bound linked to quantum gravity Derivation used GR<br />

+ Sp Rel QM<br />

• Are the critical mass and S bh related


Created with pptalk Slide 7<br />

Reexpress critical bound as<br />

( )<br />

Mcrit<br />

M P<br />

< ξ<br />

(<br />

λCn<br />

l P<br />

) 2<br />

Planck scalel P appears nonperturbatively : rhs ր as l P ց<br />

Contrast with perturbative QG effects∼ O(l P ) !<br />

Reminiscent <strong>of</strong> black hole entropy :<br />

S bh = A hor<br />

4l 2 P<br />

+quantum corr.<br />

• Is the mass bound linked to quantum gravity Derivation used GR<br />

+ Sp Rel QM<br />

• Are the critical mass and S bh related


Created with pptalk Slide 7<br />

Reexpress critical bound as<br />

( )<br />

Mcrit<br />

M P<br />

< ξ<br />

(<br />

λCn<br />

l P<br />

) 2<br />

Planck scalel P appears nonperturbatively : rhs ր as l P ց<br />

Contrast with perturbative QG effects∼ O(l P ) !<br />

Reminiscent <strong>of</strong> black hole entropy :<br />

S bh = A hor<br />

4l 2 P<br />

+quantum corr.<br />

• Is the mass bound linked to quantum gravity Derivation used GR<br />

+ Sp Rel QM<br />

• Are the critical mass and S bh related


Created with pptalk Slide 7<br />

Reexpress critical bound as<br />

( )<br />

Mcrit<br />

M P<br />

< ξ<br />

(<br />

λCn<br />

l P<br />

) 2<br />

Planck scalel P appears nonperturbatively : rhs ր as l P ց<br />

Contrast with perturbative QG effects∼ O(l P ) !<br />

Reminiscent <strong>of</strong> black hole entropy :<br />

S bh = A hor<br />

4l 2 P<br />

+quantum corr.<br />

• Is the mass bound linked to quantum gravity Derivation used GR<br />

+ Sp Rel QM<br />

• Are the critical mass and S bh related


Created with pptalk Slide 7<br />

Reexpress critical bound as<br />

( )<br />

Mcrit<br />

M P<br />

< ξ<br />

(<br />

λCn<br />

l P<br />

) 2<br />

Planck scalel P appears nonperturbatively : rhs ր as l P ց<br />

Contrast with perturbative QG effects∼ O(l P ) !<br />

Reminiscent <strong>of</strong> black hole entropy :<br />

S bh = A hor<br />

4l 2 P<br />

+quantum corr.<br />

• Is the mass bound linked to quantum gravity Derivation used GR<br />

+ Sp Rel QM<br />

• Are the critical mass and S bh related


Created with pptalk Slide 8<br />

Reexpress stability upper bound as instability lower bound wrt gravitational<br />

collapse<br />

( )<br />

Mcrit<br />

M P<br />

> ξ<br />

(<br />

λCn<br />

l P<br />

) 2<br />

= ξ<br />

( )<br />

ACn<br />

A P<br />

Maximum mass for neutron stars is minimum mass for black hole (horizon)<br />

formation<br />

⇒ cond for instability wrt formation <strong>of</strong> event horizon<br />

Mass ratio related to area ratio : recallS bh = ξ (A hor /A P )<br />

Speculate about possible entropic origin <strong>of</strong> Chandrsekhar mass bound :<br />

black hole formation is quantum gravitational


Created with pptalk Slide 8<br />

Reexpress stability upper bound as instability lower bound wrt gravitational<br />

collapse<br />

( )<br />

Mcrit<br />

M P<br />

> ξ<br />

(<br />

λCn<br />

l P<br />

) 2<br />

= ξ<br />

( )<br />

ACn<br />

A P<br />

Maximum mass for neutron stars is minimum mass for black hole (horizon)<br />

formation<br />

⇒ cond for instability wrt formation <strong>of</strong> event horizon<br />

Mass ratio related to area ratio : recallS bh = ξ (A hor /A P )<br />

Speculate about possible entropic origin <strong>of</strong> Chandrsekhar mass bound :<br />

black hole formation is quantum gravitational


Created with pptalk Slide 8<br />

Reexpress stability upper bound as instability lower bound wrt gravitational<br />

collapse<br />

( )<br />

Mcrit<br />

M P<br />

> ξ<br />

(<br />

λCn<br />

l P<br />

) 2<br />

= ξ<br />

( )<br />

ACn<br />

A P<br />

Maximum mass for neutron stars is minimum mass for black hole (horizon)<br />

formation<br />

⇒ cond for instability wrt formation <strong>of</strong> event horizon<br />

Mass ratio related to area ratio : recallS bh = ξ (A hor /A P )<br />

Speculate about possible entropic origin <strong>of</strong> Chandrsekhar mass bound :<br />

black hole formation is quantum gravitational


Created with pptalk Slide 8<br />

Reexpress stability upper bound as instability lower bound wrt gravitational<br />

collapse<br />

( )<br />

Mcrit<br />

M P<br />

> ξ<br />

(<br />

λCn<br />

l P<br />

) 2<br />

= ξ<br />

( )<br />

ACn<br />

A P<br />

Maximum mass for neutron stars is minimum mass for black hole (horizon)<br />

formation<br />

⇒ cond for instability wrt formation <strong>of</strong> event horizon<br />

Mass ratio related to area ratio : recallS bh = ξ (A hor /A P )<br />

Speculate about possible entropic origin <strong>of</strong> Chandrsekhar mass bound :<br />

black hole formation is quantum gravitational


Created with pptalk Slide 8<br />

Reexpress stability upper bound as instability lower bound wrt gravitational<br />

collapse<br />

( )<br />

Mcrit<br />

M P<br />

> ξ<br />

(<br />

λCn<br />

l P<br />

) 2<br />

= ξ<br />

( )<br />

ACn<br />

A P<br />

Maximum mass for neutron stars is minimum mass for black hole (horizon)<br />

formation<br />

⇒ cond for instability wrt formation <strong>of</strong> event horizon<br />

Mass ratio related to area ratio : recallS bh = ξ (A hor /A P )<br />

Speculate about possible entropic origin <strong>of</strong> Chandrsekhar mass bound :<br />

black hole formation is quantum gravitational


Created with pptalk Slide 8<br />

Reexpress stability upper bound as instability lower bound wrt gravitational<br />

collapse<br />

( )<br />

Mcrit<br />

M P<br />

> ξ<br />

(<br />

λCn<br />

l P<br />

) 2<br />

= ξ<br />

( )<br />

ACn<br />

A P<br />

Maximum mass for neutron stars is minimum mass for black hole (horizon)<br />

formation<br />

⇒ cond for instability wrt formation <strong>of</strong> event horizon<br />

Mass ratio related to area ratio : recallS bh = ξ (A hor /A P )<br />

Speculate about possible entropic origin <strong>of</strong> Chandrsekhar mass bound :<br />

black hole formation is quantum gravitational


Created with pptalk Slide 9<br />

New Perspective (work in progress) : Outline<br />

• Insensitive to low energy eff theory <strong>of</strong> strong nucleonic interaction<br />

• Explicit use <strong>of</strong> classical spacetime metrics unnecessary<br />

• Horizon formation not abrupt, but more like a nucleation process in a<br />

first order phase transition<br />

• Quantum sptm fluctuations at scales ∼ l P lead to formation <strong>of</strong> a tiny<br />

(‘embryonic’) Trapping (Dynamical) horizon hidden deep inside neutron<br />

star. [Trapping horizons are splk (or tmlk) 3-hypersurfaces whose<br />

sptial foliations are 2 dim closed outer trapped surfaces]<br />

• Interpret instability lower bound as condition for stability and growth<br />

<strong>of</strong> hidden horizons<br />

• This stability criterion obtained from Thermal Holography and canon<br />

ensemble <strong>of</strong> isolated horizons using aspects <strong>of</strong> Loop Quantum Gravity


Created with pptalk Slide 9<br />

New Perspective (work in progress) : Outline<br />

• Insensitive to low energy eff theory <strong>of</strong> strong nucleonic interaction<br />

• Explicit use <strong>of</strong> classical spacetime metrics unnecessary<br />

• Horizon formation not abrupt, but more like a nucleation process in a<br />

first order phase transition<br />

• Quantum sptm fluctuations at scales ∼ l P lead to formation <strong>of</strong> a tiny<br />

(‘embryonic’) Trapping (Dynamical) horizon hidden deep inside neutron<br />

star. [Trapping horizons are splk (or tmlk) 3-hypersurfaces whose<br />

sptial foliations are 2 dim closed outer trapped surfaces]<br />

• Interpret instability lower bound as condition for stability and growth<br />

<strong>of</strong> hidden horizons<br />

• This stability criterion obtained from Thermal Holography and canon<br />

ensemble <strong>of</strong> isolated horizons using aspects <strong>of</strong> Loop Quantum Gravity


Created with pptalk Slide 9<br />

New Perspective (work in progress) : Outline<br />

• Insensitive to low energy eff theory <strong>of</strong> strong nucleonic interaction<br />

• Explicit use <strong>of</strong> classical spacetime metrics unnecessary<br />

• Horizon formation not abrupt, but more like a nucleation process in a<br />

first order phase transition<br />

• Quantum sptm fluctuations at scales ∼ l P lead to formation <strong>of</strong> a tiny<br />

(‘embryonic’) Trapping (Dynamical) horizon hidden deep inside neutron<br />

star. [Trapping horizons are splk (or tmlk) 3-hypersurfaces whose<br />

sptial foliations are 2 dim closed outer trapped surfaces]<br />

• Interpret instability lower bound as condition for stability and growth<br />

<strong>of</strong> hidden horizons<br />

• This stability criterion obtained from Thermal Holography and canon<br />

ensemble <strong>of</strong> isolated horizons using aspects <strong>of</strong> Loop Quantum Gravity


Created with pptalk Slide 9<br />

New Perspective (work in progress) : Outline<br />

• Insensitive to low energy eff theory <strong>of</strong> strong nucleonic interaction<br />

• Explicit use <strong>of</strong> classical spacetime metrics unnecessary<br />

• Horizon formation not abrupt, but more like a nucleation process in a<br />

first order phase transition<br />

• Quantum sptm fluctuations at scales ∼ l P lead to formation <strong>of</strong> a tiny<br />

(‘embryonic’) Trapping (Dynamical) horizon hidden deep inside neutron<br />

star. [Trapping horizons are splk (or tmlk) 3-hypersurfaces whose<br />

sptial foliations are 2 dim closed outer trapped surfaces]<br />

• Interpret instability lower bound as condition for stability and growth<br />

<strong>of</strong> hidden horizons<br />

• This stability criterion obtained from Thermal Holography and canon<br />

ensemble <strong>of</strong> isolated horizons using aspects <strong>of</strong> Loop Quantum Gravity


Created with pptalk Slide 9<br />

New Perspective (work in progress) : Outline<br />

• Insensitive to low energy eff theory <strong>of</strong> strong nucleonic interaction<br />

• Explicit use <strong>of</strong> classical spacetime metrics unnecessary<br />

• Horizon formation not abrupt, but more like a nucleation process in a<br />

first order phase transition<br />

• Quantum sptm fluctuations at scales ∼ l P lead to formation <strong>of</strong> a tiny<br />

(‘embryonic’) Trapping (Dynamical) horizon hidden deep inside neutron<br />

star. [Trapping horizons are splk (or tmlk) 3-hypersurfaces whose<br />

sptial foliations are 2 dim closed outer trapped surfaces]<br />

• Interpret instability lower bound as condition for stability and growth<br />

<strong>of</strong> hidden horizons<br />

• This stability criterion obtained from Thermal Holography and canon<br />

ensemble <strong>of</strong> isolated horizons using aspects <strong>of</strong> Loop Quantum Gravity


Created with pptalk Slide 9<br />

New Perspective (work in progress) : Outline<br />

• Insensitive to low energy eff theory <strong>of</strong> strong nucleonic interaction<br />

• Explicit use <strong>of</strong> classical spacetime metrics unnecessary<br />

• Horizon formation not abrupt, but more like a nucleation process in a<br />

first order phase transition<br />

• Quantum sptm fluctuations at scales ∼ l P lead to formation <strong>of</strong> a tiny<br />

(‘embryonic’) Trapping (Dynamical) horizon hidden deep inside neutron<br />

star. [Trapping horizons are splk (or tmlk) 3-hypersurfaces whose<br />

sptial foliations are 2 dim closed outer trapped surfaces]<br />

• Interpret instability lower bound as condition for stability and growth<br />

<strong>of</strong> hidden horizons<br />

• This stability criterion obtained from Thermal Holography and canon<br />

ensemble <strong>of</strong> isolated horizons using aspects <strong>of</strong> Loop Quantum Gravity


Created with pptalk Slide 9<br />

New Perspective (work in progress) : Outline<br />

• Insensitive to low energy eff theory <strong>of</strong> strong nucleonic interaction<br />

• Explicit use <strong>of</strong> classical spacetime metrics unnecessary<br />

• Horizon formation not abrupt, but more like a nucleation process in a<br />

first order phase transition<br />

• Quantum sptm fluctuations at scales ∼ l P lead to formation <strong>of</strong> a tiny<br />

(‘embryonic’) Trapping (Dynamical) horizon hidden deep inside neutron<br />

star. [Trapping horizons are splk (or tmlk) 3-hypersurfaces whose<br />

sptial foliations are 2 dim closed outer trapped surfaces]<br />

• Interpret instability lower bound as condition for stability and growth<br />

<strong>of</strong> hidden horizons<br />

• This stability criterion obtained from Thermal Holography and canon<br />

ensemble <strong>of</strong> isolated horizons using aspects <strong>of</strong> Loop Quantum Gravity


Created with pptalk Slide 10<br />

TIME<br />

SPACE


Created with pptalk Slide 11<br />

TIME<br />

SPACE


Created with pptalk Slide 12<br />

I + 0<br />

i<br />

I<br />


Created with pptalk Slide 13<br />

Assume small energy loss during collapse to black hole<br />

⇒ M crit ≃ M hor = M(A hor )<br />

Core Collapse pushes energy into Hidden Horizon⇒ A hid hor ր<br />

Stops when A hid hor ր A hor ⇒ A hor > A hid hor<br />

Actually a sequence <strong>of</strong> inequalities, expressed in terms <strong>of</strong> area <strong>of</strong> quasiequil<br />

IHs interpolating between trapping horizons<br />

A hhor0 < A hhor1 < A hhor2 < ... < A hor<br />

Actual origin <strong>of</strong> initial trapping surface probably quantum gravitational


Created with pptalk Slide 13<br />

Assume small energy loss during collapse to black hole<br />

⇒ M crit ≃ M hor = M(A hor )<br />

Core Collapse pushes energy into Hidden Horizon⇒ A hid hor ր<br />

Stops when A hid hor ր A hor ⇒ A hor > A hid hor<br />

Actually a sequence <strong>of</strong> inequalities, expressed in terms <strong>of</strong> area <strong>of</strong> quasiequil<br />

IHs interpolating between trapping horizons<br />

A hhor0 < A hhor1 < A hhor2 < ... < A hor<br />

Actual origin <strong>of</strong> initial trapping surface probably quantum gravitational


Created with pptalk Slide 13<br />

Assume small energy loss during collapse to black hole<br />

⇒ M crit ≃ M hor = M(A hor )<br />

Core Collapse pushes energy into Hidden Horizon⇒ A hid hor ր<br />

Stops when A hid hor ր A hor ⇒ A hor > A hid hor<br />

Actually a sequence <strong>of</strong> inequalities, expressed in terms <strong>of</strong> area <strong>of</strong> quasiequil<br />

IHs interpolating between trapping horizons<br />

A hhor0 < A hhor1 < A hhor2 < ... < A hor<br />

Actual origin <strong>of</strong> initial trapping surface probably quantum gravitational


Created with pptalk Slide 13<br />

Assume small energy loss during collapse to black hole<br />

⇒ M crit ≃ M hor = M(A hor )<br />

Core Collapse pushes energy into Hidden Horizon⇒ A hid hor ր<br />

Stops when A hid hor ր A hor ⇒ A hor > A hid hor<br />

Actually a sequence <strong>of</strong> inequalities, expressed in terms <strong>of</strong> area <strong>of</strong> quasiequil<br />

IHs interpolating between trapping horizons<br />

A hhor0 < A hhor1 < A hhor2 < ... < A hor<br />

Actual origin <strong>of</strong> initial trapping surface probably quantum gravitational


Created with pptalk Slide 13<br />

Assume small energy loss during collapse to black hole<br />

⇒ M crit ≃ M hor = M(A hor )<br />

Core Collapse pushes energy into Hidden Horizon⇒ A hid hor ր<br />

Stops when A hid hor ր A hor ⇒ A hor > A hid hor<br />

Actually a sequence <strong>of</strong> inequalities, expressed in terms <strong>of</strong> area <strong>of</strong> quasiequil<br />

IHs interpolating between trapping horizons<br />

A hhor0 < A hhor1 < A hhor2 < ... < A hor<br />

Actual origin <strong>of</strong> initial trapping surface probably quantum gravitational


Created with pptalk Slide 14<br />

Digression : In any quantum GR theory<br />

Ĥ = Ĥv }{{}<br />

blk<br />

+ Ĥb }{{}<br />

bdy<br />

|Ψ〉 = ∑ v,b<br />

c vb |ψ v 〉<br />

}{{}<br />

blk<br />

|χ b 〉<br />

}{{}<br />

bdy


Created with pptalk Slide 14<br />

Digression : In any quantum GR theory<br />

Ĥ = Ĥv }{{}<br />

blk<br />

+ Ĥb }{{}<br />

bdy<br />

|Ψ〉 = ∑ v,b<br />

c vb |ψ v 〉<br />

}{{}<br />

blk<br />

|χ b 〉<br />

}{{}<br />

bdy


Created with pptalk Slide 14<br />

Digression : In any quantum GR theory<br />

Ĥ = Ĥv }{{}<br />

blk<br />

+ Ĥb }{{}<br />

bdy<br />

|Ψ〉 = ∑ v,b<br />

c vb |ψ v 〉<br />

}{{}<br />

blk<br />

|χ b 〉<br />

}{{}<br />

bdy


Created with pptalk Slide 15<br />

‘Quantum Einstein EQ’ (bulk)<br />

Ĥ v |ψ v 〉 = 0<br />

Z = ∑ b<br />

⎛<br />

⎝ ∑ v<br />

|c vb<br />

| 2 || |ψ v 〉 || 2 ⎞<br />

⎠〈χ b<br />

|exp−βĤbdy |χ b 〉<br />

≡ Z bdy<br />

Bulk states decouple! → Thermal holography ! (PM 2007, 2009)<br />

Weaker version <strong>of</strong> holography cf ‘Holographic Hypothesis’ ’t Ho<strong>of</strong>t 1993; Susskind<br />

1995<br />

Canonical Ensemble <strong>of</strong> (isolated) horizons (as sptm bdy) : States characterized<br />

by A n ∼ n l 2 P , n ∈ Z (LQG)


Created with pptalk Slide 15<br />

‘Quantum Einstein EQ’ (bulk)<br />

Z = ∑ b<br />

⎛<br />

⎝ ∑ v<br />

Ĥ v |ψ v 〉 = 0<br />

⎞<br />

|c vb<br />

| 2 || |ψ v 〉 || 2<br />

⎠〈χ b<br />

|exp−βĤbdy |χ b 〉<br />

≡ Z bdy<br />

Bulk states decouple! → Thermal holography ! (PM 2007, 2009)<br />

Weaker version <strong>of</strong> holography cf ‘Holographic Hypothesis’ ’t Ho<strong>of</strong>t 1993; Susskind<br />

1995<br />

Canonical Ensemble <strong>of</strong> (isolated) horizons (as sptm bdy) : States characterized<br />

by A n ∼ n l 2 P , n ∈ Z (LQG)


Created with pptalk Slide 15<br />

‘Quantum Einstein EQ’ (bulk)<br />

Z = ∑ b<br />

⎛<br />

⎝ ∑ v<br />

Ĥ v |ψ v 〉 = 0<br />

⎞<br />

|c vb<br />

| 2 || |ψ v 〉 || 2<br />

⎠〈χ b<br />

|exp−βĤbdy |χ b 〉<br />

≡ Z bdy<br />

Bulk states decouple! → Thermal holography ! (PM 2007, 2009)<br />

Weaker version <strong>of</strong> holography cf ‘Holographic Hypothesis’ ’t Ho<strong>of</strong>t 1993; Susskind<br />

1995<br />

Canonical Ensemble <strong>of</strong> (isolated) horizons (as sptm bdy) : States characterized<br />

by A n ∼ n l 2 P , n ∈ Z (LQG)


Created with pptalk Slide 15<br />

‘Quantum Einstein EQ’ (bulk)<br />

Z = ∑ b<br />

⎛<br />

⎝ ∑ v<br />

Ĥ v |ψ v 〉 = 0<br />

⎞<br />

|c vb<br />

| 2 || |ψ v 〉 || 2<br />

⎠〈χ b<br />

|exp−βĤbdy |χ b 〉<br />

≡ Z bdy<br />

Bulk states decouple! → Thermal holography ! (PM 2007, 2009)<br />

Weaker version <strong>of</strong> holography cf ‘Holographic Hypothesis’ ’t Ho<strong>of</strong>t 1993; Susskind<br />

1995<br />

Canonical Ensemble <strong>of</strong> (isolated) horizons (as sptm bdy) : States characterized<br />

by A n ∼ n l 2 P , n ∈ Z (LQG)


Created with pptalk Slide 15<br />

‘Quantum Einstein EQ’ (bulk)<br />

Z = ∑ b<br />

⎛<br />

⎝ ∑ v<br />

Ĥ v |ψ v 〉 = 0<br />

⎞<br />

|c vb<br />

| 2 || |ψ v 〉 || 2<br />

⎠〈χ b<br />

|exp−βĤbdy |χ b 〉<br />

≡ Z bdy<br />

Bulk states decouple! → Thermal holography ! (PM 2007, 2009)<br />

Weaker version <strong>of</strong> holography cf ‘Holographic Hypothesis’ ’t Ho<strong>of</strong>t 1993; Susskind<br />

1995<br />

Canonical Ensemble <strong>of</strong> (isolated) horizons (as sptm bdy) : States characterized<br />

by A n ∼ n l 2 P , n ∈ Z (LQG)


Created with pptalk Slide 16<br />

Hor partition fct (G = c = k B = 1) Das, Bhaduri, PM 2001; Chatterjee, PM 2004; PM 2007; Majhi,<br />

PM 2011<br />

Z(β) = ∑ n<br />

g(M(A n ))exp−βM(A n )<br />

Canon entropy<br />

≃ exp[S(A hor )−βM(A hor )]·∆ −1/2 (A hor )<br />

S can (A hor ) = S(A hor )+ 1 2 log∆<br />

Stable thermal equil<br />

⇒ S can > 0 ⇒ ∆ > 0<br />

Criterion for Thermal Stability PM 2007, Majhi & PM 2011<br />

M(A hor )<br />

M P<br />

> S(A hor)<br />

k B<br />

= A hor<br />

4A P<br />

+∆ q S( A hor<br />

A P<br />

)<br />

No direct use <strong>of</strong> classical metrics(Majhi & PM) ButS(A hor ) = Need quantum<br />

gravity


Created with pptalk Slide 16<br />

Hor partition fct (G = c = k B = 1) Das, Bhaduri, PM 2001; Chatterjee, PM 2004; PM 2007; Majhi,<br />

PM 2011<br />

Z(β) = ∑ n<br />

g(M(A n ))exp−βM(A n )<br />

Canon entropy<br />

≃ exp[S(A hor )−βM(A hor )]·∆ −1/2 (A hor )<br />

S can (A hor ) = S(A hor )+ 1 2 log∆<br />

Stable thermal equil<br />

⇒ S can > 0 ⇒ ∆ > 0<br />

Criterion for Thermal Stability PM 2007, Majhi & PM 2011<br />

M(A hor )<br />

M P<br />

> S(A hor)<br />

k B<br />

= A hor<br />

4A P<br />

+∆ q S( A hor<br />

A P<br />

)<br />

No direct use <strong>of</strong> classical metrics(Majhi & PM) ButS(A hor ) = Need quantum<br />

gravity


Created with pptalk Slide 16<br />

Hor partition fct (G = c = k B = 1) Das, Bhaduri, PM 2001; Chatterjee, PM 2004; PM 2007; Majhi,<br />

PM 2011<br />

Z(β) = ∑ n<br />

g(M(A n ))exp−βM(A n )<br />

Canon entropy<br />

≃ exp[S(A hor )−βM(A hor )]·∆ −1/2 (A hor )<br />

S can (A hor ) = S(A hor )+ 1 2 log∆<br />

Stable thermal equil<br />

⇒ S can > 0 ⇒ ∆ > 0<br />

Criterion for Thermal Stability PM 2007, Majhi & PM 2011<br />

M(A hor )<br />

M P<br />

> S(A hor)<br />

k B<br />

= A hor<br />

4A P<br />

+∆ q S( A hor<br />

A P<br />

)<br />

No direct use <strong>of</strong> classical metrics(Majhi & PM) ButS(A hor ) = Need quantum<br />

gravity


Created with pptalk Slide 16<br />

Hor partition fct (G = c = k B = 1) Das, Bhaduri, PM 2001; Chatterjee, PM 2004; PM 2007; Majhi,<br />

PM 2011<br />

Z(β) = ∑ n<br />

g(M(A n ))exp−βM(A n )<br />

Canon entropy<br />

≃ exp[S(A hor )−βM(A hor )]·∆ −1/2 (A hor )<br />

S can (A hor ) = S(A hor )+ 1 2 log∆<br />

Stable thermal equil<br />

⇒ S can > 0 ⇒ ∆ > 0<br />

Criterion for Thermal Stability PM 2007, Majhi & PM 2011<br />

M(A hor )<br />

M P<br />

> S(A hor)<br />

k B<br />

= A hor<br />

4A P<br />

+∆ q S( A hor<br />

A P<br />

)<br />

No direct use <strong>of</strong> classical metrics(Majhi & PM) ButS(A hor ) = Need quantum<br />

gravity


Created with pptalk Slide 16<br />

Hor partition fct (G = c = k B = 1) Das, Bhaduri, PM 2001; Chatterjee, PM 2004; PM 2007; Majhi,<br />

PM 2011<br />

Z(β) = ∑ n<br />

g(M(A n ))exp−βM(A n )<br />

Canon entropy<br />

≃ exp[S(A hor )−βM(A hor )]·∆ −1/2 (A hor )<br />

S can (A hor ) = S(A hor )+ 1 2 log∆<br />

Stable thermal equil<br />

⇒ S can > 0 ⇒ ∆ > 0<br />

Criterion for Thermal Stability PM 2007, Majhi & PM 2011<br />

M(A hor )<br />

M P<br />

> S(A hor)<br />

k B<br />

= A hor<br />

4A P<br />

+∆ q S( A hor<br />

A P<br />

)<br />

No direct use <strong>of</strong> classical metrics(Majhi & PM) ButS(A hor ) = Need quantum<br />

gravity


Created with pptalk Slide 16<br />

Hor partition fct (G = c = k B = 1) Das, Bhaduri, PM 2001; Chatterjee, PM 2004; PM 2007; Majhi,<br />

PM 2011<br />

Z(β) = ∑ n<br />

g(M(A n ))exp−βM(A n )<br />

Canon entropy<br />

≃ exp[S(A hor )−βM(A hor )]·∆ −1/2 (A hor )<br />

S can (A hor ) = S(A hor )+ 1 2 log∆<br />

Stable thermal equil<br />

⇒ S can > 0 ⇒ ∆ > 0<br />

Criterion for Thermal Stability PM 2007, Majhi & PM 2011<br />

M(A hor )<br />

M P<br />

> S(A hor)<br />

k B<br />

= A hor<br />

4A P<br />

+∆ q S( A hor<br />

A P<br />

)<br />

No direct use <strong>of</strong> classical metrics(Majhi & PM) ButS(A hor ) = Need quantum<br />

gravity


Created with pptalk Slide 16<br />

Hor partition fct (G = c = k B = 1) Das, Bhaduri, PM 2001; Chatterjee, PM 2004; PM 2007; Majhi,<br />

PM 2011<br />

Z(β) = ∑ n<br />

g(M(A n ))exp−βM(A n )<br />

Canon entropy<br />

≃ exp[S(A hor )−βM(A hor )]·∆ −1/2 (A hor )<br />

S can (A hor ) = S(A hor )+ 1 2 log∆<br />

Stable thermal equil<br />

⇒ S can > 0 ⇒ ∆ > 0<br />

Criterion for Thermal Stability PM 2007, Majhi & PM 2011<br />

M(A hor )<br />

M P<br />

> S(A hor)<br />

k B<br />

= A hor<br />

4A P<br />

+∆ q S( A hor<br />

A P<br />

)<br />

No direct use <strong>of</strong> classical metrics(Majhi & PM) ButS(A hor ) = Need quantum<br />

gravity


Created with pptalk Slide 16<br />

Hor partition fct (G = c = k B = 1) Das, Bhaduri, PM 2001; Chatterjee, PM 2004; PM 2007; Majhi,<br />

PM 2011<br />

Z(β) = ∑ n<br />

g(M(A n ))exp−βM(A n )<br />

Canon entropy<br />

≃ exp[S(A hor )−βM(A hor )]·∆ −1/2 (A hor )<br />

S can (A hor ) = S(A hor )+ 1 2 log∆<br />

Stable thermal equil<br />

⇒ S can > 0 ⇒ ∆ > 0<br />

Criterion for Thermal Stability PM 2007, Majhi & PM 2011<br />

M(A hor )<br />

M P<br />

> S(A hor)<br />

k B<br />

= A hor<br />

4A P<br />

+∆ q S( A hor<br />

A P<br />

)<br />

No direct use <strong>of</strong> classical metrics(Majhi & PM) ButS(A hor ) = Need quantum<br />

gravity


Created with pptalk Slide 16<br />

Hor partition fct (G = c = k B = 1) Das, Bhaduri, PM 2001; Chatterjee, PM 2004; PM 2007; Majhi,<br />

PM 2011<br />

Z(β) = ∑ n<br />

g(M(A n ))exp−βM(A n )<br />

Canon entropy<br />

≃ exp[S(A hor )−βM(A hor )]·∆ −1/2 (A hor )<br />

S can (A hor ) = S(A hor )+ 1 2 log∆<br />

Stable thermal equil<br />

⇒ S can > 0 ⇒ ∆ > 0<br />

Criterion for Thermal Stability PM 2007, Majhi & PM 2011<br />

M(A hor )<br />

M P<br />

> S(A hor)<br />

k B<br />

= A hor<br />

4A P<br />

+∆ q S( A hor<br />

A P<br />

)<br />

No direct use <strong>of</strong> classical metrics(Majhi & PM) ButS(A hor ) = Need quantum<br />

gravity


Created with pptalk Slide 17<br />

Horizon deg <strong>of</strong> freedom & dynamics (Ashtekar et. al. 1997-2000; Basu, Kaul, PM 2009,; Kaul,<br />

PM 2010; Basu, Chatterjee, Ghosh 2010; Engel et. al. 2009-10)<br />

• IH is a null inner boundary ⇒ h ab dx a dx b = 0 , h ab → induced metric<br />

on IH<br />

•⇒ deth = 0 ⇒ theory on IH cannot be ∫ √<br />

h 3 R(h), or any theory<br />

requiring invertingh ab .<br />

• Theory on IH must be topological⇒S IH ≠ S IH [h]<br />

• Gravitational canon DoF in bulk are SU(2) gauge potentials A i a and<br />

densitised triadsEi a after gauge fixing local Lorentz boosts.<br />

• On IH, the boundary gauge potentials are described by anSU(2) Chern<br />

Simons theory <strong>of</strong> A a i<br />

coupled to Σ ab<br />

ij<br />

≡ E [a<br />

i Eb] j<br />

with coupling k ≡<br />

(A IH /8πlP 2 )<br />

Gravity-gauge theory (topol) link derived


Created with pptalk Slide 17<br />

Horizon deg <strong>of</strong> freedom & dynamics (Ashtekar et. al. 1997-2000; Basu, Kaul, PM 2009,; Kaul,<br />

PM 2010; Basu, Chatterjee, Ghosh 2010; Engel et. al. 2009-10)<br />

• IH is a null inner boundary ⇒ h ab dx a dx b = 0 , h ab → induced metric<br />

on IH<br />

•⇒ deth = 0 ⇒ theory on IH cannot be ∫ √<br />

h 3 R(h), or any theory<br />

requiring invertingh ab .<br />

• Theory on IH must be topological⇒S IH ≠ S IH [h]<br />

• Gravitational canon DoF in bulk are SU(2) gauge potentials A i a and<br />

densitised triadsEi a after gauge fixing local Lorentz boosts.<br />

• On IH, the boundary gauge potentials are described by anSU(2) Chern<br />

Simons theory <strong>of</strong> A a i<br />

coupled to Σ ab<br />

ij<br />

≡ E [a<br />

i Eb] j<br />

with coupling k ≡<br />

(A IH /8πlP 2 )<br />

Gravity-gauge theory (topol) link derived


Created with pptalk Slide 17<br />

Horizon deg <strong>of</strong> freedom & dynamics (Ashtekar et. al. 1997-2000; Basu, Kaul, PM 2009,; Kaul,<br />

PM 2010; Basu, Chatterjee, Ghosh 2010; Engel et. al. 2009-10)<br />

• IH is a null inner boundary ⇒ h ab dx a dx b = 0 , h ab → induced metric<br />

on IH<br />

•⇒ deth = 0 ⇒ theory on IH cannot be ∫ √<br />

h 3 R(h), or any theory<br />

requiring invertingh ab .<br />

• Theory on IH must be topological⇒S IH ≠ S IH [h]<br />

• Gravitational canon DoF in bulk are SU(2) gauge potentials A i a and<br />

densitised triadsEi a after gauge fixing local Lorentz boosts.<br />

• On IH, the boundary gauge potentials are described by anSU(2) Chern<br />

Simons theory <strong>of</strong> A a i<br />

coupled to Σ ab<br />

ij<br />

≡ E [a<br />

i Eb] j<br />

with coupling k ≡<br />

(A IH /8πlP 2 )<br />

Gravity-gauge theory (topol) link derived


Created with pptalk Slide 17<br />

Horizon deg <strong>of</strong> freedom & dynamics (Ashtekar et. al. 1997-2000; Basu, Kaul, PM 2009,; Kaul,<br />

PM 2010; Basu, Chatterjee, Ghosh 2010; Engel et. al. 2009-10)<br />

• IH is a null inner boundary ⇒ h ab dx a dx b = 0 , h ab → induced metric<br />

on IH<br />

•⇒ deth = 0 ⇒ theory on IH cannot be ∫ √<br />

h 3 R(h), or any theory<br />

requiring invertingh ab .<br />

• Theory on IH must be topological⇒S IH ≠ S IH [h]<br />

• Gravitational canon DoF in bulk are SU(2) gauge potentials A i a and<br />

densitised triadsEi a after gauge fixing local Lorentz boosts.<br />

• On IH, the boundary gauge potentials are described by anSU(2) Chern<br />

Simons theory <strong>of</strong> A a i<br />

coupled to Σ ab<br />

ij<br />

≡ E [a<br />

i Eb] j<br />

with coupling k ≡<br />

(A IH /8πlP 2 )<br />

Gravity-gauge theory (topol) link derived


Created with pptalk Slide 17<br />

Horizon deg <strong>of</strong> freedom & dynamics (Ashtekar et. al. 1997-2000; Basu, Kaul, PM 2009,; Kaul,<br />

PM 2010; Basu, Chatterjee, Ghosh 2010; Engel et. al. 2009-10)<br />

• IH is a null inner boundary ⇒ h ab dx a dx b = 0 , h ab → induced metric<br />

on IH<br />

•⇒ deth = 0 ⇒ theory on IH cannot be ∫ √<br />

h 3 R(h), or any theory<br />

requiring invertingh ab .<br />

• Theory on IH must be topological⇒S IH ≠ S IH [h]<br />

• Gravitational canon DoF in bulk are SU(2) gauge potentials A i a and<br />

densitised triadsEi a after gauge fixing local Lorentz boosts.<br />

• On IH, the boundary gauge potentials are described by anSU(2) Chern<br />

Simons theory <strong>of</strong> A a i<br />

coupled to Σ ab<br />

ij<br />

≡ E [a<br />

i Eb] j<br />

with coupling k ≡<br />

(A IH /8πlP 2 )<br />

Gravity-gauge theory (topol) link derived


Created with pptalk Slide 17<br />

Horizon deg <strong>of</strong> freedom & dynamics (Ashtekar et. al. 1997-2000; Basu, Kaul, PM 2009,; Kaul,<br />

PM 2010; Basu, Chatterjee, Ghosh 2010; Engel et. al. 2009-10)<br />

• IH is a null inner boundary ⇒ h ab dx a dx b = 0 , h ab → induced metric<br />

on IH<br />

•⇒ deth = 0 ⇒ theory on IH cannot be ∫ √<br />

h 3 R(h), or any theory<br />

requiring invertingh ab .<br />

• Theory on IH must be topological⇒S IH ≠ S IH [h]<br />

• Gravitational canon DoF in bulk are SU(2) gauge potentials A i a and<br />

densitised triadsEi a after gauge fixing local Lorentz boosts.<br />

• On IH, the boundary gauge potentials are described by anSU(2) Chern<br />

Simons theory <strong>of</strong> A a i<br />

coupled to Σ ab<br />

ij<br />

≡ E [a<br />

i Eb] j<br />

with coupling k ≡<br />

(A IH /8πlP 2 )<br />

Gravity-gauge theory (topol) link derived


Created with pptalk Slide 18<br />

Spin network : Quantum Space


Created with pptalk Slide 19<br />

Area operator (also volume, length) have bded, discrete spectrum<br />

s I<br />

 S ≡<br />

N∑<br />

I=1<br />

∫<br />

S I<br />

det 1/2 [ 2 g(Ê)]<br />

a(j 1 ,...,j N ) = 1 4 γl2 P<br />

N∑<br />

p=1<br />

lim<br />

N→∞ a(j 1,....j N ) ≤ A cl +O(l 2 P )<br />

Equispaced∀j p = 1/2<br />

√<br />

j p (j p +1)


Created with pptalk Slide 20<br />

Eff Quantum Horizon : Loop Quantum Gravity


Created with pptalk Slide 21<br />

( ) )<br />

kB −1 S = A hor<br />

4lP<br />

2 − 3 2 log A hor 4l<br />

2<br />

4lP<br />

2 + O(<br />

P<br />

A hor<br />

Corrections to area law (Kaul, PM 1998, 2000) are signature LQG effects<br />

Corollary :<br />

End <strong>of</strong> Digression<br />

β = β Haw<br />

(1+ 6l2 P<br />

A hor<br />

+...<br />

Summary : Thermal stability criterion<br />

M IH<br />

> S IH<br />

= A IH<br />

− 3 ( )<br />

AIH<br />

M P k B 4A P 2 log +···<br />

4A P<br />

Reflects dominance <strong>of</strong> mass (energy) driven vs entropy driven processes.<br />

In the neutron star context, hydrostatic pressure in gravitational collapse is<br />

analogous to an energy driven process while Fermi degeneracy pressure is<br />

analogous to an entropy driven process<br />

)


Created with pptalk Slide 21<br />

( ) )<br />

kB −1 S = A hor<br />

4lP<br />

2 − 3 2 log A hor 4l<br />

2<br />

4lP<br />

2 + O(<br />

P<br />

A hor<br />

Corrections to area law (Kaul, PM 1998, 2000) are signature LQG effects<br />

Corollary :<br />

End <strong>of</strong> Digression<br />

β = β Haw<br />

(1+ 6l2 P<br />

A hor<br />

+...<br />

Summary : Thermal stability criterion<br />

M IH<br />

> S IH<br />

= A IH<br />

− 3 ( )<br />

AIH<br />

M P k B 4A P 2 log +···<br />

4A P<br />

Reflects dominance <strong>of</strong> mass (energy) driven vs entropy driven processes.<br />

In the neutron star context, hydrostatic pressure in gravitational collapse is<br />

analogous to an energy driven process while Fermi degeneracy pressure is<br />

analogous to an entropy driven process<br />

)


Created with pptalk Slide 21<br />

( ) )<br />

kB −1 S = A hor<br />

4lP<br />

2 − 3 2 log A hor 4l<br />

2<br />

4lP<br />

2 + O(<br />

P<br />

A hor<br />

Corrections to area law (Kaul, PM 1998, 2000) are signature LQG effects<br />

Corollary :<br />

End <strong>of</strong> Digression<br />

β = β Haw<br />

(1+ 6l2 P<br />

A hor<br />

+...<br />

Summary : Thermal stability criterion<br />

M IH<br />

> S IH<br />

= A IH<br />

− 3 ( )<br />

AIH<br />

M P k B 4A P 2 log +···<br />

4A P<br />

Reflects dominance <strong>of</strong> mass (energy) driven vs entropy driven processes.<br />

In the neutron star context, hydrostatic pressure in gravitational collapse is<br />

analogous to an energy driven process while Fermi degeneracy pressure is<br />

analogous to an entropy driven process<br />

)


Created with pptalk Slide 21<br />

( ) )<br />

kB −1 S = A hor<br />

4lP<br />

2 − 3 2 log A hor 4l<br />

2<br />

4lP<br />

2 + O(<br />

P<br />

A hor<br />

Corrections to area law (Kaul, PM 1998, 2000) are signature LQG effects<br />

Corollary :<br />

End <strong>of</strong> Digression<br />

β = β Haw<br />

(1+ 6l2 P<br />

A hor<br />

+...<br />

Summary : Thermal stability criterion<br />

M IH<br />

> S IH<br />

= A IH<br />

− 3 ( )<br />

AIH<br />

M P k B 4A P 2 log +···<br />

4A P<br />

Reflects dominance <strong>of</strong> mass (energy) driven vs entropy driven processes.<br />

In the neutron star context, hydrostatic pressure in gravitational collapse is<br />

analogous to an energy driven process while Fermi degeneracy pressure is<br />

analogous to an entropy driven process<br />

)


Created with pptalk Slide 21<br />

( ) )<br />

kB −1 S = A hor<br />

4lP<br />

2 − 3 2 log A hor 4l<br />

2<br />

4lP<br />

2 + O(<br />

P<br />

A hor<br />

Corrections to area law (Kaul, PM 1998, 2000) are signature LQG effects<br />

Corollary :<br />

End <strong>of</strong> Digression<br />

β = β Haw<br />

(1+ 6l2 P<br />

A hor<br />

+...<br />

Summary : Thermal stability criterion<br />

M IH<br />

> S IH<br />

= A IH<br />

− 3 ( )<br />

AIH<br />

M P k B 4A P 2 log +···<br />

4A P<br />

Reflects dominance <strong>of</strong> mass (energy) driven vs entropy driven processes.<br />

In the neutron star context, hydrostatic pressure in gravitational collapse is<br />

analogous to an energy driven process while Fermi degeneracy pressure is<br />

analogous to an entropy driven process<br />

)


Created with pptalk Slide 21<br />

( ) )<br />

kB −1 S = A hor<br />

4lP<br />

2 − 3 2 log A hor 4l<br />

2<br />

4lP<br />

2 + O(<br />

P<br />

A hor<br />

Corrections to area law (Kaul, PM 1998, 2000) are signature LQG effects<br />

Corollary :<br />

End <strong>of</strong> Digression<br />

β = β Haw<br />

(1+ 6l2 P<br />

A hor<br />

+...<br />

Summary : Thermal stability criterion<br />

M IH<br />

> S IH<br />

= A IH<br />

− 3 ( )<br />

AIH<br />

M P k B 4A P 2 log +···<br />

4A P<br />

Reflects dominance <strong>of</strong> mass (energy) driven vs entropy driven processes.<br />

In the neutron star context, hydrostatic pressure in gravitational collapse is<br />

analogous to an energy driven process while Fermi degeneracy pressure is<br />

analogous to an entropy driven process<br />

)


Created with pptalk Slide 22<br />

Critical mass<br />

With small energy loss due to gravitational radiation during collapse<br />

(<br />

Mcrit<br />

M P<br />

)min<br />

Recall Thermal stability bound<br />

(<br />

MIH<br />

Therefore<br />

(<br />

Mcrit<br />

M P<br />

)min<br />

≃<br />

(<br />

MIH<br />

M P<br />

)min<br />

= ξ A IH<br />

A P<br />

,ξ = O(1)<br />

≃ ξ<br />

M P<br />

)min<br />

A IH<br />

= ξ A IHA Cn<br />

A P A Cn A P<br />

However, A IH /A Cn >> 1 ! Even though there is a critical upper bound<br />

<strong>of</strong> mass for a neutron star to collapse, it is far far larger than the Chandrasekhar<br />

limit ! Unacceptable


Created with pptalk Slide 22<br />

Critical mass<br />

With small energy loss due to gravitational radiation during collapse<br />

(<br />

Mcrit<br />

M P<br />

)min<br />

Recall Thermal stability bound<br />

(<br />

MIH<br />

Therefore<br />

(<br />

Mcrit<br />

M P<br />

)min<br />

≃<br />

(<br />

MIH<br />

M P<br />

)min<br />

= ξ A IH<br />

A P<br />

,ξ = O(1)<br />

≃ ξ<br />

M P<br />

)min<br />

A IH<br />

= ξ A IHA Cn<br />

A P A Cn A P<br />

However, A IH /A Cn >> 1 ! Even though there is a critical upper bound<br />

<strong>of</strong> mass for a neutron star to collapse, it is far far larger than the Chandrasekhar<br />

limit ! Unacceptable


Created with pptalk Slide 22<br />

Critical mass<br />

With small energy loss due to gravitational radiation during collapse<br />

(<br />

Mcrit<br />

M P<br />

)min<br />

Recall Thermal stability bound<br />

(<br />

MIH<br />

Therefore<br />

(<br />

Mcrit<br />

M P<br />

)min<br />

≃<br />

(<br />

MIH<br />

M P<br />

)min<br />

= ξ A IH<br />

A P<br />

,ξ = O(1)<br />

≃ ξ<br />

M P<br />

)min<br />

A IH<br />

= ξ A IHA Cn<br />

A P A Cn A P<br />

However, A IH /A Cn >> 1 ! Even though there is a critical upper bound<br />

<strong>of</strong> mass for a neutron star to collapse, it is far far larger than the Chandrasekhar<br />

limit ! Unacceptable


Created with pptalk Slide 22<br />

Critical mass<br />

With small energy loss due to gravitational radiation during collapse<br />

(<br />

Mcrit<br />

M P<br />

)min<br />

Recall Thermal stability bound<br />

(<br />

MIH<br />

Therefore<br />

(<br />

Mcrit<br />

M P<br />

)min<br />

≃<br />

(<br />

MIH<br />

M P<br />

)min<br />

= ξ A IH<br />

A P<br />

,ξ = O(1)<br />

≃ ξ<br />

M P<br />

)min<br />

A IH<br />

= ξ A IHA Cn<br />

A P A Cn A P<br />

However, A IH /A Cn >> 1 ! Even though there is a critical upper bound<br />

<strong>of</strong> mass for a neutron star to collapse, it is far far larger than the Chandrasekhar<br />

limit ! Unacceptable


Created with pptalk Slide 22<br />

Critical mass<br />

With small energy loss due to gravitational radiation during collapse<br />

(<br />

Mcrit<br />

M P<br />

)min<br />

Recall Thermal stability bound<br />

(<br />

MIH<br />

Therefore<br />

(<br />

Mcrit<br />

M P<br />

)min<br />

≃<br />

(<br />

MIH<br />

M P<br />

)min<br />

= ξ A IH<br />

A P<br />

,ξ = O(1)<br />

≃ ξ<br />

M P<br />

)min<br />

A IH<br />

= ξ A IHA Cn<br />

A P A Cn A P<br />

However, A IH /A Cn >> 1 ! Even though there is a critical upper bound<br />

<strong>of</strong> mass for a neutron star to collapse, it is far far larger than the Chandrasekhar<br />

limit ! Unacceptable


Created with pptalk Slide 22<br />

Critical mass<br />

With small energy loss due to gravitational radiation during collapse<br />

(<br />

Mcrit<br />

M P<br />

)min<br />

Recall Thermal stability bound<br />

(<br />

MIH<br />

Therefore<br />

(<br />

Mcrit<br />

M P<br />

)min<br />

≃<br />

(<br />

MIH<br />

M P<br />

)min<br />

= ξ A IH<br />

A P<br />

,ξ = O(1)<br />

≃ ξ<br />

M P<br />

)min<br />

A IH<br />

= ξ A IHA Cn<br />

A P A Cn A P<br />

However, A IH /A Cn >> 1 ! Even though there is a critical upper bound<br />

<strong>of</strong> mass for a neutron star to collapse, it is far far larger than the Chandrasekhar<br />

limit ! Unacceptable


Created with pptalk Slide 23<br />

What went wrong with the scenario, even though it is physically plausible<br />

<br />

Observe S hor due to quantum grav description <strong>of</strong> horizon - completely<br />

missed effects <strong>of</strong> matter (recall Fermi degeneracy pressure <strong>of</strong> neutrons in<br />

Chandrasekhar’s derivation)<br />

Need to consider entanglement entropy due to entanglement <strong>of</strong> matter<br />

states with gravitational states at the horizon : S ent = −Trρ red logρ red<br />

where ρ red is reduced density matrix<br />

Entanglement entropy <strong>of</strong> neutron star with horizon inside Bombelli et. al. 1986;<br />

Srednicki 1993<br />

S ent = ξ e<br />

A hor<br />

A c<br />

+ξ n<br />

A NS<br />

A c<br />

where ξ e , ξ n = O(1) ;A c = a 2 is an area related to the UV cut<strong>of</strong>f used in<br />

the theory<br />

TotalS = S grav (A hor /A P )+S ent (A hor /A c )+S ent (A NS /A c )+S bulk,n


Created with pptalk Slide 23<br />

What went wrong with the scenario, even though it is physically plausible<br />

<br />

Observe S hor due to quantum grav description <strong>of</strong> horizon - completely<br />

missed effects <strong>of</strong> matter (recall Fermi degeneracy pressure <strong>of</strong> neutrons in<br />

Chandrasekhar’s derivation)<br />

Need to consider entanglement entropy due to entanglement <strong>of</strong> matter<br />

states with gravitational states at the horizon : S ent = −Trρ red logρ red<br />

where ρ red is reduced density matrix<br />

Entanglement entropy <strong>of</strong> neutron star with horizon inside Bombelli et. al. 1986;<br />

Srednicki 1993<br />

S ent = ξ e<br />

A hor<br />

A c<br />

+ξ n<br />

A NS<br />

A c<br />

where ξ e , ξ n = O(1) ;A c = a 2 is an area related to the UV cut<strong>of</strong>f used in<br />

the theory<br />

TotalS = S grav (A hor /A P )+S ent (A hor /A c )+S ent (A NS /A c )+S bulk,n


Created with pptalk Slide 23<br />

What went wrong with the scenario, even though it is physically plausible<br />

<br />

Observe S hor due to quantum grav description <strong>of</strong> horizon - completely<br />

missed effects <strong>of</strong> matter (recall Fermi degeneracy pressure <strong>of</strong> neutrons in<br />

Chandrasekhar’s derivation)<br />

Need to consider entanglement entropy due to entanglement <strong>of</strong> matter<br />

states with gravitational states at the horizon : S ent = −Trρ red logρ red<br />

where ρ red is reduced density matrix<br />

Entanglement entropy <strong>of</strong> neutron star with horizon inside Bombelli et. al. 1986;<br />

Srednicki 1993<br />

S ent = ξ e<br />

A hor<br />

A c<br />

+ξ n<br />

A NS<br />

A c<br />

where ξ e , ξ n = O(1) ;A c = a 2 is an area related to the UV cut<strong>of</strong>f used in<br />

the theory<br />

TotalS = S grav (A hor /A P )+S ent (A hor /A c )+S ent (A NS /A c )+S bulk,n


Created with pptalk Slide 23<br />

What went wrong with the scenario, even though it is physically plausible<br />

<br />

Observe S hor due to quantum grav description <strong>of</strong> horizon - completely<br />

missed effects <strong>of</strong> matter (recall Fermi degeneracy pressure <strong>of</strong> neutrons in<br />

Chandrasekhar’s derivation)<br />

Need to consider entanglement entropy due to entanglement <strong>of</strong> matter<br />

states with gravitational states at the horizon : S ent = −Trρ red logρ red<br />

where ρ red is reduced density matrix<br />

Entanglement entropy <strong>of</strong> neutron star with horizon inside Bombelli et. al. 1986;<br />

Srednicki 1993<br />

S ent = ξ e<br />

A hor<br />

A c<br />

+ξ n<br />

A NS<br />

A c<br />

where ξ e , ξ n = O(1) ;A c = a 2 is an area related to the UV cut<strong>of</strong>f used in<br />

the theory<br />

TotalS = S grav (A hor /A P )+S ent (A hor /A c )+S ent (A NS /A c )+S bulk,n


Created with pptalk Slide 23<br />

What went wrong with the scenario, even though it is physically plausible<br />

<br />

Observe S hor due to quantum grav description <strong>of</strong> horizon - completely<br />

missed effects <strong>of</strong> matter (recall Fermi degeneracy pressure <strong>of</strong> neutrons in<br />

Chandrasekhar’s derivation)<br />

Need to consider entanglement entropy due to entanglement <strong>of</strong> matter<br />

states with gravitational states at the horizon : S ent = −Trρ red logρ red<br />

where ρ red is reduced density matrix<br />

Entanglement entropy <strong>of</strong> neutron star with horizon inside Bombelli et. al. 1986;<br />

Srednicki 1993<br />

S ent = ξ e<br />

A hor<br />

A c<br />

+ξ n<br />

A NS<br />

A c<br />

where ξ e , ξ n = O(1) ;A c = a 2 is an area related to the UV cut<strong>of</strong>f used in<br />

the theory<br />

TotalS = S grav (A hor /A P )+S ent (A hor /A c )+S ent (A NS /A c )+S bulk,n


Created with pptalk Slide 24<br />

Need to generalize thermal stability formula incorporatingS ent<br />

Propose, for any spatial slice corresponding to t, the horizon is stable provided<br />

( Mhor,t A hor,t A hor,t<br />

= ξ g +ξ e<br />

A P A c,t<br />

M NS = M hor,t +M ext,t<br />

M P<br />

)min<br />

How does M ext,t relate to S ent (A NS,t /A c,t )+S bulk,n given that both decrease<br />

as the horizon grows <br />

Thermal stability criterion ⇒ Schwarzschild black hole is unstable wrt<br />

Hawking radiation. How does this impact on M crit


Created with pptalk Slide 24<br />

Need to generalize thermal stability formula incorporatingS ent<br />

Propose, for any spatial slice corresponding to t, the horizon is stable provided<br />

( Mhor,t A hor,t A hor,t<br />

= ξ g +ξ e<br />

A P A c,t<br />

M NS = M hor,t +M ext,t<br />

M P<br />

)min<br />

How does M ext,t relate to S ent (A NS,t /A c,t )+S bulk,n given that both decrease<br />

as the horizon grows <br />

Thermal stability criterion ⇒ Schwarzschild black hole is unstable wrt<br />

Hawking radiation. How does this impact on M crit


Created with pptalk Slide 24<br />

Need to generalize thermal stability formula incorporatingS ent<br />

Propose, for any spatial slice corresponding to t, the horizon is stable provided<br />

( Mhor,t A hor,t A hor,t<br />

= ξ g +ξ e<br />

A P A c,t<br />

M NS = M hor,t +M ext,t<br />

M P<br />

)min<br />

How does M ext,t relate to S ent (A NS,t /A c,t )+S bulk,n given that both decrease<br />

as the horizon grows <br />

Thermal stability criterion ⇒ Schwarzschild black hole is unstable wrt<br />

Hawking radiation. How does this impact on M crit


Created with pptalk Slide 24<br />

Need to generalize thermal stability formula incorporatingS ent<br />

Propose, for any spatial slice corresponding to t, the horizon is stable provided<br />

( Mhor,t A hor,t A hor,t<br />

= ξ g +ξ e<br />

A P A c,t<br />

M NS = M hor,t +M ext,t<br />

M P<br />

)min<br />

How does M ext,t relate to S ent (A NS,t /A c,t )+S bulk,n given that both decrease<br />

as the horizon grows <br />

Thermal stability criterion ⇒ Schwarzschild black hole is unstable wrt<br />

Hawking radiation. How does this impact on M crit


Created with pptalk Slide 24<br />

Need to generalize thermal stability formula incorporatingS ent<br />

Propose, for any spatial slice corresponding to t, the horizon is stable provided<br />

( Mhor,t A hor,t A hor,t<br />

= ξ g +ξ e<br />

A P A c,t<br />

M NS = M hor,t +M ext,t<br />

M P<br />

)min<br />

How does M ext,t relate to S ent (A NS,t /A c,t )+S bulk,n given that both decrease<br />

as the horizon grows <br />

Thermal stability criterion ⇒ Schwarzschild black hole is unstable wrt<br />

Hawking radiation. How does this impact on M crit


Created with pptalk Slide 25<br />

Pending Issues<br />

• Need to establish firm relation betweenA Cn andA hid hor<br />

• Need to justify scenario in detail<br />

• Need to go properly incorporateS ent into stability criterion


Created with pptalk Slide 25<br />

Pending Issues<br />

• Need to establish firm relation betweenA Cn andA hid hor<br />

• Need to justify scenario in detail<br />

• Need to go properly incorporateS ent into stability criterion


Created with pptalk Slide 25<br />

Pending Issues<br />

• Need to establish firm relation betweenA Cn andA hid hor<br />

• Need to justify scenario in detail<br />

• Need to go properly incorporateS ent into stability criterion

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!