03.02.2015 Views

12.2 Hypothesis Tests for One Population Proportion

12.2 Hypothesis Tests for One Population Proportion

12.2 Hypothesis Tests for One Population Proportion

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>12.2</strong> <strong>Hypothesis</strong> <strong>Tests</strong> <strong>for</strong> <strong>One</strong> <strong>Population</strong> <strong>Proportion</strong><br />

1. A one-sample hypothesis test is a special case of the one-sample z-test <strong>for</strong> a<br />

population mean.<br />

2. <strong>One</strong>-Sample z-Test <strong>for</strong> a <strong>Population</strong> <strong>Proportion</strong>:<br />

Purpose: To per<strong>for</strong>m a hypothesis test <strong>for</strong> a population proportion, p.<br />

Assumptions: 1. We have a simple random sample. 2. Both<br />

n(1 − p 0<br />

) are greater than 5.<br />

np 0<br />

and<br />

a. Set the hypotheses <strong>for</strong> an assumed value p 0<br />

: Null hypothesis: H 0<br />

: p = p 0<br />

Alternate hypothesis:<br />

Two Tailed: H 0<br />

: p ≠ p 0<br />

Left Tailed: H 0<br />

: p < p 0<br />

Right Tailed: H 0<br />

: p > p 0<br />

b. Significance level: α<br />

c. Test statistic, where ˆ p is the sample proportion: z 0<br />

=<br />

ˆ p − p 0<br />

p 0<br />

(1 − p 0<br />

)<br />

n<br />

d. Critical Value Method: Calculate the critical values using Table II.<br />

These values divide the rejection region and the non-rejection region:<br />

Two Tailed Test: ±z α /2<br />

Left Tailed Test: −z α<br />

Right Tailed Test: z α<br />

If the values of the test statistic,<br />

Otherwise don't reject H 0<br />

.<br />

z 0<br />

falls in the reject region, reject H 0<br />

.<br />

e. P-Value Method: Use Table II to find the area <strong>for</strong> z<br />

0<br />

and more extreme<br />

than z 0<br />

. This area is the P-value. (Two Tailed: Area left of – z 0<br />

added<br />

to the area to the right of z 0<br />

. Left Tailed: Area to the left of – z 0<br />

. Right<br />

Tailed: Area to the right of z 0<br />

.) Reject the null hypothesis, H 0<br />

, if the<br />

P-value ≤ α. Otherwise, don't reject H 0<br />

.<br />

f. Interpret the results.


3. A calculator can also be used to per<strong>for</strong>m this test. Use #5: 1-Prop ZTest under<br />

STAT TESTS.<br />

12.3 Inferences <strong>for</strong> two <strong>Population</strong> <strong>Proportion</strong>s, Using Independent<br />

Samples<br />

1. We will now study a method <strong>for</strong> comparing proportions computed <strong>for</strong> two<br />

populations with one attribute. Are these proportions equal<br />

2. We will use independent random samples from each population to per<strong>for</strong>m a<br />

hypothesis test and to find a confidence interval to determine whether the<br />

proportion of one population with the attribute is equal to the proportion of the<br />

other population with the same attribute.<br />

3. To do this we need to know the distribution of the difference between two sample<br />

proportions.<br />

4. Notation:<br />

<strong>Population</strong> 1 <strong>Population</strong> 2<br />

<strong>Population</strong> <strong>Proportion</strong> p 1<br />

p 2<br />

Sample Size n 1<br />

n 2<br />

Number of Successes x 1<br />

x 2<br />

Sample <strong>Proportion</strong><br />

ˆ p 1<br />

= x 1<br />

n 1<br />

ˆ p 2<br />

= x 2<br />

n 2<br />

5. The Sampling Distribution of the Difference Between Two Sample<br />

<strong>Proportion</strong>s <strong>for</strong> Independent Samples<br />

For independent samples of sizes and from the two populations:<br />

n 1<br />

n 2<br />

µ ˆ p 1 − ˆ p 2<br />

= p 1<br />

− p 2<br />

σ<br />

p ˆ 1 − p ˆ 2<br />

=<br />

p 1<br />

(1 − p 1<br />

)<br />

n 1<br />

+ p 2 (1− p 2 )<br />

n 2<br />

ˆ p 1<br />

− p ˆ 2<br />

is approximately normally distributed <strong>for</strong> large n 1<br />

and n 2<br />

.<br />

6. From the above we see that the standardized variable is<br />

z =<br />

z =<br />

( p ˆ 1<br />

− p ˆ 2<br />

) − ( p 1<br />

− p 2<br />

)<br />

p 1<br />

(1 − p 1<br />

)<br />

+ p 2(1 − p 2<br />

)<br />

n 1<br />

n 2<br />

p ˆ 1<br />

− p ˆ 2<br />

1<br />

p(1 − p) + 1 n 1<br />

n 2<br />

, which if p 1<br />

= p 2<br />

= p becomes


However, since p is not known, we will replace it with the pooled sample<br />

x<br />

proportion ˆ p p<br />

= 1<br />

+ x 2<br />

.<br />

n 1<br />

+ n 2<br />

7. Two-Sample z-Test <strong>for</strong> Two <strong>Population</strong> <strong>Proportion</strong>s:<br />

Purpose: To per<strong>for</strong>m a hypothesis test to compare two population proportions, p 1<br />

and p 2<br />

.<br />

Assumptions: 1. We have a simple random samples that are independent. 2. x 1<br />

,<br />

n 1<br />

− x 1<br />

, x 2<br />

, and n 2<br />

− x 2<br />

, are all greater than 5.<br />

a. Set the hypotheses assuming the population proportions are equal.<br />

Null hypothesis: H 0<br />

: p 1<br />

= p 2<br />

Alternate hypothesis:<br />

Two Tailed: H 0<br />

: p 1<br />

≠ p 2<br />

Left Tailed: H 0<br />

: p 1<br />

< p 2<br />

Right Tailed: H 0<br />

: p 1<br />

> p 2<br />

b. Significance level: α<br />

c. Test statistic: z 0<br />

=<br />

p ˆ 1<br />

− p ˆ 2<br />

ˆ p p<br />

(1 − p ˆ p<br />

)<br />

1<br />

n 1<br />

+ 1 n 2<br />

d. Critical Value Method: Calculate the critical values using Table II.<br />

These values divide the rejection region and the non-rejection region:<br />

Two Tailed Test: ±z α /2<br />

Left Tailed Test: −z α<br />

Right Tailed Test: z α<br />

If the values of the test statistic,<br />

Otherwise don't reject H 0<br />

.<br />

z 0<br />

falls in the reject region, reject H 0<br />

.<br />

e. P-Value Method: Use Table II to find the area <strong>for</strong> z 0<br />

and more extreme<br />

than z 0<br />

. This area is the P-value. (Two Tailed: Area left of – z 0<br />

added<br />

to the area to the right of z 0<br />

. Left Tailed: Area to the left of – z 0<br />

. Right<br />

Tailed: Area to the right of z 0<br />

.) Reject the null hypothesis, H 0<br />

, if the<br />

P-value ≤ α. Otherwise, don't reject H 0<br />

.<br />

f. Interpret the results.


8. Two-Sample z-Interval Procedure: To find a confidence interval <strong>for</strong> the<br />

difference between two population proportions, p 1<br />

and p 2<br />

.<br />

Assumptions: 1. We have a simple random samples that are independent. 2. x 1<br />

,<br />

n 1<br />

− x 1<br />

, x 2<br />

, and n 2<br />

− x 2<br />

, are all greater than 5.<br />

For the confidence level of 1 – α, use Table II to find z α /2<br />

The end points of the confidence interval <strong>for</strong> p 1<br />

– p 2<br />

are<br />

( p ˆ 1<br />

− p ˆ 2<br />

) ± z α /2<br />

⋅<br />

p ˆ 1<br />

(1− p ˆ 1<br />

) p<br />

+ ˆ 2<br />

(1 − p ˆ 2<br />

)<br />

.<br />

n 2<br />

n 1<br />

Interpret the confidence interval.<br />

9. The margin of error <strong>for</strong> the estimate of p 1<br />

– p 2<br />

is<br />

E = z α /2<br />

⋅<br />

p ˆ 1<br />

(1 − p ˆ 1<br />

) p<br />

+ ˆ 2<br />

(1 − p ˆ 2<br />

)<br />

.<br />

n 2<br />

n 1<br />

This is half the length of the confidence interval and it represents the precision<br />

with which ˆ p 1<br />

– ˆ p 2<br />

estimates p 1<br />

– p 2<br />

.<br />

10. Sample Size <strong>for</strong> Estimating p 1<br />

– p 2<br />

: A (1−α)-level confidence interval <strong>for</strong> the<br />

difference between two population proportions that has a margin of error of at<br />

most E can be obtained by choosing<br />

⎛<br />

n 1<br />

= n 2<br />

= 0.5 z α /2 ⎞<br />

⎝ E ⎠<br />

2<br />

rounded up to the nearest whole number.<br />

If you can make educated guesses, ˆ p 1g<br />

and p ˆ 2g<br />

<strong>for</strong> ˆ p 1<br />

and ˆ p 2<br />

, you should<br />

instead choose<br />

n 1<br />

= n 2<br />

=<br />

(<br />

p ˆ 1g<br />

(1 − p ˆ 1g<br />

) + p ˆ 2g<br />

(1− p ˆ 2g<br />

)) ⎛<br />

⎝<br />

z α /2<br />

E<br />

⎞<br />

⎠<br />

2<br />

rounded up to the nearest<br />

whole number. (If a range an estimate <strong>for</strong> ˆ p 1<br />

and ˆ p 2<br />

are given as a range of<br />

values are pick the values in the range that are closest to 0.5.)<br />

11. <strong>Hypothesis</strong> test <strong>for</strong> two population proportions can be conducted with a calculator<br />

using 2-PropZTest under STAT TEST. Confidence intervals can be found in<br />

the calculator using 2-PropZInt under STAT TEST.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!