02.02.2015 Views

Meromorphic Starlike Functions with Alternating and Missing ...

Meromorphic Starlike Functions with Alternating and Missing ...

Meromorphic Starlike Functions with Alternating and Missing ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

General Mathematics Vol. 14, No. 4 (2006), 113–126<br />

<strong>Meromorphic</strong> <strong>Starlike</strong> <strong>Functions</strong> <strong>with</strong><br />

<strong>Alternating</strong> <strong>and</strong> <strong>Missing</strong> Coefficients 1<br />

M. Darus, S. B. Joshi <strong>and</strong> N. D. Sangle<br />

In memoriam of Associate Professor Ph. D. Luciana Lupaş<br />

Abstract<br />

In this paper we introduced a new class Ω p (n, α) of meromorphic<br />

starlike univalent functions <strong>with</strong> alternating coefficients in the punctured<br />

unit disk U ∗ = {z : 0 < |z| < 1}. We obtain among other<br />

results are the coefficient inequalities, distortion theorem <strong>and</strong> class<br />

preserving integral operator.<br />

2000 Mathematics Subject Classification: 30C45<br />

Keywords: meromorphic function, <strong>Starlike</strong> functions, Distortion theorem<br />

1 Received 24 September, 2006<br />

Accepted for publication (in revised form) 9 November, 2006<br />

113


114 M. Darus, S. B. Joshi <strong>and</strong> N. D. Sangle<br />

1 Introduction<br />

Let A p denote the class of functions of the form:<br />

(1) f(z) = a ∞<br />

−1<br />

z + ∑<br />

a p+k z p+k , (a −1 ≠ 0, p ∈ N = {1, 2, 3,...})<br />

k=0<br />

which are regular in the punctured unit disk U ∗ = {z : 0 < |z| < 1}.<br />

Define<br />

(2) D 0 f(z) = f(z)<br />

(3)<br />

Df(z) = D 1 f(z) = a ∞<br />

−1<br />

z + ∑<br />

(p + k + 2)a p+k z p+k<br />

k=0<br />

= (z2 f(z)) ′<br />

z<br />

(4) D 2 f(z) = D(D 1 f(z)),<br />

<strong>and</strong> for n = 1, 2, 3,...<br />

(5)<br />

D n f(z) = D(D n−1 f(z)) = a ∞<br />

−1<br />

z + ∑<br />

(p + k + 2)a p+k z p+k ,<br />

= (z2 D n−1 f(z)) ′<br />

z<br />

Let B n (α), denote the class consisting functions in A p satisfying<br />

(6)<br />

Re<br />

{ D n+1 f(z)<br />

D n f(z)<br />

k=0<br />

}<br />

− 2 < −α, (z ∈ U ∗ , 0 ≤ α < 1,n ∈ N o = N ∪ {0}).<br />

Let Λ p be the subclass of A p which consisting of functions of the form<br />

(7) f(z) = a ∞<br />

−1<br />

z + ∑<br />

(−1) p+k−1 a p+k z p+k , (a −1 > 0;a p+k ≥ 0, p ∈ N).<br />

k=0


<strong>Meromorphic</strong> <strong>Starlike</strong> <strong>Functions</strong>... 115<br />

Further let<br />

(8) Ω p (n,α) = B n (α) ∩ Λ p .<br />

We note that, in [1] Uralegaddi <strong>and</strong> Somanatha define a class B n (α), which<br />

consists functions of the form<br />

f(z) = a ∞<br />

−1<br />

z + ∑<br />

a k z k (a −1 ≠ 0)<br />

k=0<br />

which are analytic in U ∗ <strong>and</strong> obtained inclusion relation, the class preserving<br />

integral. In the same year, Uralegaddi <strong>and</strong> Ganigi [2] considered meromorphic<br />

starlike functions <strong>with</strong> alternating coefficients. Further, recently in [4],<br />

Aouf <strong>and</strong> Darwish also considered meromorphic starlike univalent functions<br />

<strong>with</strong> alternating coefficients <strong>and</strong> obtained coefficient inequalities, distortion<br />

theorem <strong>and</strong> integral operators. The class of meromorphic functions<br />

have been studied by various authors <strong>and</strong> among are Darwish [3], Aouf <strong>and</strong><br />

Hossen [5], <strong>and</strong> Mogra et.al [6], few to mention.<br />

In the present paper, we consider functions of the forms (7) <strong>and</strong> obtain<br />

basic properties, which include for example the coefficient inequalities, distortion<br />

theorem, closure theorem <strong>and</strong> integral operators. Finally, the class<br />

preserving integral operator of the form<br />

(9) F c+1 (z) = (c + 1)<br />

∫ 1<br />

0<br />

u c+1 f(uz)du (0 ≤ u < 1, 0 < c < ∞)<br />

is considered. Techniques used are similar to those of Aouf <strong>and</strong> Hossen [5].


116 M. Darus, S. B. Joshi <strong>and</strong> N. D. Sangle<br />

2 Coefficient Inequality<br />

Theorem 2.1. Let the function f(z) be defined by (1). If<br />

(10)<br />

∞∑<br />

(p + k + 2) n (p + k + α)|a p+k | ≤ (1 − α)|a −1 |,<br />

k=0<br />

then f(z) ∈ B n (α).<br />

Proof. It suffices to show that<br />

D n+1 f(z)<br />

− 1<br />

(11)<br />

D n f(z) D<br />

∣<br />

n+1 f(z)<br />

< 1, |z| < 1,<br />

− (3 − 2α)<br />

D n f(z)<br />

∣<br />

we have ∣ ∣∣∣∣∣ D n+1 f(z)<br />

− 1<br />

D n f(z) D n+1 f(z)<br />

− (3 − 2α)<br />

D n f(z)<br />

∣ =<br />

∣ ∞∑<br />

∣∣∣∣∣∣∣ (p + k + 2) n (p + k + 1)a p+k z p+k<br />

=<br />

k=0<br />

∑<br />

∣(2 − 2α)a −1 − ∞ ≤<br />

(p + k + 2) n (p + k + 2α − 1)a p+k z p+k<br />

≤<br />

k=0<br />

∞∑<br />

(p + k + 2) n (p + k + 1)|a p+k |<br />

k=0<br />

∑<br />

(2 − 2α)a −1 − ∞ .<br />

(p + k + 2) n (p + k + 2α − 1)|a p+k |<br />

k=0<br />

The last expression is bounded by 1 if<br />

∞∑<br />

∞∑<br />

(p+k+2) n (p+k+1)|a p+k | ≤ (2−2α)a −1 − (p+k+2) n (p+k+2α−1)|a p+k |,<br />

k=0<br />

which reduces to<br />

∞∑<br />

(12) (p + k + 2) n (p + k + α)|a p+k | ≤ (1 − α)|a −1 |.<br />

k=0<br />

k=0<br />

But (12) is true by hypothesis. Hence the result follows.


<strong>Meromorphic</strong> <strong>Starlike</strong> <strong>Functions</strong>... 117<br />

Theorem 2.2. Let the function f(z) be defined by (7). Then f(z) ∈<br />

Ω p (n,α) if <strong>and</strong> only if<br />

(13)<br />

∞∑<br />

(p + k + 2) n (p + k + α)|a p+k | ≤ (1 − α)a −1 ,<br />

k=0<br />

Proof. In view of Theorem 2.1, it suffices to prove the ”only if” part. Let<br />

us assume that f(z) defined by (7) is in Ω p (n,α). Then<br />

{ } { }<br />

D n+1 f(z) D n+1 f(z) − 2D n f(z)<br />

Re<br />

− 2 = Re<br />

,<br />

D n f(z)<br />

D n f(z)<br />

(14) ⎧<br />

∑<br />

⎪⎨ a −1 − ∞ (p + k + 2) n (p + k)a p+k z<br />

⎫⎪ p+k<br />

⎬<br />

k=0<br />

= Re<br />

∑<br />

⎪⎩ −a −1 − ∞ < −α, |z| < 1.<br />

(−1) p+k−1 (p + k + 2) n a p+k z p+k ⎪ ⎭<br />

k=0<br />

Choose value of z on the real axis so that Dn+1 f(z)<br />

D n f(z)<br />

−2 is real. Upon clearing<br />

the denominator in (14) <strong>and</strong> letting z → 1 through real values, we obtain<br />

(<br />

∞∑<br />

∞∑<br />

a −1 − (p + k + 2) n (p + k)a p+k ≥ a −1 + (p + k + 2) n a p+k<br />

)α.<br />

Thus<br />

k=0<br />

k=0<br />

∞∑<br />

(p + k + 2) n (p + k + α)a p+k ≤ (1 − α)a −1 .<br />

k=0<br />

Hence the result follows.<br />

Corollary 1 Let the function f(z) be defined by (7) be in Ω p (n,α). Then<br />

(15) a p+k ≤<br />

The result is sharp for the function<br />

(1 − α)a −1<br />

(p + k + 2) n (p + k + α) ,<br />

(16) f(z) = a −1<br />

z + (1 − α)a −1<br />

(−1)p+k−1<br />

(p + k + 2) n (p + k + α) zp+k , (k ≥ 1).


118 M. Darus, S. B. Joshi <strong>and</strong> N. D. Sangle<br />

3 Distortion Theorem<br />

Theorem 3.1. Let the function f(z) be defined by (7) be in Ω p (n,α). Then<br />

for 0 < |z| < 1, we have<br />

(17)<br />

a −1<br />

r −<br />

(1 − α)a −1<br />

(p + 3) n (p + α + 1) r ≤ |f(z)| ≤ a −1<br />

r +<br />

(1 − α)a −1<br />

(p + 3) n (p + α + 1) r,<br />

where equality holds for the function<br />

(18) f(z) = a −1<br />

z + (1 − α)a −1<br />

(p + 3) n (p + α + 1) zp , (z = ir,r),<br />

<strong>and</strong><br />

(19)<br />

a −1<br />

r 2 −<br />

(1 − α)a −1<br />

(p + 3) n (p + α + 1) ≤ |f ′ (z)| ≤ a −1<br />

r 2 +<br />

(1 − α)a −1<br />

(p + 3) n (p + α + 1) ,<br />

where equality holds for the function f(z) given by (18) at z = ∓ir, ∓r.<br />

Proof. In view of Theorem 2.2, we have<br />

(20)<br />

∞∑<br />

a p+k ≤<br />

k=0<br />

(1 − α)a −1<br />

(p + k + 2) n (p + k + α) .<br />

Thus, for 0 < |z| < 1,<br />

(21)<br />

<strong>and</strong><br />

(22)<br />

|f(z)| ≤ a ∞<br />

−1<br />

r + r ∑<br />

≤<br />

k=0<br />

a p+k<br />

a −1<br />

r + (1 − α)a −1<br />

(p + 3) n (p + α + 1) r<br />

|f(z)| ≥ a ∞<br />

−1<br />

r − r ∑<br />

≥<br />

k=0<br />

a p+k<br />

a −1<br />

r − (1 − α)a −1<br />

(p + 3) n (p + α + 1) r.


<strong>Meromorphic</strong> <strong>Starlike</strong> <strong>Functions</strong>... 119<br />

Thus (17) follows.<br />

Since<br />

∞∑<br />

(p+3) n (p+α+1) (p+k)|a p+k | ≤<br />

k=0<br />

∞∑<br />

(p+k+2) n (p+k+α)|a p+k | ≤ (1−α)|a −1 |<br />

k=0<br />

where (p+k+2)n (p+k+α)<br />

p+k<br />

follows that<br />

is an increasing function of k, from Theorem 2.2, it<br />

(23)<br />

∞∑<br />

k=0<br />

(p + k) ≤ a −1<br />

r + (1 − α)a −1<br />

(p + 3) n (p + α + 1) .<br />

Hence<br />

(24)<br />

|f ′ (z)| ≤ a −1<br />

r + ∑ ∞<br />

(p + k)a 2 p+k r p+k−1<br />

≤<br />

≤<br />

a −1<br />

k=0<br />

∞<br />

r + ∑<br />

(p + k)a p+k<br />

k=0<br />

a −1<br />

r + (1 − α)a −1<br />

(p + 3) n (p + α + 1)<br />

<strong>and</strong><br />

(25)<br />

|f ′ (z)| ≥ a −1<br />

r − ∑ ∞<br />

(p + k)a 2 p+k r p+k−1<br />

≥<br />

≥<br />

a −1<br />

k=0<br />

∞<br />

r − ∑<br />

(p + k)a p+k<br />

k=0<br />

a −1<br />

r − (1 − α)a −1<br />

(p + 3) n (p + α + 1)<br />

Thus (19) follows. It can be easily seen that the function f(z) defined by<br />

(18) is extremal for the theorem.


120 M. Darus, S. B. Joshi <strong>and</strong> N. D. Sangle<br />

4 Closure Theorem<br />

Let the function f j (z) be defined for j ∈ {1, 2, 3,...,m}, by<br />

(26) f j (z) = a −1,j<br />

z<br />

for z ∈ U ∗ .<br />

∞∑<br />

+ (−1) p+k−1 a p+k,j z p+k , (a −1,j > 0;a p+k,j ≥ 0)<br />

k=0<br />

Now, we shall prove the following result for the closure of function in the<br />

class Ω p (n,α).<br />

Theorem 4.1. Let the functions f j (z) be defined by (26) be in the class<br />

Ω p (n,α) for every j ∈ {1, 2, 3,...,m}. Then the function F(z) defined by<br />

(27) F(z) = b ∞<br />

−1<br />

z + ∑<br />

(−1) p+k−1 b p+k z p+k , (b −1 > 0;b p+k ≥ 0, p ∈ N)<br />

k=0<br />

is a member of the class Ω p (n,α), where<br />

(28) b −1 = 1 m<br />

∞∑<br />

a −1,j <strong>and</strong> b p+k = 1 m<br />

j=1<br />

∞∑<br />

a p+k,j (k = 1, 2,...).<br />

j=1<br />

Proof. Since f j (z) ∈ Ω p (n,α), it follows from Theorem 2.2, that<br />

(29)<br />

∞∑<br />

(p + k + 2) n (p + k + α)|a p+k,j | ≤ (1 − α)|a −1,j |,<br />

k=0<br />

for every j ∈ {1, 2, 3,...,m}. Hence,<br />

=<br />

k=0<br />

∞∑<br />

(p + k + 2) n (p + k + α)b p+k =<br />

k=0<br />

( )<br />

∞∑<br />

(p + k + 2) n 1<br />

∞∑<br />

(p + k + α) a p+k,j =<br />

m<br />

j=1


<strong>Meromorphic</strong> <strong>Starlike</strong> <strong>Functions</strong>... 121<br />

= 1 m<br />

(<br />

∞∑ ∑ ∞<br />

)<br />

(p + k + 2) n (p + k + α)a p+k,j ≤<br />

j=1<br />

k=0<br />

( )<br />

1<br />

∞∑<br />

≤ (1 − α) a −1,j = (1 − α)b −1 ,<br />

m<br />

which (in view of Theorem 2.2) implies that F(z) ∈ Ω p (n,α).<br />

j=1<br />

Theorem 4.2. The class Ω p (n,α) is closed under convex linear combination.<br />

Proof. Let the f j (z)(j = 1, 2) defined by (26) be in the class Ω p (n,α), it is<br />

sufficient to prove that the function<br />

(30) H(z) = λf 1 (z) + (1 − λ)f 2 (z) (0 ≤ λ ≤ 1)<br />

is also in the class Ω p (n,α). Since, for (0 ≤ λ ≤ 1),<br />

(31) H(z) = λa −1,1 + (1 − λ)a −1,2<br />

z<br />

∞∑<br />

− {λa p+k,1 + (1 − λ)a p+k,2 } z p+k ,<br />

k=0<br />

we observe that<br />

∞∑<br />

(p + k + 2) n (p + k + α) {λa p+k,1 + (1 − λ)a p+k,2 } =<br />

k=0<br />

∞∑<br />

∞∑<br />

= λ (p+k+2) n (p+k+α)λa p+k,1 +(1−λ) (p+k+2) n (p+k+α)λa p+k,2 ≤<br />

k=0<br />

k=0<br />

≤ (1 − α) {λa −1,1 + (1 − λ)a −1,2 }<br />

<strong>with</strong> the aid of Theorem 2.2. Hence H(z) ∈ Ω p (n,α).<br />

This completes the proof of Theorem 4.2.


122 M. Darus, S. B. Joshi <strong>and</strong> N. D. Sangle<br />

Theorem 4.3. Let<br />

f o (z) = a −1<br />

(32)<br />

z<br />

f p+k (z) = a −1<br />

z + (1 − α)a −1<br />

(33)<br />

(−1)p+k−1<br />

(p + k + 2) n (p + k + α) zp+k , (k ≥ 1).<br />

Then f(z) ∈ Ω p (n,α) if <strong>and</strong> only if it can be expressed in the form<br />

(34) f(z) =<br />

where<br />

∞∑<br />

λ p+k f p+k (z),<br />

k=0<br />

λ p+k (k ≥ 0) <strong>and</strong><br />

∞∑<br />

λ k = 1.<br />

Proof. Let<br />

∞∑<br />

f(z) = λ p+k f p+k (z), where λ p+k (k ≥ 0) <strong>and</strong><br />

∞∑<br />

λ k = 1.<br />

k=0<br />

k=0<br />

k=0<br />

Then<br />

( )<br />

∞∑<br />

∞∑<br />

∞∑<br />

f(z) = λ p+k f p+k (z) = λ o f o (z) + λ p+k f p+k (z) = 1 − λ p+k +<br />

+<br />

k=0<br />

k=1<br />

k=0<br />

∞∑<br />

{ }<br />

a−1<br />

λ p+k<br />

z + (1 − α)a −1<br />

(−1)p+k−1<br />

(p + k + 2) n (p + k + α) zp+k =<br />

k=0<br />

Since<br />

(35)<br />

= a −1<br />

z + (1 − α)a −1<br />

(−1)p+k−1<br />

(p + k + 2) n (p + k + α) zp+k<br />

∞∑<br />

(p + k + 2) n (1 − α)a −1 λ p+k<br />

(p + k + α) ·<br />

(p + k + 2) n (p + k + α)<br />

k=0<br />

∞∑<br />

= (1 − α)a −1 + λ p+k = (1 − α)a −1 (1 − λ o )<br />

≤ (1 − α)a −1 ,<br />

k=0


<strong>Meromorphic</strong> <strong>Starlike</strong> <strong>Functions</strong>... 123<br />

by Theorem 2.2, f(z) ∈ Ω p (n,α). Conversely, we suppose that f(z) defined<br />

by (7) is in the class Ω p (n,α). Then by using (15), we get<br />

(36) a p+k ≤<br />

Setting<br />

(1 − α)a −1<br />

, (k ≥ 1).<br />

(p + k + 2) n (p + k + α)<br />

(37) λ p+k = (p + k + 2)n (p + k + α)<br />

(1 − α)a −1<br />

a p+k , (k ≥ 1).<br />

<strong>and</strong><br />

(38) λ o = 1 −<br />

∞∑<br />

λ p+k ,<br />

k=0<br />

we have (34). This completes the proof of the Theorem 4.3.<br />

5 Integral Operator<br />

In his section we consider integral transforms of functions in the class<br />

Ω p (n,α).<br />

Theorem 5.1. Let the function f(z) be defined by (7) be in the class Ω p (n,α),<br />

then the integral transforms<br />

(39) F c+1 (z) = (c + 1)<br />

are in Ω p (n,α), where<br />

(40) δ(α,c,p) =<br />

∫ 1<br />

The result is sharp for the function<br />

0<br />

u c+1 f(uz)du<br />

(0 ≤ u < 1, 0 < c < ∞),<br />

(p + k + 3)(p + α + 1) − (p + 1)(1 − α)(c + 1)<br />

.<br />

(p + k + 3)(p + α + 1) + (c + 1)(1 − α)<br />

(41) f(z) = a −1<br />

z + (1 − α)a −1<br />

(−1)p+k−1<br />

(p + 3) n (p + α + 1) zp .


124 M. Darus, S. B. Joshi <strong>and</strong> N. D. Sangle<br />

Proof. Let<br />

(42) F c+1 (z) = (c+1)<br />

k=0<br />

∫ 1<br />

0<br />

u c+1 f(uz)du = a ∞<br />

−1<br />

z − ∑ (c + 1)<br />

p + k + c + 2 a p+kz p+k .<br />

In view of Theorem 2.2, it is sufficient to show that<br />

∞∑<br />

( )<br />

(p + k + 2) n (p + k + δ) c + 1<br />

(43)<br />

a p+k ≤ 1.<br />

(1 − δ)a −1 p + k + c + 2<br />

k=0<br />

Since f(z) ∈ Ω p (n,α), we have<br />

∞∑ (p + k + 2) n (p + k + α)<br />

(44)<br />

a p+k ≤ 1.<br />

(1 − α)a −1<br />

k=0<br />

Thus (42) will be satisfy if<br />

or<br />

(45) δ ≤<br />

(p + k + δ)(c + 1)<br />

(1 − δ)(p + k + c + 2) ≤ p + k + α<br />

1 − α<br />

for each k,<br />

(p + k + c + 2)(p + k + α) − (p + k)(1 − α)(c + 1)<br />

.<br />

(p + k + c + 2)(p + k + α) + (c + 1)(1 − α)<br />

For each α, p, <strong>and</strong> c fixed, let<br />

=<br />

Then<br />

F(k) =<br />

(p + k + c + 2)(p + k + α) − (p + k)(1 − α)(c + 1)<br />

.<br />

(p + k + c + 2)(p + k + α) + (c + 1)(1 − α)<br />

F(k + 1) − F(k) =<br />

(c + 1)(1 − α)(p + k + 1)(p + k + 2)<br />

[(p + k + c + 2)(p + k + α) + (c + 1)(1 − α)][(p + k + c + 3)(p + k + α + 1) + (c + 1)(1 − α)] ><br />

for each k. Hence, F(k) is an increasing function of k.<br />

Since<br />

F(1) =<br />

the result follows.<br />

(p + c + 3)(p + α + 1) − (p + 1)(1 − α)(c + 1)<br />

,<br />

(p + c + 3)(p + α + 1) + (c + 1)(1 − α)


<strong>Meromorphic</strong> <strong>Starlike</strong> <strong>Functions</strong>... 125<br />

References<br />

[1] B. A. Uralegaddi <strong>and</strong> C. Somanatha, New criteria for meromorphic<br />

starlike univalent functions, Bull. Austral. Math. Soc. 43, (1991), 137-<br />

140.<br />

[2] B. A. Uralegaddi <strong>and</strong> M. D. Ganigi, <strong>Meromorphic</strong> starlike functions<br />

<strong>with</strong> alternating coefficients, Rend. Math. 11 (7), Roma(1991), 441-<br />

446.<br />

[3] H. E. Darwish, <strong>Meromorphic</strong> p-valent starlike functions <strong>with</strong> negative<br />

coefficients, Indian J. Pure Appl. Math. 33(7), (2002), 967-976.<br />

[4] M. K. Aouf <strong>and</strong> H. E. Darwish, <strong>Meromorphic</strong> starlike univalent functions<br />

<strong>with</strong> alternating coefficients, Utilitas Math. 47, (1995),137-144.<br />

[5] M. K. Aouf <strong>and</strong> H. M. Hossen, New criteria for meromorphic p-valent<br />

starlike functions, Tsukuba J. Math. 17(2), (1993), 1-6.<br />

[6] M. L. Mogra, T. R. Reddy <strong>and</strong> O. P. Juneja, <strong>Meromorphic</strong> univalent<br />

functions <strong>with</strong> positive coefficients, Bull. Austral. Math. Soc. 32,<br />

(1985), 161-176.<br />

School of Mathematical Sciences<br />

Faculty of Science <strong>and</strong> Technology<br />

Universiti Kebangsaan Malaysia<br />

Bangi, 43600, Selangor D.E., Malaysia<br />

E-mail address: maslina@pkrisc.cc.ukm.my


126 M. Darus, S. B. Joshi <strong>and</strong> N. D. Sangle<br />

Department of Mathematics<br />

Walch<strong>and</strong> College of Engineering<br />

Sangli (M. S), India 416415<br />

E-mail address:joshisb@hotmail.com<br />

Department of Mathematics<br />

Annasaheb Dange College of Engineering<br />

Ashta, Sangli (M. S), India 416301<br />

E-mail address: navneet − sangle@rediffmail.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!