02.02.2015 Views

Sparse Variance for primes in arithmetic progression - Hausdorff ...

Sparse Variance for primes in arithmetic progression - Hausdorff ...

Sparse Variance for primes in arithmetic progression - Hausdorff ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SPARSE VARIANCE FOR PRIMES IN<br />

ARITHMETIC PROGRESSION<br />

J. BRÜDERN AND T. D. WOOLEY∗<br />

Abstract. An analogue of the Montgomery-Hooley asymptotic <strong>for</strong>mula is established<br />

<strong>for</strong> the variance of the number of <strong>primes</strong> <strong>in</strong> <strong>arithmetic</strong> <strong>progression</strong>s, <strong>in</strong> which the moduli<br />

are restricted to the values of a polynomial.<br />

1. Introduction<br />

The distribution of <strong>primes</strong> is a fundamental problem <strong>in</strong> the theory of numbers. Our<br />

concern here is with the error terms that arise <strong>in</strong> the prime number theorem <strong>for</strong> <strong>arithmetic</strong><br />

<strong>progression</strong>s. Let φ denote Euler’s totient, and def<strong>in</strong>e the relevant quantity E(x; k, l) <strong>for</strong><br />

real x ≥ 2, and coprime natural numbers k and l, through the equation<br />

∑<br />

p≤x<br />

p≡l mod k<br />

log p =<br />

x + E(x; k, l).<br />

φ(k)<br />

Montgomery [8] obta<strong>in</strong>ed an asymptotic <strong>for</strong>mula <strong>for</strong> the variance<br />

V (x, y) = ∑ k≤y<br />

k∑<br />

l=1<br />

(l,k)=1<br />

∣E(x; k, l)∣ 2<br />

that was promptly ref<strong>in</strong>ed by Hooley [5], and now takes the shape<br />

V (x, y) = xy log y + cxy + O(x 1/2 y 3/2 + x 2 (log x) −A ). (1)<br />

Here, the coefficient c is a certa<strong>in</strong> real constant, the exponent A is a preassigned positive<br />

real number, and the relation (1) holds uni<strong>for</strong>mly <strong>for</strong> 1 ≤ y ≤ x. In this range, the<br />

asymptotic <strong>for</strong>mula (1) implies the upper bound<br />

V (x, y) ≪ xy log x + x 2 (log x) −A (2)<br />

which is known as the Barban-Davenport-Halberstam theorem. If one s<strong>in</strong>gles out an<br />

<strong>in</strong>dividual <strong>progression</strong> l modulo k from the mean V (x, y), then one recovers from the<br />

bound (2) the Siegel-Walfisz theorem, the latter assert<strong>in</strong>g that the estimate<br />

E(x; k, l) ≪ x(log x) −A/2<br />

1991 Mathematics Subject Classification. 11N13, 11P55.<br />

Key words and phrases. Primes <strong>in</strong> <strong>progression</strong>s, Barban-Davenport-Halberstam theorem.<br />

∗ The authors thank Shandong University <strong>for</strong> provid<strong>in</strong>g a creative atmosphere dur<strong>in</strong>g the period while<br />

this paper was conceived, and the <strong>Hausdorff</strong> Research Institute <strong>for</strong> very good work<strong>in</strong>g conditions while<br />

the paper was completed. The second author is supported <strong>in</strong> part by a Royal Society Wolfson Research<br />

Merit Award.<br />

1


2 J. BRÜDERN AND T. D. WOOLEY<br />

holds uni<strong>for</strong>mly <strong>in</strong> k and l. Although it seems difficult to improve this last bound, the<br />

asymptotic <strong>for</strong>mula <strong>for</strong> V (x, y) shows that <strong>in</strong> mean square, the average size of E(x; k, l)<br />

is about the square-root of (x log x)/k.<br />

One might ask whether conclusions similar to those described above are possible <strong>for</strong><br />

th<strong>in</strong>ner averages, <strong>for</strong> example with the moduli k restricted to the values of a polynomial.<br />

This was studied recently by Mikawa and Peneva [7], who obta<strong>in</strong>ed a result analogous<br />

to the Barban-Davenport-Halberstam theorem. More precisely, let f ∈ Q[t] denote an<br />

<strong>in</strong>teger-valued polynomial of degree d ≥ 2, with positive lead<strong>in</strong>g coefficient and derivative<br />

f ′ . Then, there exist real numbers y 1 such that the <strong>in</strong>equalities f(y) ≥ 2 and f ′ (y) ≥ 1<br />

hold <strong>for</strong> all y ≥ y 1 . Denote the smallest such y 1 with y 1 ≥ 1 by y 0 (f). We may now def<strong>in</strong>e<br />

V f (x, y) =<br />

∑<br />

y 0 (f)


SPARSE VARIANCE FOR PRIMES IN ARITHMETIC PROGRESSION 3<br />

L-functions (see, <strong>in</strong> particular, Hooley [5], [6], Friedlander and Goldston [2], Goldston and<br />

Vaughan [3] and Vaughan [11]). Likewise, <strong>in</strong> the conclusion of our theorem above, the<br />

term x 2 (log x) −A may be replaced conditionally by x 2−δ(d) , where δ(d) is a positive real<br />

number the size of which is determ<strong>in</strong>ed by the maximal sav<strong>in</strong>gs available <strong>for</strong> Weyl sums<br />

<strong>in</strong>volv<strong>in</strong>g a degree d polynomial. We spare the reader any details.<br />

Our methods are rather flexible. One may replace the <strong>primes</strong> with other sequences of<br />

<strong>in</strong>terest, and functions can be substituted <strong>for</strong> the polynomial f with growth more rapid<br />

than any polynomial. For example, by work<strong>in</strong>g along the l<strong>in</strong>es of Brüdern and Perelli<br />

[1], it should be possible to deduce an asymptotic <strong>for</strong>mula <strong>for</strong> V f (x, y) when f(k) =<br />

[ exp((log k) γ )], and γ is any positive number smaller than 3/2.<br />

2. Two preparatory steps<br />

Our <strong>in</strong>itial advance on the analysis of the variance V f (x, y) <strong>in</strong>volves the isolation of a<br />

term accessible to the circle method, and this is the objective of this section. Fix the<br />

value of A ≥ 1 <strong>for</strong> the rest of the paper, and choose a permissible value of B = B(A) so<br />

that the asymptotic relation (4) holds uni<strong>for</strong>mly <strong>for</strong> f(y) ≤ x(log x) −B . An <strong>in</strong>spection of<br />

[7] reveals that one may take B = 2 4d A. When x is sufficiently large, there is a unique<br />

solution y to the equation f(y) = x(log x) −B that we denote by y 1 = y 1 (x). As a truncated<br />

analogue of the sum V f (x, y) def<strong>in</strong>ed <strong>in</strong> (3), we def<strong>in</strong>e<br />

V ′<br />

f(x, y) =<br />

∑<br />

y 1


4 J. BRÜDERN AND T. D. WOOLEY<br />

where<br />

S 1 = ∑<br />

y 1


SPARSE VARIANCE FOR PRIMES IN ARITHMETIC PROGRESSION 5<br />

3. The circle method<br />

In this section we apply the circle method to evaluate the sum S 0 def<strong>in</strong>ed <strong>in</strong> equation<br />

(11). With this objective <strong>in</strong> view, we rewrite the congruence condition p 1 ≡ p 2 mod f(k)<br />

<strong>in</strong> (11) <strong>in</strong> the <strong>for</strong>m p 2 − p 1 = hf(k), with h ∈ Z. In addition, we observe that the<br />

supplementary condition h ≥ 1 is equivalent to the summation condition p 1 < p 2 imposed<br />

<strong>in</strong> the second summation of (11). Consequently, on writ<strong>in</strong>g<br />

T f (α) = ∑ ∑<br />

f ′ (k) e(αhf(k)), (13)<br />

y 1


6 J. BRÜDERN AND T. D. WOOLEY<br />

Lemma 1. There is an absolute constant D ≥ 1 with the property that whenever β ∈ R,<br />

and b and r are coprime natural numbers with ∣rβ − b∣ ≤ 1/r, one has<br />

S(β; z 0 , z) ≪ z d (log z) ( (r + z d ∣rβ − b∣) −1 + z −1 + (r + z d ∣rβ − b∣)z −d) 1/(Dd 3 )<br />

.<br />

Proof. When k is a natural number, let J s,k (P ) denote the number of <strong>in</strong>tegral solutions<br />

of the simultaneous equations<br />

s∑<br />

(x j i − yj i ) = 0 (1 ≤ j ≤ k),<br />

i=1<br />

with 1 ≤ x i , y i ≤ P (1 ≤ i ≤ s). Then, by Theorem 7.4 of Vaughan [9], <strong>for</strong> example,<br />

there exists an absolute constant D ≥ 1 such that whenever s ≥ 1 2 Dk3 , one has J s,k (P ) ≪<br />

P 2s−k(k+1)/2 . Apply<strong>in</strong>g Theorem 5.2 of Vaughan [9] <strong>in</strong> conjunction with partial summation,<br />

we deduce that<br />

S(β; z 0 , z) ≪ z d (log z)(r −1 + z −1 + rz −d ) 1/(Dd3) .<br />

The conclusion of the lemma now follows from a familiar transference pr<strong>in</strong>ciple (see, <strong>for</strong><br />

example, Exercise 2 of Chapter 2 of Vaughan [9]).<br />

□<br />

We are now ready to deduce (15). Let y(h) be the upper bound <strong>for</strong> k determ<strong>in</strong>ed by<br />

the simultaneous conditions k ≤ y and f(k) ≤ x/h. Then f(y(h)) = m<strong>in</strong>{f(y), x/h}.<br />

Revers<strong>in</strong>g the order of summation <strong>in</strong> (13) yields<br />

T f (α) =<br />

∑<br />

S(αh; y 1 , y(h)). (18)<br />

h≤(log x) B<br />

Suppose that α ∈ m. For any <strong>in</strong>teger h with 1 ≤ h ≤ (log x) B , we apply Dirichlet’s<br />

theorem to f<strong>in</strong>d coprime <strong>in</strong>tegers r = r(h) and b = b(h) with<br />

1 ≤ r ≤ y(h) d−2/3 and ∣αhr − b∣ ≤ y(h) −d+2/3 .<br />

The validity of the simultaneous conditions hr ≤ Q and ∣α − b/(hr)∣ ≤ Q/x would imply<br />

that α ∈ M, whence <strong>for</strong> each h, at least one of these <strong>in</strong>equalities fails. If hr > Q, then<br />

r > (log x) C−B , and an application of Lemma 1 with β = αh yields<br />

S(αh; y 1 , y(h)) ≪ x(log x)(r −1 + y(h) −2/3 ) 1/(Dd3) ≪ x(log x) 1+(B−C)/(Dd3) .<br />

If hr ≤ Q but ∣α − b/(hr)∣ > Q/x, meanwhile, then <strong>in</strong> like manner Lemma 1 gives<br />

S(αh; y 1 , y(h)) ≪ x(log x)Q −1/(Dd3) ≪ x(log x) 1−C/(Dd3) .<br />

Summ<strong>in</strong>g over natural numbers h with h ≤ (log x) B , we deduce (15) from (18).<br />

4. The major arcs<br />

We move on to analyse the major arc contribution S M to S 0 , and subsequently <strong>in</strong>corporate<br />

the conclusions of the previous section <strong>in</strong> order to obta<strong>in</strong> an asymptotic <strong>for</strong>mula<br />

<strong>for</strong> S 0 . For α ∈ M, one may write α = β + a/q <strong>for</strong> some β ∈ R with ∣β∣ ≤ Q/x, and<br />

coprime <strong>in</strong>tegers a and q with 1 ≤ a ≤ q ≤ Q. Then, by (14) and Lemma 3.1 of Vaughan<br />

[9], one has<br />

U(α) = μ(q)<br />

φ(q) J(β) + O(x(log x)−5C ),


SPARSE VARIANCE FOR PRIMES IN ARITHMETIC PROGRESSION 7<br />

where<br />

J(β) = ∑ n≤x<br />

e(βn).<br />

The trivial upper bound T f (α) ≪ x log x (which is available from (13)) and (17) now<br />

suffice to confirm that<br />

S M = ∑ μ(q) 2 q∑<br />

∫ Q/x<br />

T<br />

φ(q) 2<br />

f (β + a/q)∣J(β)∣ 2 dβ + O(x 2 (log x) −C ).<br />

q≤Q<br />

−Q/x<br />

a=1<br />

(a,q)=1<br />

We would like to extend the sum over all natural numbers q here. It is convenient<br />

to do this <strong>in</strong> two steps. In the first of these steps, we extend the range <strong>for</strong> q above to<br />

q ≤ x 1/(2d) . For this, we note that the <strong>in</strong>tervals ∣α − a/q∣ ≤ Q/x with 1 ≤ a ≤ q ≤ x 1/(2d)<br />

and (a, q) = 1 are pairwise disjo<strong>in</strong>t. When a and q are coprime natural numbers with<br />

1 ≤ a ≤ q and Q < q ≤ x 1/(2d) , and ∣β∣ ≤ Q/x, one has β + a/q ∈ m. There<strong>for</strong>e, on<br />

recall<strong>in</strong>g (15), <strong>for</strong> any such β, a and q, one has<br />

∣T f (β + a/q)∣ ≤ sup ∣T f (α)∣ ≪ x(log x) −2A .<br />

α∈m<br />

Comb<strong>in</strong><strong>in</strong>g this estimate with the elementary <strong>in</strong>equality<br />

we deduce that<br />

S M =<br />

∑<br />

q≤x 1/(2d) μ(q) 2<br />

φ(q) 2<br />

∫ Q/x<br />

−Q/x<br />

q∑<br />

a=1<br />

(a,q)=1<br />

∣J(β)∣ 2 dβ ≤<br />

∫ Q/x<br />

−Q/x<br />

∫ 1/2<br />

−1/2<br />

∣J(β)∣ 2 dβ = [x],<br />

T f (β + a/q)∣J(β)∣ 2 dβ + O(x 2 (log x) 1−2A ). (19)<br />

Be<strong>for</strong>e extend<strong>in</strong>g the range <strong>for</strong> q even further, we complete the <strong>in</strong>tegral <strong>in</strong> (19) to<br />

∣β∣ ≤ 1. In this range <strong>for</strong> β, one has J(β) ≪ 2 ∣β∣−1 , so that another application of the<br />

trivial bound T f (α) ≪ x log x <strong>in</strong> comb<strong>in</strong>ation with straight<strong>for</strong>ward estimates yields the<br />

upper bound<br />

∑ μ(q) 2<br />

φ(q) 2<br />

q≤x 1/(2d)<br />

q∑<br />

∫<br />

a=1<br />

(a,q)=1 Q/x≤∣β∣≤ 1 2<br />

≪ x(log x) ∑ q≤x<br />

∣T f (β + a/q)J(β) 2 ∣ dβ<br />

1<br />

φ(q)<br />

∫ 1/2<br />

Q/x<br />

β −2 dβ ≪ x 2 (log x) 2−C .<br />

Hence, we may <strong>in</strong>deed extend the <strong>in</strong>tegration <strong>in</strong> (19) to [− 1, 1 ] with the <strong>in</strong>troduction of<br />

2 2<br />

acceptable errors. However, by orthogonality and (13), one has<br />

∫ 1/2<br />

T f (β + a/q)∣J(β)∣ 2 dβ = ∑ ∑ ∑ ∑<br />

( ) ahf(k)<br />

f ′ (k)<br />

e<br />

q<br />

−1/2<br />

y 1


8 J. BRÜDERN AND T. D. WOOLEY<br />

In the last sum, we may replace [x] by x, <strong>in</strong>troduc<strong>in</strong>g an error bounded by O(x log x) <strong>in</strong>to<br />

this identity. We summarize and <strong>in</strong>ject these results <strong>in</strong>to (19) to <strong>in</strong>fer that<br />

where<br />

M 0 =<br />

∑ μ(q) 2<br />

φ(q) 2<br />

q≤x 1/(2d)<br />

<strong>in</strong> which we have written<br />

S M = M 0 + O(x 2 (log x) −A ), (20)<br />

∑<br />

y 1


SPARSE VARIANCE FOR PRIMES IN ARITHMETIC PROGRESSION 9<br />

The conclusion of the lemma follows by collect<strong>in</strong>g together (22), (23) and (24).<br />

In advance of the statement of the next lemma, <strong>for</strong> each natural number m, we def<strong>in</strong>e<br />

ρ(m) to be the number of solutions of the congruence f(a) ≡ 0 mod m.<br />

Lemma 3. For any h ∈ N, the sum<br />

w h (q) = 1 q<br />

q∑<br />

c q (hf(a))<br />

is a multiplicative function of q. When p is a prime, one has<br />

{<br />

p − 1, when p∣h,<br />

w h (p) =<br />

ρ(p) − 1, when p ∤ h.<br />

a=1<br />

Proof. S<strong>in</strong>ce c q (n) is multiplicative as a function of q (see, <strong>for</strong> example, Theorem 272 of<br />

Hardy and Wright [4]), it suffices to apply the Ch<strong>in</strong>ese Rema<strong>in</strong>der Theorem to the sum<br />

over a <strong>in</strong> order to confirm the multiplicativity of w h (q). Next, when p is a prime, we apply<br />

the def<strong>in</strong>ition of c q (n) and orthogonality to obta<strong>in</strong> the relation<br />

w h (p) = 1 p<br />

p−1<br />

∑<br />

l=1<br />

p∑ ( lhf(a)<br />

)<br />

e = card{1 ≤ a ≤ p : hf(a) ≡ 0 mod p} − 1,<br />

p<br />

a=1<br />

and the lemma follows at once.<br />

We <strong>in</strong>ject the asymptotic <strong>for</strong>mula supplied by Lemma 2 <strong>in</strong>to (21). This <strong>in</strong>troduces an<br />

error term<br />

∑ μ(q) 2 ∑<br />

qφ(q)(xy d−1 + y 2d−1 h) ≪ x 2−1/(2d)+ε ,<br />

φ(q) 2<br />

q≤x 1/(2d) h≤x/f(y 1 )<br />

so that we now have<br />

M 0 =<br />

∑ μ(q) 2 ∑<br />

∫ f(y(h))<br />

w<br />

φ(q) 2<br />

h (q) (x − ht) dt + O(x 2−1/(2d)+ε ). (25)<br />

q≤x 1/(2d) h≤x/f(y 1 )<br />

f(y 1 )<br />

We next exchange the order of summation and complete the sum over q. By Lemma 3,<br />

the multiplicative function w h (q)μ(q) 2 is non-negative and bounded by O((q, h)q ε ). This<br />

implies that<br />

∑ μ(q) 2<br />

φ(q) w h(q) = W (h) + O(h ε x −1/(2d) ),<br />

2<br />

q≤x 1/(2d)<br />

with<br />

W (h) =<br />

∞∑<br />

q=1<br />

μ(q) 2<br />

φ(q) 2 w h(q) =<br />

h<br />

φ(h)<br />

∏<br />

p∤h<br />

□<br />

□<br />

(<br />

1 + ρ(p) − 1 )<br />

. (26)<br />

(p − 1) 2<br />

A trivial estimate <strong>for</strong> the <strong>in</strong>tegral <strong>in</strong> (25) shows it to be O(f(y)x), and this suffices here<br />

to conclude that<br />

M 0 =<br />

∑ ∫ f(y(h))<br />

W (h) (x − ht) dt + O(x 2−1/(2d)+ε ).<br />

h≤x/f(y 1 )<br />

f(y 1 )


10 J. BRÜDERN AND T. D. WOOLEY<br />

The derivative of t(x − 1 ht) with respect to t is x − ht, and we have f(y(h)) = f(y) when<br />

2<br />

h ≤ x/f(y), and f(y(h)) = x/h when h > x/f(y). Hence, if we compute the <strong>in</strong>tegral and<br />

split the sum over h at x/f(y) when appropriate, we readily f<strong>in</strong>d that<br />

where<br />

M 0 = 1 2(<br />

f(y1 ) 2 Θ f (x/f(y 1 )) − f(y) 2 Θ f (x/f(y)) ) + O(x 2−1/(2d)+ε ) (27)<br />

Θ f (H) = ∑ h≤H<br />

W (h)<br />

h (H − h)2 . (28)<br />

We summarize the analysis based on the application of the circle method by comb<strong>in</strong><strong>in</strong>g<br />

(16), (20) and (27), thereby obta<strong>in</strong><strong>in</strong>g the <strong>for</strong>mula<br />

2S 0 = f(y 1 ) 2 Θ f (x/f(y 1 )) − f(y) 2 Θ f (x/f(y)) + O(x 2 (log x) −A ), (29)<br />

and thus we enter the open<strong>in</strong>g phase of the endgame.<br />

5. An exercise <strong>in</strong> multiplicative number theory<br />

In view of the relations (29) and (12), the evaluation of V f (x, y) is reduced to the<br />

deduction of appropriate asymptotic <strong>for</strong>mulae <strong>for</strong> the functions Φ f and Θ f , def<strong>in</strong>ed <strong>in</strong> (7)<br />

and (28), respectively. This is accomplished largely by a series of exercises <strong>in</strong> multiplicative<br />

number theory. We beg<strong>in</strong> with an analysis of the Dirichlet series associated with the<br />

function W (h)/h, restrict<strong>in</strong>g attention <strong>for</strong> the time be<strong>in</strong>g to the situation where<strong>in</strong> ρ(2) ≥<br />

1. An <strong>in</strong>spection of (26) shows that the series<br />

∞∑<br />

D(s) = W (n)n −1−s<br />

n=1<br />

converges absolutely <strong>in</strong> the half-plane Re (s) > 0, and that W (h)/W (1) is multiplicative.<br />

Hence, <strong>for</strong> Re (s) > 0, one has<br />

D(s) = W (1) ∏ p<br />

D p (s) (30)<br />

with<br />

D p (s) = 1 +<br />

(<br />

1 + ρ(p) − 1 ) −1<br />

(p − 1) 2<br />

∞<br />

∑<br />

l=1<br />

φ(p l ) −1 p −ls . (31)<br />

Notice here that s<strong>in</strong>ce ρ(p) ≥ 0, the Euler factor D p (s) is def<strong>in</strong>ed <strong>for</strong> all values of p, with<br />

the exception of p = 2 <strong>in</strong> the special case ρ(2) = 0. It is <strong>for</strong> this reason that we isolate<br />

the latter situation below. 2<br />

The Euler product (30) yields an analytic cont<strong>in</strong>uation of D(s) to a meromorphic<br />

function on the half-plane Re (s) > −2. In order to see this, it will be convenient to write<br />

ξ = p −1−s , and def<strong>in</strong>e the real number λ = λ(p) by means of the identity<br />

(<br />

1 + ρ(p) − 1 ) −1<br />

= 1 − λ(p)<br />

(p − 1) 2 p . (32)<br />

2<br />

2 We are grateful to the referee <strong>for</strong> prompt<strong>in</strong>g our separate treatment of this case.


SPARSE VARIANCE FOR PRIMES IN ARITHMETIC PROGRESSION 11<br />

It is apparent from the relation def<strong>in</strong><strong>in</strong>g λ(p) that 0 ≤ λ ≪ 1, where<strong>in</strong> the implicit<br />

constant depends only on f. We may rearrange the Euler factors <strong>in</strong>to the shape<br />

D p (s) = 1 +<br />

p (<br />

1 − λ ) ξ<br />

p − 1 p 2 1 − ξ ,<br />

and consequently,<br />

(1 − ξ)D p (s) = 1 + ξ (<br />

1 − λ )<br />

,<br />

p − 1 p<br />

(<br />

1 − ξ )<br />

( ) ( ) 2 ξ 1 − λ ξ<br />

(1 − ξ)D p (s) = 1 +<br />

p<br />

p p − 1 − p<br />

p p − 1<br />

( ) ( )<br />

(1 − ξ/p)(1 − ξ)<br />

ξ/p 1 − λ<br />

D<br />

1 − ξ 2 /p 2 p (s) = 1 +<br />

.<br />

1 + ξ/p p − 1<br />

(<br />

1 − λ )<br />

,<br />

p<br />

On recall<strong>in</strong>g (30), and rewrit<strong>in</strong>g ξ as p −1−s aga<strong>in</strong>, the previous <strong>for</strong>mulae trans<strong>for</strong>m <strong>in</strong>to<br />

the relations<br />

D(s)<br />

W (1) = ζ(s + 1)E 1(s) = ζ(s + 1)ζ(s + 2)E 2 (s) =<br />

where we have written<br />

E 1 (s) = ∏ p<br />

E 2 (s) = ∏ p<br />

E 3 (s) = ∏ p<br />

(1 + p−s<br />

p(p − 1)<br />

(<br />

1 +<br />

(<br />

1 +<br />

ζ(s + 1)ζ(s + 2)<br />

E 3 (s), (33)<br />

ζ(2s + 4)<br />

(<br />

1 − λ(p) ))<br />

, (34)<br />

p<br />

p −s<br />

(1 − λ(p)) −<br />

p−2s<br />

p 2 (p − 1)<br />

1 − λ(p)<br />

(p − 1)(1 + p s+2 )<br />

(<br />

1 − λ(p) ))<br />

, (35)<br />

p 3 (p − 1) p<br />

)<br />

. (36)<br />

Here ζ denotes Riemann’s zeta function, and the product E j converges absolutely and<br />

locally uni<strong>for</strong>mly <strong>in</strong> the half-plane Re (s) > −(j + 1)/2 <strong>for</strong> j = 1, 2, 3. In particular,<br />

the relations recorded <strong>in</strong> (33) provide the analytic cont<strong>in</strong>uation of D(s) to the half-plane<br />

Re (s) > −2. In the half-plane Re (s) ≥ −3/2, meanwhile, the only s<strong>in</strong>gularities of D(s)<br />

are simple poles at s = 0 and s = −1.<br />

Return<strong>in</strong>g now to (28), we deduce from one of Perron’s <strong>for</strong>mulae that<br />

Θ f (H) = 1 πi<br />

∫ 2+i∞<br />

2−i∞<br />

D(s)H s+2<br />

ds. (37)<br />

s(s + 1)(s + 2)<br />

Observe that from (36), one f<strong>in</strong>ds that the function E 3 (s) is holomorphic and uni<strong>for</strong>mly<br />

bounded <strong>in</strong> Re (s) ≥ −3/2. Invok<strong>in</strong>g only standard estimates <strong>for</strong> the zeta factors <strong>in</strong> (33),<br />

one can move the l<strong>in</strong>e of <strong>in</strong>tegration on the right hand side of (37) to Re (s) = −3/2.<br />

The reader may care to <strong>in</strong>spect the analysis on p. 141 of Goldston and Vaughan [3] <strong>for</strong><br />

the necessary ideas, though <strong>in</strong> the present circumstances one should not use the Riemann<br />

hypothesis. One may also compare the discussion on p. 791 of Vaughan [10]. If R(z) is<br />

the residue of the <strong>in</strong>tegrand <strong>in</strong> (37) at s = z, then it follows that<br />

1<br />

Θ 2 f(H) = R(0) + R(−1) + O(H 1/2 ). (38)


12 J. BRÜDERN AND T. D. WOOLEY<br />

We compute R(0) explicitly by us<strong>in</strong>g (33) and (34) along with the familiar expansion<br />

ζ(1 + s)<br />

= 1 s s + γ 2 s + O(1).<br />

A short calculation then reveals that<br />

R(0) = 1 2 c(f)H2 log H + Γ 0 H 2 , (39)<br />

where<br />

c(f) = W (1) ∏ (1 + 1 − )<br />

λ(p)p−1<br />

(40)<br />

p(p − 1)<br />

p<br />

and Γ 0 = Γ 0 (f) is a certa<strong>in</strong> real number, the precise value of which is not relevant to<br />

our subsequent discussion. Another short calculation leads from (26) and (32) to the<br />

alternative <strong>for</strong>mulae<br />

c(f) = ∏ (<br />

1 + ρ(p) − 1 ) (<br />

1 + 1 − )<br />

λ(p)p−1<br />

(p − 1) 2 p(p − 1)<br />

p<br />

= ∏ (<br />

1 + ρ(p) ) ∞∑ μ(n) 2 ρ(n)<br />

=<br />

. (41)<br />

p(p − 1) nφ(n)<br />

p<br />

n=1<br />

In the latter <strong>for</strong>m, this constant will play an important role later.<br />

A similar technique may be applied to evaluate R(−1). In this <strong>in</strong>stance we use (33)<br />

and (35) and then reach the transitional <strong>for</strong>mula<br />

R(−1) = −W (1)E 2 (−1)ζ(0)H log H + Γ −1 H, (42)<br />

where Γ −1 = Γ −1 (f) is another real number, the precise value of which is aga<strong>in</strong> of little<br />

importance <strong>in</strong> what follows. We remark, however, that Γ −1 (f) could be made just as<br />

explicit as c(f). Observe next that ζ(0) = −1/2, and so on apply<strong>in</strong>g (26), (32) and (35),<br />

we f<strong>in</strong>d that the Euler factors of W (1) and E 2 (−1) comb<strong>in</strong>e to give the <strong>for</strong>mula<br />

W (1)E 2 (−1) = ∏ (<br />

1 + ρ(p) − 1 ) (<br />

1 + 1 − λ(p)<br />

(p − 1) 2 p(p − 1) − 1 − )<br />

λ(p)p−1<br />

p(p − 1)<br />

p<br />

= ∏ (<br />

1 + ρ(p) − 1 ) (<br />

1 − λ(p) )<br />

= 1.<br />

(p − 1) 2 p 2 p<br />

We may there<strong>for</strong>e conclude that<br />

R(−1) = 1 2 H log H + Γ −1H. (43)<br />

On substitut<strong>in</strong>g (39) and (43) <strong>in</strong>to (38), we obta<strong>in</strong> the expansion<br />

Θ f (H) = c(f)H 2 log H + 2Γ 0 H 2 + H log H + 2Γ −1 H + O(H 1/2 ),<br />

which may be <strong>in</strong>corporated <strong>in</strong>to (29), lead<strong>in</strong>g to the asymptotic <strong>for</strong>mula<br />

( ) ( )<br />

f(y)<br />

x<br />

2S 0 = c(f)x 2 log −xf(y) log − 2Γ −1 xf(y)<br />

f(y 1 )<br />

f(y)<br />

+ O ( x 1/2 f(y) 3/2 + x 2 (log x) −A) . (44)<br />

This completes the evaluation of the expression S 0 def<strong>in</strong>ed <strong>in</strong> equation (11).


SPARSE VARIANCE FOR PRIMES IN ARITHMETIC PROGRESSION 13<br />

We turn our attention now to the situation with ρ(2) = 0. Here, as a consequence<br />

of (26), one sees that W (h) = 0 whenever h is odd, and moreover that <strong>for</strong> all natural<br />

numbers m one has<br />

Def<strong>in</strong>e<br />

W (2m)<br />

W (2)<br />

= m<br />

φ(2m)<br />

ρ 0 (p) =<br />

∏<br />

p∣m<br />

p>2<br />

(<br />

1 + ρ(p) − 1<br />

(p − 1) 2 ) −1<br />

.<br />

{<br />

2, when p = 2,<br />

ρ(p), when p > 2.<br />

In the rema<strong>in</strong>der of this section, we adopt the convention that the decoration of a symbol<br />

with a subscript 0 is to be <strong>in</strong>terpreted as <strong>in</strong>dicat<strong>in</strong>g that the def<strong>in</strong>ition of that symbol is<br />

to be modified by replac<strong>in</strong>g ρ(p) by ρ 0 (p) throughout. We now f<strong>in</strong>d that W (2) = W 0 (1)<br />

and<br />

W (2m)<br />

W 0 (1) = ∏ (<br />

1 + ρ 0(p) − 1<br />

p∣m<br />

) −1 ( p<br />

(p − 1) 2 p − 1<br />

In particular, it follows that W (2m)/W 0 (1) is a multiplicative function of m. With the<br />

Dirichlet series D(s) def<strong>in</strong>ed as be<strong>for</strong>e, we aga<strong>in</strong> f<strong>in</strong>d that D(s) converges absolutely <strong>in</strong><br />

the half-plane Re (s) > 0. Hence, <strong>for</strong> Re (s) > 0, one has<br />

D(s) = 2 −1−s<br />

∞<br />

∑<br />

m=1<br />

W (2m)m −1−s = W 0 (1)2 −1−s ∏ p<br />

)<br />

.<br />

D p,0 (s), (45)<br />

with D p,0 (s) def<strong>in</strong>ed via (31).<br />

We may now execute the argument follow<strong>in</strong>g (31) to establish that the analogue of (33)<br />

holds, save that <strong>in</strong> present circumstances D(s)/W (1) is replaced by 2 1+s D(s)/W 0 (1). It<br />

follows, <strong>in</strong> particular, that the analogue of the asymptotic relation (38) holds. A modest<br />

calculation reveals that<br />

R 0 (0) = 1 4 c 0(f)H 2 log H + Γ 0 H 2 , (46)<br />

where c 0 (f) is def<strong>in</strong>ed via (40), and Γ 0 = Γ 0 (f) is a certa<strong>in</strong> (but different) real number,<br />

the precise value of which is aga<strong>in</strong> of no importance <strong>in</strong> what follows. In addition, as a<br />

consequence of the argument underly<strong>in</strong>g (41), we have<br />

c 0 (f) = ∏ p<br />

(<br />

1 + ρ 0(p)<br />

p(p − 1)<br />

)<br />

= 2 ∏ p>2<br />

(<br />

1 + ρ(p)<br />

p(p − 1)<br />

)<br />

= 2c(f). (47)<br />

So far as R(−1) is concerned, the modification to the <strong>for</strong>mula (33) leaves the relation<br />

(42) essentially unchanged, save that Γ −1 will need adjustment <strong>in</strong>visible <strong>in</strong> the ensu<strong>in</strong>g<br />

discussion. We there<strong>for</strong>e deduce as be<strong>for</strong>e that the analogue of (43) holds, whence on<br />

substitut<strong>in</strong>g (46) and (43) <strong>in</strong>to (38) we conclude that<br />

Θ f (H) = 1 2 c 0(f)H 2 log H + 2Γ 0 H 2 + H log H + 2Γ −1 H + O(H 1/2 ).<br />

Incorporat<strong>in</strong>g this, as be<strong>for</strong>e, <strong>in</strong>to (29), and recall<strong>in</strong>g (47), we arrive at the asymptotic<br />

<strong>for</strong>mula (44). In this way, we have established the asymptotic relation (44) <strong>in</strong> all circumstances.


14 J. BRÜDERN AND T. D. WOOLEY<br />

6. Another exercise <strong>in</strong> multiplicative number theory<br />

Our treatment of the sum Φ f def<strong>in</strong>ed <strong>in</strong> equation (7) takes the convolution<br />

q<br />

φ(q) = ∑ r∣q<br />

μ(r) 2<br />

φ(r)<br />

as the start<strong>in</strong>g po<strong>in</strong>t. By revers<strong>in</strong>g the order of summation, we obta<strong>in</strong><br />

∑<br />

y 0 (f)


SPARSE VARIANCE FOR PRIMES IN ARITHMETIC PROGRESSION 15<br />

References<br />

[1] J. Brüdern and A. Perelli, Goldbach numbers <strong>in</strong> sparse sequences. Ann. Inst. Fourier (Grenoble) 48<br />

(1998), 353–378.<br />

[2] J. B. Friedlander and D. A. Goldston, <strong>Variance</strong> of distribution of <strong>primes</strong> <strong>in</strong> residue classes. Quart.<br />

J. Math. Ox<strong>for</strong>d Ser. (2) 47 (1996), 313–336.<br />

[3] D. A. Goldston and R. C. Vaughan, On the Montgomery-Hooley asymptotic <strong>for</strong>mula. Sieve methods,<br />

exponential sums, and their applications <strong>in</strong> number theory (Cardiff, 1995), pp. 117–142, London<br />

Math. Soc. Lecture Note Ser., vol. 237, Cambridge Univ. Press, Cambridge, 1997.<br />

[4] G. H. Hardy and E. M. Wright, An <strong>in</strong>troduction to the theory of numbers. Fifth edition. The Clarendon<br />

Press, Ox<strong>for</strong>d University Press, New York, 1979.<br />

[5] C. Hooley, On the Barban-Davenport-Halberstam theorem. I. J. Re<strong>in</strong>e Angew. Math. 274/275 (1975),<br />

206–223.<br />

[6] C. Hooley, On the Barban-Davenport-Halberstam theorem. II. J. London Math. Soc. (2) 9 (1975),<br />

625–636.<br />

[7] H. Mikawa and T. P. Peneva, Primes <strong>in</strong> <strong>arithmetic</strong> <strong>progression</strong>s to spaced moduli. Arch. Math. (Basel)<br />

84 (2005), 239–248.<br />

[8] H. L. Montgomery, Primes <strong>in</strong> <strong>arithmetic</strong> <strong>progression</strong>s. Michigan Math. J. 17 (1970) 33–39.<br />

[9] R. C. Vaughan, The Hardy-Littlewood method. Second edition. Cambridge Tracts <strong>in</strong> Mathematics,<br />

vol. 125. Cambridge University Press, Cambridge, 1997.<br />

[10] R. C. Vaughan, On a variance associated with the distribution of general sequences <strong>in</strong> <strong>arithmetic</strong><br />

<strong>progression</strong>s. I. R. Soc. Lond. Philos. Trans. Ser. A 356 (1998), 781–791.<br />

[11] R. C. Vaughan, On a variance associated with the distribution of <strong>primes</strong> <strong>in</strong> <strong>arithmetic</strong> <strong>progression</strong>s.<br />

Proc. London Math. Soc. (3) 82 (2001), 533–553.<br />

JB: Institut für Algebra und Zahlentheorie, Universität Stuttgart, D-70511 Stuttgart,<br />

Germany<br />

TDW: School of Mathematics, University of Bristol, University Walk, Clifton, Bristol<br />

BS8 1TW, United K<strong>in</strong>gdom

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!