03.02.2015 Views

Exercise 6: The MOS Transistor - Lehrstuhl für Schaltungstechnik ...

Exercise 6: The MOS Transistor - Lehrstuhl für Schaltungstechnik ...

Exercise 6: The MOS Transistor - Lehrstuhl für Schaltungstechnik ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Exercise</strong> 6:<br />

<strong>The</strong> <strong>MOS</strong> <strong>Transistor</strong><br />

Prof. Dr. P. Fischer<br />

<strong>Lehrstuhl</strong> für <strong>Schaltungstechnik</strong> und Simulation<br />

Uni Heidelberg<br />

CCS <strong>Exercise</strong>: <strong>MOS</strong> <strong>Transistor</strong><br />

© P. Fischer, ZITI, Uni Heidelberg Page1


<strong>Exercise</strong> 6.1: N<strong>MOS</strong> in Linear Region<br />

Use an N<strong>MOS</strong> transistor of type<br />

N_13_MM from library<br />

UMC_13_C<strong>MOS</strong> with W=L=1µm<br />

Connect<br />

• source and bulk to ground<br />

• the gate to 2 V<br />

Sweep the drain voltage from -0.1V to 0.1 V and oberve the<br />

current<br />

Calculate the resistivity of the channel<br />

Double W or L and simulate & calculate again.<br />

• Are the results as expected<br />

Now set the gate voltage to 0.6 V. What is different<br />

Now sweep the drain voltage from -1V to 1V. What<br />

happens for positive and negative voltages<br />

CCS <strong>Exercise</strong>: <strong>MOS</strong> <strong>Transistor</strong><br />

© P. Fischer, ZITI, Uni Heidelberg Page2


<strong>Exercise</strong> 6.2: Transconductance<br />

For an N<strong>MOS</strong> of W=L=1µm with V BS = 0, keep the drain at<br />

1.8 V and sweep the gate voltage from 0 to 1.8 V. This is<br />

the transfer characteristic of the <strong>MOS</strong>.<br />

• Observe the drain current<br />

• Plot the square root of the current. Do you find a straight line as<br />

expected<br />

• Plot the current in log scale. Can you see the subthreshold<br />

region<br />

• What is the transconductance at V GS = 1V<br />

Make a parametric sweep changing W from 0.18µm to 2µm<br />

• Is the current proportional to W<br />

Repeat this for a L-sweep<br />

Plot the transfer curve for two different values of V BS , for<br />

instance 0 V and -2 V<br />

CCS <strong>Exercise</strong>: <strong>MOS</strong> <strong>Transistor</strong><br />

© P. Fischer, ZITI, Uni Heidelberg Page3


<strong>Exercise</strong> 6.3: Output Characteristic, Saturation<br />

Now plot the output characteristic, i.e. ID as a function of<br />

V DS for a fixed V GS .<br />

• Can you see the linear region and the saturated region<br />

Extract the output resistance for instance for V GS =1.8V and<br />

V DS =1.8V.<br />

Make a parametric sweep of V GS (0..1.8V in 0.2V steps)<br />

• Observe how the current changes<br />

• Observe how the saturation voltage changes<br />

• Observe how the output resistance changes<br />

Now use two <strong>MOS</strong> with different W (for instance 0.5µm and<br />

2µm).<br />

• Search for gate voltages so that the currents for a given VDS<br />

(for instance for 1.8 V) are similar.<br />

• Compare the output characteristics<br />

CCS <strong>Exercise</strong>: <strong>MOS</strong> <strong>Transistor</strong><br />

© P. Fischer, ZITI, Uni Heidelberg Page4


<strong>Exercise</strong> 6.4: P<strong>MOS</strong><br />

Simulate tranfer and output characteristic for a P<strong>MOS</strong><br />

• Note that the source is now ‚on top‘<br />

• Gate and drain must be negative w.r.t. source<br />

Simulate in parallel a N<strong>MOS</strong> of same size.<br />

• Plot the drain current of N<strong>MOS</strong> and P<strong>MOS</strong> simultaneously.<br />

• How much is the difference<br />

CCS <strong>Exercise</strong>: <strong>MOS</strong> <strong>Transistor</strong><br />

© P. Fischer, ZITI, Uni Heidelberg Page5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!