03.02.2015 Views

my beamer presentation - Departament de matemàtiques

my beamer presentation - Departament de matemàtiques

my beamer presentation - Departament de matemàtiques

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

A survey on Hochschild cohomology of<br />

finite category algebras<br />

Fei Xu<br />

<strong>Departament</strong> <strong>de</strong> Matemàtiques, Universitat Autònoma <strong>de</strong> Barcelona<br />

CIRM Luminy, 10 June 2010<br />

Fei Xu<br />

Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

1 Definitions and examples<br />

Finite categories and their algebras<br />

Re<strong>presentation</strong>s and modules<br />

Motivation<br />

2 Homological properties of kC-mod<br />

A closed symmetric monoidal category<br />

Adjoint functors and a spectral sequence<br />

Two categorical constructions<br />

Hochschild cohomology<br />

3 An example<br />

Fei Xu<br />

Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

Finite categories and their algebras<br />

Re<strong>presentation</strong>s and modules<br />

Motivation<br />

Finite categories<br />

A category is finite if it has finitely many morphism.<br />

Typical examples are finite groups and finite posets<br />

(partially or<strong>de</strong>red sets).<br />

A non-group and non-poset example<br />

1 x <br />

x<br />

α<br />

1 y<br />

<br />

y<br />

g<br />

with g 2 = 1 y and α = gα.<br />

Fei Xu<br />

Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

Category algebras<br />

Finite categories and their algebras<br />

Re<strong>presentation</strong>s and modules<br />

Motivation<br />

The k-category algebra of C, kC, is <strong>de</strong>fined as a k-vector<br />

space k Mor C, in which the multiplication is given on base<br />

elements by<br />

{ α ◦ β, if α and β are composable in C;<br />

α ∗ β =<br />

0 , otherwise.<br />

The previous category<br />

1 x <br />

x<br />

α<br />

1 y<br />

<br />

y<br />

has the following k-category algebra with i<strong>de</strong>ntity<br />

1 kC = 1 x + 1 y<br />

Fei Xu Finite category algebras<br />

g


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

B. Mitchell’s theorem<br />

Finite categories and their algebras<br />

Re<strong>presentation</strong>s and modules<br />

Motivation<br />

Given a finite category algebra kC, we are interested in<br />

the homological properties of kC-mod of finitely<br />

generated left kC-modules.<br />

Let Vect k be the category of finite-dimensional k-vector<br />

spaces, and Vectk<br />

C the category of covariant functors.<br />

Each functor is called a k-re<strong>presentation</strong> of C.<br />

Mitchell’s Theorem: kC-mod ∼ = Vect C k .<br />

It simply says that each kC-module corresponds uniquely<br />

to a k-re<strong>presentation</strong> of C, and vice versa.<br />

F ↦→ ⊕ x∈Ob C F (x) and M ↦→ F M such that<br />

F M (x) = 1 x · M.<br />

Fei Xu<br />

Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

Finite categories and their algebras<br />

Re<strong>presentation</strong>s and modules<br />

Motivation<br />

Ordinary cohomology, an algebraic <strong>de</strong>finition<br />

For any M, N ∈ kC-mod, we can consi<strong>de</strong>r Ext ∗ kC(M, N).<br />

There is a constant functor k ∈ Vectk<br />

C such that<br />

k(x) = k and k(α) = Id k for any α ∈ Mor C. It is also<br />

called the trivial kC-module.<br />

There is an augmentation map ɛ : kC → k.<br />

The groups Ext ∗ kC(k, N) have different interpretations.<br />

∗<br />

They are isomorphic to both lim N, the higher limits<br />

←− C<br />

of N, and H ∗ (C; N), the cohomology of C with<br />

coefficients in N.<br />

Ext ∗ kC(k, k) possesses a cup product and is isomorphic to<br />

H ∗ (BC, k), the cohomology ring of the classifying<br />

space BC of C. It is called the ordinary cohomology ring<br />

of kC.<br />

Fei Xu<br />

Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

Transporter categories<br />

Finite categories and their algebras<br />

Re<strong>presentation</strong>s and modules<br />

Motivation<br />

Let G be a finite group and P a finite G-poset. One can<br />

construct the transporter category G ⋉ P as follows:<br />

The objects Ob(G ⋉ P) = Ob P;<br />

For x, y ∈ Ob(G ⋉ P), a morphism is a pair (g, gx ≤ y)<br />

for some g ∈ G.<br />

If G acts trivially, then the category is G × P.<br />

P ↩→ G ⋉ P via (x ≤ y) ↦→ (e, x ≤ y) (e ∈ G is the<br />

i<strong>de</strong>ntity).<br />

It admits a natural functor G ⋉ P → G, x ↦→ ∗ and<br />

(g, gx ≤ y) ↦→ g.<br />

It is a special situation of the Grothendieck<br />

construction on a functor F : C → CAT .<br />

Fei Xu<br />

Finite category algebras


A Σ 4 -poset<br />

Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

Finite categories and their algebras<br />

Re<strong>presentation</strong>s and modules<br />

Motivation<br />

The poset of all non-trivial 2-subgroups of Σ 4 , S 2 (Σ 4 ):<br />

· · ·<br />

· · ·<br />

D 8 <br />

D 8 D 8<br />

<br />

<br />

C 2 × C 2 C 4 V<br />

<br />

<br />

<br />

<br />

C 2<br />

C 2<br />

C 2<br />

<br />

C 2<br />

C 2<br />

Fei Xu<br />

Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

Finite categories and their algebras<br />

Re<strong>presentation</strong>s and modules<br />

Motivation<br />

The transporter category Σ 4 ⋉ S 2 (Σ 4 ) :<br />

C 2<br />

<br />

8<br />

8<br />

C 2 × C 2<br />

8<br />

4 <br />

C<br />

4 2<br />

8<br />

· · ·<br />

· · ·<br />

4 4 <br />

D 8 D<br />

4 8 D<br />

4 8<br />

<br />

<br />

8 8 24<br />

<br />

24 24<br />

<br />

C 4 8 V 24<br />

<br />

<br />

8 24<br />

8 24 24 <br />

8 8 <br />

C 2 C<br />

8 2 C<br />

8 2<br />

4<br />

4<br />

8<br />

8<br />

8<br />

Fei Xu<br />

Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

Finite categories and their algebras<br />

Re<strong>presentation</strong>s and modules<br />

Motivation<br />

Subgroups as transporter categories<br />

Let G be a finite group and H a subgroup. We consi<strong>de</strong>r<br />

the set of left cosets Q := G/H which can be regar<strong>de</strong>d as<br />

a G-poset: G acts via left multiplication.<br />

The transporter category G ⋉ Q is a connected groupoid<br />

whose skeleton is isomorphic to H.<br />

In this way one can recover all subgroups of G, up to<br />

category equivalences.<br />

A category equivalence D → C induces a Morita<br />

equivalence kD ≃ kC (and a homotopy equivalence<br />

BD ≃ BC as well).<br />

The functor G ⋉ Q → G gives rise to the usual<br />

restriction and transfer between H ∗ (G; k) and H ∗ (H; k).<br />

Fei Xu<br />

Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

Finite categories and their algebras<br />

Re<strong>presentation</strong>s and modules<br />

Motivation<br />

Relevance in group re<strong>presentation</strong>s<br />

The transporter categories bridge up re<strong>presentation</strong>s of groups<br />

and of their local categories, through the following diagram<br />

<br />

G<br />

G ⋉ P <br />

which induces functors among module categories<br />

kG-mod<br />

k(G ⋉ P)-mod<br />

C<br />

kC-mod<br />

It certainly provi<strong>de</strong>s a framework to investigate and compare<br />

various re<strong>presentation</strong>s, and cohomology as well.<br />

Fei Xu Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

Finite categories and their algebras<br />

Re<strong>presentation</strong>s and modules<br />

Motivation<br />

A proper setting for ordinary cohomology<br />

The natural functor π : G ⋉ P → G induces a ring<br />

homomorphism, the restriction,<br />

H ∗ (G; k) → H ∗ (G ⋉ P; k).<br />

Becker and Gottlieb constructed a transfer map<br />

H ∗ (G ⋉ P; k) → H ∗ (G; k) such that tr ◦ res = χ(P), the<br />

Euler characteristic of P.<br />

Applying a spectral sequence to P ↩→ G ⋉ P → G one<br />

can show H ∗ (G ⋉ P; k) is a finitely generated<br />

H ∗ (G; k)-module, and hence is finitely generated as a<br />

ring.<br />

Fei Xu<br />

Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

Finite categories and their algebras<br />

Re<strong>presentation</strong>s and modules<br />

Motivation<br />

Hochschild cohomology rings of transporter<br />

category algebras<br />

Let G be a finite group, P a finite G-poset and G ⋉ P<br />

the transporter category.<br />

The previously mentioned spectral sequence for<br />

P ↩→ G ⋉ P → G can be used to improve our<br />

observation on the finite generation of<br />

H ∗ (G ⋉ P; k) ∼ = Ext ∗ k(G⋉P)(k, k).<br />

Given a k(G ⋉ P)-module N, Ext ∗ k(G⋉P)(k, N) is finitely<br />

generated as a Ext ∗ k(G⋉P)(k, k)- and Ext ∗ kG(k, k)-module.<br />

With a bit extra work, one shows that the Hochschild<br />

cohomology ring HH ∗ (k(G ⋉ P)) is finitely generated<br />

as a Ext ∗ k(G⋉P)(k, k)-module, and hence is finitely<br />

generated as a ring.<br />

Fei Xu Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

A closed symmetric monoidal category<br />

Adjoint functors and a spectral sequence<br />

Two categorical constructions<br />

Hochschild cohomology<br />

A crash introduction to closed symmetric monoidal<br />

categories<br />

Mac Lane: Much of the force of category theory will be seen to<br />

resi<strong>de</strong> in using categories with specified additional structures.<br />

One basic example will be the closed categories. The simplest<br />

closed symmetric monoidal category is perhaps Vect k .<br />

There is a tensor product − ⊗ k −, which is symmetric.<br />

There exists a tensor i<strong>de</strong>ntity k.<br />

It is closed in the sense that for a pair of (or<strong>de</strong>red) spaces<br />

V , W , there is a function object, a.k.a. the internal hom,<br />

Hom k (V , W ) in the category Vect k .<br />

Hom k (U ⊗ k V , W ) ∼ = Hom k (U, Hom k (V , W )).<br />

Fei Xu<br />

Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

A closed symmetric monoidal category<br />

Adjoint functors and a spectral sequence<br />

Two categorical constructions<br />

Hochschild cohomology<br />

kC-mod is closed symmetric monoidal<br />

If A is a symmetric monoidal category, so is A C .<br />

The tensor product in kC-mod ≃ Vectk<br />

C is written as<br />

− ˆ⊗−. It is symmetric and has k as tensor i<strong>de</strong>ntity.<br />

The tensor product induces a cup product<br />

∪ : Ext i kC(M, N)⊗Ext j kC (M′ , N ′ ) → Ext i+j<br />

kC (M ˆ⊗M ′ , N ˆ⊗N ′ ).<br />

For any or<strong>de</strong>red pair of kC-modules M, N, Hom k (M, N) is<br />

not a kC-module. However there exists an internal hom<br />

such that Hom kC (L ˆ⊗M, N) ∼ = Hom kC (L, hom(M, N)).<br />

The algebra kC behaves in many ways like a<br />

cocommutative Hopf algebra, but is essentially different.<br />

Fei Xu<br />

Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

A closed symmetric monoidal category<br />

Adjoint functors and a spectral sequence<br />

Two categorical constructions<br />

Hochschild cohomology<br />

Standard tools<br />

Let θ : D → C be a functor between two finite categories. It<br />

induces a natural functor, the restriction along θ,<br />

Res θ : kC-mod → kD-mod.<br />

This functor comes with two adjoints, the left and right Kan<br />

extensions<br />

LK θ , RK θ : kD-mod → kC-mod.<br />

When C = G is a group, D = H is a subgroup and θ is the<br />

inclusion, we have Res θ<br />

∼ =↓<br />

G<br />

H and LK θ<br />

∼ =↑<br />

G<br />

H<br />

∼ =⇑<br />

G<br />

H<br />

∼ = RKθ .<br />

For any N ∈ kD-mod, there is a (multiplicative) cohomology<br />

Grothendieck spectral sequence<br />

H i (C; H j (\θ; N)) ⇒ H i+j (D; N).<br />

Fei Xu<br />

Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

A closed symmetric monoidal category<br />

Adjoint functors and a spectral sequence<br />

Two categorical constructions<br />

Hochschild cohomology<br />

Diagonal subcategory and functor<br />

We can consi<strong>de</strong>r the algebra of the product category<br />

C × C, k(C × C).<br />

It is easy to see that k(C × C) ∼ = kC ⊗ k kC. In particular<br />

there are algebra homomorphisms k1 kC ⊗ kC ↩→ kC ⊗ kC<br />

and kC ⊗ k1 kC ↩→ kC ⊗ kC.<br />

The category C × C has a diagonal subcategory ∆C,<br />

whose objects are of the form (x, x) for any x ∈ Ob C and<br />

whose morphisms are of the form (α, α) for any<br />

α ∈ Mor C. There is an isomorphism ∆C ∼ = C.<br />

We shall consi<strong>de</strong>r ∆ : C → C × C and RK ∆ .<br />

Fei Xu<br />

Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

A closed symmetric monoidal category<br />

Adjoint functors and a spectral sequence<br />

Two categorical constructions<br />

Hochschild cohomology<br />

Right Kan extension and internal hom<br />

Let M, N ∈ kC-mod. Then M ⊗ N is a kC ⊗ kC-module.<br />

M ˆ⊗N = Res ∆ (M ⊗ N) where Res ∆ : kC ⊗ kC-mod<br />

→ kC-mod.<br />

Thus<br />

Hom kC (L ˆ⊗M, N) = Hom kC (Res ∆ (L ⊗ M), N)<br />

∼ = HomkC⊗kC (L ⊗ M, RK ∆ N)<br />

∼ = HomkC (L, Hom kC (M, RK ∆ N)).<br />

The internal hom is hom(M, N) = Hom kC (M, RK ∆ N).<br />

The dual module of M is <strong>de</strong>fined to be hom(M, k).<br />

When C = G is a group, hom(M, N) ∼ = Hom k (M, N).<br />

Fei Xu<br />

Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

A closed symmetric monoidal category<br />

Adjoint functors and a spectral sequence<br />

Two categorical constructions<br />

Hochschild cohomology<br />

Category of factorizations and skew diagonal<br />

functor<br />

We also need the opposite category C op because<br />

kC op ∼ = (kC) op , and the category algebra<br />

kC e := k(C × C op ) is isomorphic to the enveloping algebra<br />

(kC) e = kC ⊗ k kC op .<br />

Note that kC as a functor C × C op → Vect k is given by<br />

kC(x, y) = k Hom C (y, x) (zero if Hom C (y, x) = ∅).<br />

There is a category of factorizations in C, named<br />

F (C). Its objects are the morphisms in C and there is a<br />

morphism from α → β if and only if α is a factor of β. If<br />

β = uαv, then the morphism is recor<strong>de</strong>d as a pair<br />

(u, v) : α → β.<br />

The category is topologically the same as C in that<br />

Fei Xu Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

Using the left Kan extension<br />

A closed symmetric monoidal category<br />

Adjoint functors and a spectral sequence<br />

Two categorical constructions<br />

Hochschild cohomology<br />

We examine the following diagram<br />

F (C)<br />

<br />

τ=(t,s)<br />

C × C op<br />

t<br />

pr<br />

<br />

C .<br />

It immediately gives rise to another diagram<br />

Res τ<br />

kF (C)-mod<br />

k(C × C op )-mod<br />

Res t<br />

Res<br />

<br />

pr<br />

kC-mod<br />

.<br />

Fei Xu<br />

Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

A closed symmetric monoidal category<br />

Adjoint functors and a spectral sequence<br />

Two categorical constructions<br />

Hochschild cohomology<br />

Using the left Kan extension, continued<br />

It leads to a diagram that we need<br />

LK τ<br />

kF (C)-mod<br />

k(C × C op )-mod<br />

LK t<br />

LK<br />

<br />

pr<br />

kC-mod .<br />

k<br />

LK τ<br />

kF (C)-mod<br />

<br />

kC e -mod kC<br />

LK t<br />

LK pr ∼ =−⊗kC k<br />

<br />

kC-mod .<br />

Fei Xu<br />

k<br />

Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

A closed symmetric monoidal category<br />

Adjoint functors and a spectral sequence<br />

Two categorical constructions<br />

Hochschild cohomology<br />

Example: Hochschild cohomology of a poset<br />

Let P be a poset. We have HH ∗ (kP) ∼ = H ∗ (P; k)<br />

(Gerstenhaber-Shack). When P = x α →y, the triple<br />

τ : F (P) → P e becomes<br />

(α,1 x )<br />

<br />

[1 x ]<br />

[α] (y, x)<br />

<br />

<br />

(1 y ,α)<br />

<br />

[1 y ]<br />

(α,1 op<br />

x )<br />

<br />

(x, x)<br />

<br />

(1 x ,α op )<br />

(1 y ,α op )<br />

(α,1 op<br />

y )<br />

<br />

(x, y)<br />

Note that<br />

kP(x, x) = k1 x , kP(y, y) = k1 y , kP(y, x) = kα and<br />

kP(x, y) = 0. Moreover Res τ kP = kP ∼ = k.<br />

Fei Xu Finite category algebras<br />

(y, y)


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

A closed symmetric monoidal category<br />

Adjoint functors and a spectral sequence<br />

Two categorical constructions<br />

Hochschild cohomology<br />

Thus we have<br />

HH ∗ (kP) ∼ = Ext ∗ kPe(kP, kP)<br />

∼ = Ext ∗ kF (P)(k, k)<br />

∼ = Ext ∗ kP(k, k)<br />

∼ =<br />

H ∗ (P; k).<br />

Fei Xu<br />

Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

A closed symmetric monoidal category<br />

Adjoint functors and a spectral sequence<br />

Two categorical constructions<br />

Hochschild cohomology<br />

Theorem<br />

For any M ∈ kC e -mod,<br />

Ext ∗ kC e(kC, M) ∼ = Ext ∗ kF (C)(k, Res τ M);<br />

For any N ∈ kC-mod, Ext ∗ kC(k, N) ∼ = Ext ∗ kF (C)(k, Res t N);<br />

The module kC ∈ kC e -mod restricts to<br />

Res τ kC ∼ = k ⊕ U ∈ kF (C)-mod;<br />

There exists a natural split surjective ring homomorphism<br />

Ext ∗ kC e(kC, kC) → Ext∗ kC(k, k) ∼ = Ext ∗ kF (C)(k, k).<br />

We can un<strong>de</strong>rstand Hochschild cohomology via ordinary<br />

cohomology.<br />

Fei Xu<br />

Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

<br />

<br />

<br />

<br />

Example: a 7-dimensional algebra<br />

A category constructed by Aurélien Djament: E<br />

h<br />

g<br />

x<br />

1 x<br />

gh<br />

α<br />

β<br />

y {1 y } ,<br />

where g 2 = h 2 = 1 x , gh = hg, αh = βg = α, and<br />

αg = βh = β. Its category algebra is 7-dimensional and we<br />

can compute the mod-2 ordinary and Hochschild cohomology<br />

rings.<br />

BE is homotopy equivalent to B(C 2 × C 2 )/BC 2 .<br />

Suppose chark = 2. Then H ∗ (BE, k) is isomorphic to a<br />

subring of the polynomial ring k[u, v] with base elements<br />

of the form u i , i ≥ 1, removed.<br />

Fei Xu<br />

Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

Infinitely generated HH ∗<br />

The ordinary cohomology ring is infinitely<br />

generated and has no nilpotents. Thus HH ∗ (kE) is<br />

not finitely generated either, even modulo nilpotents.<br />

This calculation is very similar to that of the Hochschild<br />

cohomology ring of a Koszul algebra. In fact, kE is<br />

Koszul.<br />

Let A be a Koszul algebra and r its radical. Then the<br />

image of the following canonical map<br />

Ext ∗ −⊗<br />

Ae(A, A)<br />

A A/r<br />

Ext ∗ A(A/r, A/r)<br />

is exactly the (gra<strong>de</strong>d) center.<br />

Snashall constructed Koszul algebras with infinitely<br />

generated Hochschild cohomology rings (modulo<br />

nilpotents) in<strong>de</strong>pen<strong>de</strong>nt Fei Xuof the Finitechoice category algebras of a base field.


Compatibility<br />

Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

There exists a commutative diagram<br />

Ext ∗ kE e(kE, kE)<br />

−⊗ kE k<br />

−⊗ kE kE/r<br />

<br />

Ext ∗ kE(k, k)<br />

Ext ∗ kE(kE/r, kE/r).<br />

− ˆ⊗kE/r<br />

Fei Xu<br />

Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

J. C. Becker, D. H. Gottlieb, The transfer map and fibre<br />

bundles, Topology 14 (1975) 1-12.<br />

W. G. Dwyer, H.-W. Henn, Homotopy Theoretic Methods<br />

in Group Cohomology, Birkhäuser 2001. (Grothendieck<br />

constr.)<br />

P. Hilton, U. Stammbach, A Course in Homological<br />

Algebra (Second edition), GTM 4, Springer 1997. (Kan<br />

extensions, Grothendieck s.s.)<br />

S. Mac Lane, Categories for the Working Mathematician<br />

(Second edition), GTM 5, Springer 1998. (various<br />

categorical constructions)<br />

I. Moerdijk, J. A. Svensson, A Shapiro lemma for diagram<br />

of spaces with applications to equivariant topology,<br />

Compositio Math. 96 (1995) 249-282. (Grothendieck<br />

s.s.)<br />

D. Quillen, Higher algebraic K-theory I, in: Lecture Notes<br />

Fei Xu Finite category algebras


Outline<br />

Definitions and examples<br />

Homological properties of kC-mod<br />

An example<br />

J. Thévenaz, G-algebras and Modular Re<strong>presentation</strong><br />

Theory, Oxford University Press 1995. (transporter<br />

categories, local categories)<br />

R. W. Thomason, Homotopy colimits in the category of<br />

small categories, Math. Proc. Camb. Phil. Soc. 85<br />

(1979) 91-109. (Grothendieck construction)<br />

P. J. Webb, An introduction to the re<strong>presentation</strong>s and<br />

cohomology of categories, in: Group Re<strong>presentation</strong><br />

Theory, EPFL Press 2007, pp. 149-173.<br />

F. Xu, Hochschild and ordinary cohomology rings of small<br />

categories, Adv. Math. 219 (2008) 1872-1893.<br />

F. Xu, Tensor structure on kC-mod and cohomology,<br />

preprint 2009.<br />

Fei Xu<br />

Finite category algebras

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!