01.02.2015 Views

Desalination in Australia

Desalination in Australia

Desalination in Australia

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Desal<strong>in</strong>ation</strong> <strong>in</strong> <strong>Australia</strong><br />

…Drought proof<strong>in</strong>g <strong>Australia</strong> <strong>in</strong> a Susta<strong>in</strong>able Way<br />

OC Water Summit<br />

Session 1<br />

Grand Californian Hotel, Disneyland Resort<br />

May 14, 2010<br />

Gary J. Crisp<br />

Global Bus<strong>in</strong>ess Leader – <strong>Desal<strong>in</strong>ation</strong>: GHD<br />

BSc. Civil Eng<strong>in</strong>eer<strong>in</strong>g, C Eng., MICE, CP Eng., FIE Aust., PMP


It’s not about water.<br />

It’s aboutenergy!


“Energy is eternal delight!”<br />

Energy is liberation.<br />

William Blake, author, poet, visionary, 1757 – 1827


Presentation Overview<br />

• Introduction<br />

• The Big Six, Includ<strong>in</strong>g Gold Coast


Total Annual* Inflow to Perth Dams** (GL)<br />

1911<br />

1913<br />

1915<br />

1917<br />

1919<br />

1921<br />

1923<br />

1925<br />

1927<br />

1929<br />

1931<br />

1933<br />

1935<br />

1937<br />

1939<br />

1941<br />

1943<br />

1945<br />

1947<br />

1949<br />

1951<br />

1953<br />

1955<br />

1957<br />

1959<br />

1961<br />

1963<br />

1965<br />

1967<br />

1969<br />

1971<br />

1973<br />

1975<br />

1977<br />

1979<br />

1981<br />

1983<br />

1985<br />

1987<br />

1989<br />

1991<br />

1993<br />

1995<br />

1997<br />

1999<br />

2001<br />

2003<br />

2005<br />

Impact of Dry<strong>in</strong>g Climate<br />

- Reduced Inflow to Dams (as at 1 Nov 06)<br />

1000<br />

900<br />

800<br />

700<br />

Annual Total<br />

1911-1974 av (338 GL)<br />

1975 - 1996 av (177 GL)<br />

1997 -2005 av (114 GL)<br />

Regression 1960 to 2005<br />

600<br />

500<br />

400<br />

300<br />

200<br />

2006<br />

100<br />

0<br />

Notes:<br />

- A year is taken as May to April<br />

- 2005/06 <strong>in</strong>flow to 1st November 2006<br />

Courtesy of the Water Corporation


41000 gallons/y per<br />

capita<br />

by 2012 (for Perth)<br />

Wungong Trial<br />

Gnangara P<strong>in</strong>es<br />

Metro Catchments<br />

Catchment Management<br />

Smarter use of Water<br />

Well<strong>in</strong>gton Dam<br />

Brunswick River<br />

Dam<br />

Perth Seawater<br />

<strong>Desal<strong>in</strong>ation</strong> Plant<br />

Surface Water<br />

Groundwater<br />

SW Yarragadee<br />

G<strong>in</strong>g<strong>in</strong><br />

Yanchep<br />

Egl<strong>in</strong>gton<br />

Water Efficiency<br />

From Irrigation<br />

Water Trad<strong>in</strong>g<br />

Water Recycl<strong>in</strong>g<br />

Groundwater<br />

Kw<strong>in</strong>ana Water<br />

Reclamation Plant<br />

20% reuse by 2012 target<br />

Courtesy of Water Corporation


<strong>Desal<strong>in</strong>ation</strong> History<br />

• Aristotle described distillation - 400 BC<br />

• Distillation: <strong>Desal<strong>in</strong>ation</strong> on early ships - 200AD<br />

• Distillation: MED (Norbert Rillieux, 1806 - 1894)<br />

• Coolgardie Water Distillery (WA) - 1895<br />

• Distillation: <strong>Desal<strong>in</strong>ation</strong> MSF - 1956<br />

• Distillation: <strong>Desal<strong>in</strong>ation</strong> MED - 1960<br />

• Distillation: <strong>Desal<strong>in</strong>ation</strong> MVC, METC – 1960<br />

• Membrane: RO (Drs. Sourirajan & Loeb @ UCLA, 1959)<br />

• Membrane: RO (John Cadotte - FilmTec, 1970)<br />

• Membrane: <strong>Desal<strong>in</strong>ation</strong> RO and NF - 1970<br />

• Membrane: Pre-treatment (MF, UF) - 1990<br />

• Membrane: Wastewater (MBR) - 2000<br />

Dr. Sid Loeb<br />

2005 - 2008


SWRO Power Consumption (July 1, 2001)<br />


Water Resource Cost Trends: US $/m 3<br />

Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant Water Cost 0.90 $/m 3<br />

Cost ($/m 3 )<br />

THE TRIPLE BOTTOM LINE<br />

The TRUE Value of Water<br />

Obta<strong>in</strong>ed with M<strong>in</strong>imal<br />

Environmental Impact<br />

The<br />

Environmental<br />

“Forgotten”<br />

Year<br />

Global Water Intelligence - October 2006<br />

• Water from the oceans is still perceived as a „technology‟ solution, but desal<strong>in</strong>ation should be<br />

recognised as a „policy‟ solution


The <strong>Desal<strong>in</strong>ation</strong> Process


The Big<br />

<strong>Australia</strong>‟s six big desal<strong>in</strong>ation plants


The Big Six – No. 1<br />

Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant (Perth I) - 38 mgd<br />

• Client: Water Corporation<br />

• Capacity: 38 mgd<br />

• Plant Capital Cost: $266 million<br />

• Connect<strong>in</strong>g System (IWSS): $51 million<br />

• Total Capital Cost: $317 million<br />

• Total Operat<strong>in</strong>g Cost: $16 million/year<br />

• Unit Cost: $1,172/AF (AU$1.00/m 3 )<br />

• Commission<strong>in</strong>g Completion: 2007<br />

• GHD Involvement: Production of Basis of Design and Basis of Construction<br />

Documents, 3 rd Party Review of Designs from both<br />

Compet<strong>in</strong>g Consortia, Durability Reviews Dur<strong>in</strong>g Design<br />

and Construction Phase, Integration Network Concept and<br />

Detailed Design <strong>in</strong>clud<strong>in</strong>g the largest Pump<strong>in</strong>g Station <strong>in</strong><br />

the Perth Integrated System, the Nicholson Road Pump<strong>in</strong>g<br />

Station (10 MW). Seaglider Oceanographic Measurements<br />

• Configuration: Open Intake, Diffuser Outfall, Travell<strong>in</strong>g Band Screens, Dual<br />

Media Pressure Filtration, 5 Micron Cartridge Filtration,2 Pass<br />

SWRO System, Lime and CO 2 Re-m<strong>in</strong>eralisation<br />

• Seawater Feed Quality: 35000 – 38000 mg/L TDS<br />

• Product Water Quality: < 200 mg/L<br />

• Specific Energy Consumption (SEC): < 13.63 kWh/kgal (3.6 kWh/m 3 )<br />

• Technology Contractor: Degremont (France/Spa<strong>in</strong>)<br />

• Awards: GWI Membrane <strong>Desal<strong>in</strong>ation</strong> Plant of Year 2006<br />

ERI Awarded GWI Environmental Contribution of the Year 2006


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

16 acres<br />

• Located <strong>in</strong> Kw<strong>in</strong>ana<br />

• 38 mgd Capacity: 40,552 AF/Y<br />

• 24 MW Power Required<br />

• 140 mg/L Product Water<br />

• Commenced operation <strong>in</strong> Nov. „06<br />

• W<strong>in</strong>d Power is used as offset<br />

Courtesy of Water Corporation


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

6 acres<br />

16 acres<br />

Courtesy of Water Corporation


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

Seawater Intake System – Inlet Structure<br />

Courtesy of the Water Corporation


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

Seawater Intake System – Inlet Structure<br />

Courtesy of the Water Corporation


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

Seawater Intake System – Pipes and Works<br />

Courtesy of the Water Corporation<br />

Courtesy of the Water Corporation


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

Onshore Active Screen<strong>in</strong>g – Band Screen<br />

Courtesy of the Water Corporation


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

Seawater Intake and Outlet Works<br />

Courtesy of the Water Corporation


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

S<strong>in</strong>gle Stage Dual Media Pressure Filtration and Cartridge Filters


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

Reverse Osmosis Process Flow – Operat<strong>in</strong>g Pr<strong>in</strong>cipals & Arrangement<br />

First Pass<br />

Second Pass<br />

PRETREATED<br />

WATER<br />

HP<br />

Pump<br />

(Common By-pass)<br />

PRODUCTION<br />

1 st Stage<br />

2 nd Stage<br />

Energy Recovery System<br />

(12 x 16 <strong>in</strong> Parallel)<br />

1 ST PASS FEEDING<br />

(recycl<strong>in</strong>g)<br />

REJECT<br />

MDJV <strong>in</strong> Alliance with Water Corporation


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

High Pressure Pumps 2.6 MW Each (6 <strong>in</strong> total)<br />

Each Pump Equivalent to<br />

15 Toyota Lexus GX<br />

Wagon 8st 4dr Man 6sp<br />

4x4 4.0i<br />

0.179 MW @ 5200rpm<br />

each.*<br />

*Red Book (<strong>Australia</strong>) specifications<br />

Courtesy of the Water Corporation


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

Circulation Pumps 134 kW each (12 <strong>in</strong> total)<br />

Each Pump Equivalent<br />

to 1 Toyota RAV 4 5st<br />

4dr Man 4x4 2.0i<br />

0.132 MW @ 5200rpm<br />

each.*<br />

*Red Book (<strong>Australia</strong>) specifications<br />

Courtesy of the Water Corporation


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

RO Build<strong>in</strong>g Look<strong>in</strong>g South – 2 nd Pass RO<br />

Courtesy of the Water Corporation


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

Pressure Exchanger Rack 1.2 MW each (12 <strong>in</strong> total)<br />

Each Rack Equivalent<br />

to 8 Ford Escape<br />

Wagon 4dr Auto 4sp<br />

4x4 3.0i<br />

0.152 MW @ 4750rpm<br />

each.*<br />

*Red Book (<strong>Australia</strong>) specifications<br />

Courtesy of Water Corporation


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Project<br />

PX Process


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Project<br />

Beyond Tomorrow


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

Potabilization System and Dr<strong>in</strong>k<strong>in</strong>g Water Storage Tank<br />

Courtesy of Water Corporation


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

Dr<strong>in</strong>k<strong>in</strong>g Water Transfer Pump Station<br />

Courtesy of Water Corporation


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

Concentrate Discharge and Residuals System<br />

Courtesy of Water Corporation


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

Br<strong>in</strong>e Discharge System<br />

55yd limit for<br />

mix<strong>in</strong>g zone<br />

32yd mix<strong>in</strong>g zone –<br />

achieve 42 x dilution<br />

20 diffuser ports<br />

at 4.5yd spac<strong>in</strong>g<br />

Outfall<br />

pipel<strong>in</strong>e


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

Seawater Concentrate - Sal<strong>in</strong>ity<br />

Initial mix<strong>in</strong>g zone<br />

=110 yards<br />

water surface<br />

farfield<br />

45x<br />

dilution<br />

Courtesy of Water Corporation


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

Real Time Monitor<strong>in</strong>g<br />

Courtesy of Water Corporation


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

Rhodam<strong>in</strong>e Dye Test<br />

These tests proved<br />

the Mathematical /<br />

Computer Model<br />

analyses.<br />

Note the mar<strong>in</strong>e<br />

growth on the<br />

diffuser ports.<br />

Courtesy of Water Corporation


Under the Surface<br />

Courtesy of the Water Corporation


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

Susta<strong>in</strong>able Power - W<strong>in</strong>d Energy<br />

Zero Greenhouse Gas Emissions<br />

Stanwell/Griff<strong>in</strong> Jo<strong>in</strong>t Venture - Emu Downs<br />

w<strong>in</strong>d generation facility – at Badg<strong>in</strong>garra<br />

200 north of Perth<br />

Water Corporation is purchas<strong>in</strong>g 66<br />

percent of the energy output<br />

24 MW (185 GW hrs/annum)<br />

Opened on 12 November 2006<br />

Courtesy of the Water Corporation


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

Susta<strong>in</strong>able Power - W<strong>in</strong>d Energy<br />

• Capacity = 80 MW<br />

• No. of Turb<strong>in</strong>es = 48<br />

• Hub Height = 74 yd<br />

• Blade Length = 44 yd<br />

• W<strong>in</strong>d Farm Area = 18 mile 2<br />

• W<strong>in</strong>d Farm (66%) = 12 mile 2


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

Courtesy of the Water Corporation


The Big Six – No. 1<br />

Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant – Demonstration Plant


The Big Six – No. 2<br />

Gold Coast <strong>Desal<strong>in</strong>ation</strong> Plant - 35 mgd (133 MLD)<br />

• Client: Water Secure - Queensland<br />

• Capacity: 36 mgd<br />

• Plant Capital Cost: $745 million (tunnels $213 million)<br />

• Connect<strong>in</strong>g System (IWSS): $198 million<br />

• Total Capital Cost: $943 million<br />

• Total Operat<strong>in</strong>g Cost: $32 million/year<br />

• Unit Cost: $2,932/AF ($2.03/m 3 )<br />

• Commission<strong>in</strong>g Completion: 2009<br />

• GHD Involvement: Owners Eng<strong>in</strong>eer Construction and Design Review,<br />

Durability, 3 rd Party Review, overall alliance project<br />

management from owners viewpo<strong>in</strong>t, water quality (raw and<br />

product), <strong>in</strong>strumentation and commission<strong>in</strong>g, M&E<br />

Review, SCADA Review<br />

• Configuration: Open Intake, Diffuser Outfall, Drum Screens, Dual Media<br />

Gravity<br />

Filtration, 5 Micron Cartridge Filtration, 2 Pass SWRO<br />

System, Lime<br />

and CO 2 Re-m<strong>in</strong>eralisation<br />

• Seawater Feed Quality: 35000 – 38000 mg/L TDS<br />

• Product Water Quality: < 200 mg/L<br />

• Specific Energy Consumption (SEC): < 12.38 kWh/kgal (3.30 kWh/m 3 )<br />

• Technology Contractor: Veolia (France)<br />

• Awards: GWI Membrane <strong>Desal<strong>in</strong>ation</strong> Plant of Year 2008


Gold Coast <strong>Desal<strong>in</strong>ation</strong> Plant<br />

• Located <strong>in</strong> Tug<strong>in</strong><br />

• 36 mgd Capacity: 38,427 AF/Y<br />

• 22 MW Power Required<br />

• 140 mg/L Product Water<br />

• Commenced operation <strong>in</strong> Nov. „08<br />

• Green Energy as offset


16 mile 43 <strong>in</strong>ch distribution ma<strong>in</strong><br />

8 mg reservoir & pump station<br />

Tw<strong>in</strong> 3.4 m OD <strong>in</strong>take/outfall tunnels<br />

1.5 mile & 1.3 mile sized for 45 mgd<br />

33 mgd Plant ave. 94% availability<br />

36 mgd peak daily production


Chlor<strong>in</strong>e<br />

Chlor<strong>in</strong>e<br />

SCREENS<br />

Chlor<strong>in</strong>e<br />

H2SO4<br />

Fe2(SO4)3<br />

Poly<br />

DUAL MEDIA<br />

FILTERS<br />

FILTERED<br />

SEAWATER<br />

TANK<br />

H2SO4<br />

Antiscalant<br />

SMBS<br />

HP PUMPS<br />

PRETEATMENT<br />

CARTRIDGE<br />

FILTERS<br />

SMBS<br />

THICKENER<br />

Fe2(SO4)3<br />

Poly<br />

INTAKE TUNNEL<br />

INTAKE<br />

OUTFALL<br />

33% Bypass L<strong>in</strong>e<br />

RESIDUALS<br />

REVERSE OSMOSIS<br />

Poly<br />

CENTRIFUGE<br />

ERD<br />

2 nd PASS RO<br />

NaOH<br />

Antiscalant<br />

OUTFALL TUNNEL<br />

1 st PASS<br />

PERMEATE TANK<br />

1 st PASS RO<br />

SEAWATER<br />

FILTERED SEAWATER<br />

BRINE<br />

LOW SALINITY WATER<br />

CO2<br />

Lime<br />

REMINERALISATION<br />

TANK<br />

REMINERALISATION<br />

Chlor<strong>in</strong>e<br />

Chlor<strong>in</strong>e<br />

POTABLE WATER<br />

TANK<br />

DISTRIBUTION<br />

NETWORK


Aerial View of <strong>Desal<strong>in</strong>ation</strong> Plant<br />

Pretreatment<br />

SWRO &<br />

BWRO<br />

Residuals<br />

Treatment<br />

Adm<strong>in</strong><br />

/Lab<br />

Chemical<br />

Storage<br />

Rem<strong>in</strong>eralisation<br />

/Storage<br />

Seawater<br />

Intake<br />

& screen<br />

HV<br />

substation<br />

Br<strong>in</strong>e<br />

discharge<br />

shaft<br />

Potable<br />

water pump<br />

station


Mar<strong>in</strong>e Tunnels<br />

<br />

<br />

SEP supported by tug drawn<br />

barge- <strong>in</strong>stall <strong>in</strong>let/outlet risers<br />

<br />

<br />

<strong>in</strong>let<br />

outlet


Seawater Intake<br />

<br />

<br />

<br />

<br />

<br />

<br />

Intake riser 4.5 yd from seabed 20 yd water depth<br />

Coarse screen 6 <strong>in</strong>ch – vertical bars. Horizontal flow, low velocity to prevent<br />

entra<strong>in</strong>ment


Seawater Intake - Coarse Screen<br />

6.32 m<br />

2.11 m


Pretreatment<br />

Pretreatment<br />

6 Months pilot<strong>in</strong>g of pretreatment<br />

Chemical addition, two static mixers<br />

Four flocculation tanks<br />

18 dual media gravity filters<br />

24 h filter run time


Pretreatment


Residuals<br />

<br />

<br />

Filter backwash (5 mgd), neutralised CIP wastewater, lime sludge treated <strong>in</strong> Residuals<br />

Section<br />

Wastewater is coagulated with ferric sulphate/polymer and clarified <strong>in</strong> lamella separator<br />

Sludge (15% solids) dewatered by centrifuge and sent to isolated cell <strong>in</strong> landfill (max. 65<br />

cubic yard)


<strong>Desal<strong>in</strong>ation</strong> Plant Feed<br />

<br />

<br />

Filtered seawater split <strong>in</strong>to 2 streams<br />

45% to RO % 55% to ERD<br />

RO booster pumps provide suction pressure for HP pumps & ERD booster pumps to feed<br />

ERD<br />

Cartridge filters – 5 µm


First Pass SWRO<br />

Four HP Torishima VSD pumps (5 MW feed) 9 SWRO tra<strong>in</strong>s through<br />

common HP manifold<br />

9 tra<strong>in</strong>s at 100% capacity<br />

Each SWRO tra<strong>in</strong> has Calder DWEER ERD<br />

45% recovery


<strong>Desal<strong>in</strong>ation</strong> Plant Feed – 1 st Pass<br />

4 x High Pressure Pumps 4.8 MW Each<br />

(Each equivalent to 28 Toyota Lexus GX Wagon 8st 4dr Man 6sp 4x4 4.0i<br />

0.179 MW @ 5200rpm each - Red Book Specifications)


Seawater Reverse Osmosis - ERD<br />

Operat<strong>in</strong>g Pr<strong>in</strong>ciples & Arrangement<br />

First Pass<br />

Second Pass<br />

(Common By-pass)<br />

PRODUCTION<br />

PRETREATED<br />

WATER<br />

3 HP Pumps<br />

1 st Stage<br />

2 nd Stage<br />

REJECT<br />

Energy<br />

Recovery<br />

System<br />

(1 per rack)<br />

1 ST PASS FEEDING<br />

(recycl<strong>in</strong>g)


Energy Recovery Device - 1 st Pass<br />

Pressure Exchanger Rack 1.6 MW Each (9 racks <strong>in</strong> total)<br />

(Equivalent to 11 Mazda Tribute Wagon 4dr Auto 4sp 4x4 3.0i<br />

0.152 MW @ 4750rpm each - Red Book Specifications)<br />

Re-circulation Pumps 180 kW Each<br />

Equivalent to 11 Toyota Lexus GX Wagon 8st<br />

4dr Man 6sp 4x4 4.0i 0.179 MW @ 5200rpm<br />

each - Red Book Specifications)


RO Build<strong>in</strong>g Pressure Vessel Racks - 1 st Pass


Rear permeate from SWRO<br />

Second Pass SWRO<br />

3 tra<strong>in</strong>s at 100% capacity<br />

85% recovery<br />

Br<strong>in</strong>e re-circulated back to filtered seawater tank<br />

Total desal<strong>in</strong>ation energy consumption


Rem<strong>in</strong>eralisation and Storage<br />

<br />

<br />

<br />

<br />

<br />

Carbon dioxide and lime water addition<br />

Chlor<strong>in</strong>ation<br />

Two 4 mg glass fused bolted steel tanks (5 h storage) to provide dis<strong>in</strong>fection contact time and<br />

for control<br />

Water quality monitor<strong>in</strong>g TDS< 220 mg/L etc<br />

Ultimately Fluoridation.


Br<strong>in</strong>e Discharge<br />

<br />

<br />

<br />

<br />

Br<strong>in</strong>e (49 mgd) from first pass RO mixed with supernatant from residuals, sent back to<br />

sea<br />

Br<strong>in</strong>e diluted and dispersed through 20 diffusers 60° to the horizon staggered on 306 yd<br />

long diffuser manifold<br />

Extensive model<strong>in</strong>g to ensure optimum mix<strong>in</strong>g to background levels <strong>in</strong> near field<br />

Mix<strong>in</strong>g zone 132 yd x 442 yd


6.5 yd<br />

Diffuser<br />

6.0 yd<br />

1200mm PE


Network Connection<br />

<br />

<br />

<br />

<br />

4 potable water transfer pumps<br />

16 mile of 43 <strong>in</strong>ch pipel<strong>in</strong>e<br />

8 mg reservoir “Rob<strong>in</strong>a Mix<strong>in</strong>g Reservoir” Desal<strong>in</strong>ated water mixed with water from<br />

Mudgeraba WTP<br />

Pump Station Tarrant drive


The Big Six – No. 2<br />

Gold Coast <strong>Desal<strong>in</strong>ation</strong> Plant - 36 mgd (133 MLD)<br />

Courtesy of WaterSecure


The Big Six – No. 2<br />

Gold Coast <strong>Desal<strong>in</strong>ation</strong> Plant - 36 mgd (133 MLD)<br />

Courtesy of WaterSecure


The Big Six – No. 2<br />

Gold Coast <strong>Desal<strong>in</strong>ation</strong> Plant - 35 mgd (133 MLD)<br />

Courtesy of WaterSecure


The Big Six – No. 2<br />

Gold Coast <strong>Desal<strong>in</strong>ation</strong> Plant - 36 mgd (133 MLD)<br />

My Office for 2 years<br />

Courtesy of WaterSecure


The Big Six – No. 2<br />

Gold Coast <strong>Desal<strong>in</strong>ation</strong> Plant - 36 mgd (133 MLD)<br />

Courtesy of WaterSecure


The Big Six – No. 2<br />

Gold Coast <strong>Desal<strong>in</strong>ation</strong> Plant - 36 mgd (133 MLD)<br />

Low HP Pump Feed Pressure < 53 bar<br />

American Translation “769psi”<br />

M<strong>in</strong>imal Drum Screen Screen<strong>in</strong>gs (note the “Wheelie B<strong>in</strong>”)<br />

American Translation “Trash Can”<br />

Courtesy of WaterSecure


The Big Six – No. 2<br />

Gold Coast <strong>Desal<strong>in</strong>ation</strong> Plant - 36 mgd (133 MLD)<br />

3 duty 1 standby High Pressure Pumps (4.8 MW each)<br />

Courtesy of WaterSecure


The Big Six – No. 3<br />

Sydney <strong>Desal<strong>in</strong>ation</strong> Plant - 66 mgd – Expandable to 132<br />

• Client: Sydney Water – New South Wales<br />

• Capacity: 66 mgd (expandable to 132 mgd)<br />

• Plant Capital Cost: $787 million (tunnels $189 million)<br />

• Connect<strong>in</strong>g System: $410 million<br />

• Other: $246 million<br />

• Total Capital Cost: $1,443 million<br />

• Total Operat<strong>in</strong>g Cost: $37 million/year<br />

• Unit Cost: $1,950/AF ($1.74/m 3 )<br />

• Commission<strong>in</strong>g Completion: 2010<br />

• GHD Involvement: Feasibility Study, Preparation of Environmental Statement and<br />

Secured Approvals. Prepared Reference Design and Basis of Design<br />

and Construct, Seawater quality sampl<strong>in</strong>g program, All Geotechnical<br />

Investigations (on & offshore), Pilot Plant Infrastructure Design and<br />

Facilitation, Procurement Method Evaluation, Tender Documentation,<br />

Tender Evaluation (Owners Eng<strong>in</strong>eer), Technical Advisor – Design<br />

Review of Contractors Design, Durability, Construction Surveillance<br />

& Commission<strong>in</strong>g Support, Mar<strong>in</strong>e & Estuar<strong>in</strong>e Monitor<strong>in</strong>g Program<br />

Management, Represented Owner‟s Interest Dur<strong>in</strong>g Construction.<br />

• Configuration: Open Intake, Diffuser Outfall, Drum Screens, Dual Media Gravity<br />

Filtration, 5<br />

• Seawater Feed Quality: 32000 – 41000 mg/L TDS<br />

• Product Water Quality: < 140 mg/L TDS<br />

• Specific Energy Consumption (SEC):< 14.76 kWh/kgal (3.9 kWh/m 3 )<br />

• Technology Contractor: Veolia (France)<br />

• Awards: Not Yet Complete<br />

Micron Cartridge Filtration, 2 Pass SWRO System, Lime and CO 2 Rem<strong>in</strong>eralisation


The Big Six – No. 3<br />

Sydney <strong>Desal<strong>in</strong>ation</strong> Plant - 36 mgd<br />

Courtesy of Sydney Water


The Big Six – No. 3<br />

Sydney <strong>Desal<strong>in</strong>ation</strong> Plant - 66 mgd expandable to 132<br />

Courtesy of Sydney Water


The Big Six – No. 4<br />

Adelaide <strong>Desal<strong>in</strong>ation</strong> Plants I and II – 40 + 40 mgd (150 MLD each)<br />

• Client: South <strong>Australia</strong> Water<br />

• Capacity: 36 mgd + 18 mgd +18 mgd<br />

• Plant Capital Cost: $1,255 million (Estimated)<br />

• Connect<strong>in</strong>g System (IWSS): $246 million (Estimated)<br />

• Total Capital Cost: $1,500 million<br />

• Total Operat<strong>in</strong>g Cost: $67 million/year (36mgd)<br />

• Unit Cost: $3,033/AF ($2.70/m 3 ) Estimated levelised cost<br />

• First Water: December 2012<br />

• GHD Involvement: Owners Eng<strong>in</strong>eer due diligence review dur<strong>in</strong>g<br />

project development phase, Environmental<br />

Impact Statement and Development<br />

Approvals, Water Quality Integration Review<br />

and Ongo<strong>in</strong>g Support.<br />

• Configuration: Open Intake, Diffuser Outfall, capacity to 72<br />

mgd 2 Pass SWRO System, <strong>in</strong>itial capacity 54<br />

mgd Lime and CO 2 Re-m<strong>in</strong>eralisation<br />

• Seawater Feed Quality: 35000 – 38000 mg/L TDS<br />

• Product Water Quality: < 200 mg/L<br />

• Specific Energy Consumption (SEC): < 18.93 kWh/kgal (5 kWh/ m 3 )<br />

• Technology Contractor: Acciona (Spa<strong>in</strong>)<br />

• Awards: Not Completed Yet


The Big Six – No. 4<br />

Adelaide <strong>Desal<strong>in</strong>ation</strong> Plants I and II – 40 + 40 mgd (150 MLD each)<br />

Courtesy of SA Water


The Big Six – No. 5<br />

Southern Seawater <strong>Desal<strong>in</strong>ation</strong> Plant (Perth II) - 40 mgd to 80 mgd<br />

• Client: Water Corporation of Western <strong>Australia</strong><br />

• Capacity: 40 mgd 1 st Stage, 80 mgd 2 nd Stage<br />

• Plant Capital Cost: $640 million (Estimated with double <strong>in</strong>take/outfall)<br />

• Connect<strong>in</strong>g System (IWSS): $98 million (Estimated)<br />

• Total Capital Cost: $738 million (Estimated)<br />

• Total Operat<strong>in</strong>g Cost: $29 million/year (Estimated)<br />

• Unit Cost: $2,042/AF ($1.81/m 3 ) Estimated<br />

• Commission<strong>in</strong>g Completion: 2011<br />

• GHD Involvement: Alliance Team / Plant Eng<strong>in</strong>eer<strong>in</strong>g/ Bid (note, out of 8 expressions of<br />

<strong>in</strong>terest, which were reduced to two by the Water Corporation, the<br />

GHD – Acciona - United Utilities Team was one and did not w<strong>in</strong> the<br />

Alliance Contract. It should be noted that Acciona us<strong>in</strong>g this design<br />

went on to w<strong>in</strong> both Adelaide desal<strong>in</strong>ation plant projects from which<br />

GHD were excluded due to their partial owners role <strong>in</strong> this project and<br />

their Owners Eng<strong>in</strong>eer Role on Melbourne, for whom Acciona was<br />

also bidd<strong>in</strong>g, hence another set of consult<strong>in</strong>g eng<strong>in</strong>eers was<br />

selected by the contractor). Seaglider Oceanographic Measurements<br />

• Configuration: Open Intake, Diffuser Outfall, Travell<strong>in</strong>g Band Screens, UF PVDF<br />

Pressure Filters, 5 Micron Cartridge Filtration, 2 Pass SWRO System,<br />

Lime and CO 2 Re-m<strong>in</strong>eralisation<br />

• Seawater Feed Quality: 35000 – 38000 mg/L TDS<br />

• Product Water Quality: < 200 mg/L<br />

• Specific Energy Consumption (SEC): < 13.63 kWh/kgal (3.6 kWh/ m 3 )<br />

• Technology Contractor: Tecnicas Reunidas, Valoriza Agua (Spa<strong>in</strong>)<br />

• Awards: Not Completed Yet


The Big Six – No. 5<br />

Southern Seawater <strong>Desal<strong>in</strong>ation</strong> Plant (Perth II)<br />

40 mgd Expandable to 80 mgd<br />

Courtesy of Water Corporation


The Big Six – No. 5<br />

Southern Seawater <strong>Desal<strong>in</strong>ation</strong> Plant (Perth II)<br />

150 MLD (40 mgd) Expandable to 300 MLD (80 mgd)<br />

Courtesy of Water Corporation


The Big Six – No. 6<br />

The Victorian <strong>Desal<strong>in</strong>ation</strong> Project - 120 mgd<br />

• Client: Victorian Government<br />

• Capacity: 120 mgd 1 st Stage, 160 mgd 2 nd Stage<br />

• Plant Capital Cost: $1,840 million (Estimated)<br />

• Connect<strong>in</strong>g System (85 km Pipel<strong>in</strong>e): $820 million (Estimated)<br />

• Underground power connection $246 million (Estimated)<br />

• Total Capital Cost: $2,870 million<br />

• Total Operat<strong>in</strong>g Cost: $98 million/year (Estimated)<br />

• Unit Cost: $2,550/AF ($2.27/m 3 ) Estimated<br />

• Commission<strong>in</strong>g Completion: 2011<br />

• GHD Involvement: Feasibility Study, Environment Effects Statement and<br />

Approvals, Reference Design, Seawater quality sampl<strong>in</strong>g<br />

program, all geotechnical <strong>in</strong>vestigations (on & offshore),<br />

Pilot Plant facilities and support, Mar<strong>in</strong>e growth<br />

experiment, Management of Landowner Engagement, GIS &<br />

Mapp<strong>in</strong>g, Data Management, Tender Preparation and<br />

Evaluation, Design Review, Strategic Direction and<br />

Ongo<strong>in</strong>g Support.<br />

• Configuration: 4 m Dia. Undersea Inlet and Outlet Tunnels, Drum Screens,<br />

Dual Media Pressure Filtration, Cartridge Filtration,<br />

2 Pass SWRO System, Lime and CO 2 Re-m<strong>in</strong>eralisation<br />

• Seawater Feed Quality: 35 000 – 38 000 mg/L TDS<br />

• Product Water Quality: < 120 mg/L<br />

• Specific Energy Consumption (SEC): < 17.42 kWh/kgal (4.6 kWh/ m 3 )<br />

• Technology Contractor: Degremont (France/Spa<strong>in</strong>)<br />

• Awards: Not Completed Yet


The Big Six – No. 6<br />

The Victorian <strong>Desal<strong>in</strong>ation</strong> Project - 120 mgd then 160 mgd<br />

Courtesy of Victorian Government


The Big Six – No. 6<br />

The Victorian <strong>Desal<strong>in</strong>ation</strong> Project - 120 mgd then 160 mgd<br />

Courtesy of Victorian Government


Presentation Overview<br />

• Lessons Learnt<br />

• Mar<strong>in</strong>e and Coastal Studies<br />

• Intakes and Outfalls<br />

• The Susta<strong>in</strong>ability of SWRO<br />

• Conclusions


Lessons Learnt: World Wide


Badly Installed Leopold Under Dra<strong>in</strong>s: 3 Year Old<br />

Plant <strong>in</strong> Middle East


General Corrosion: 3 Year Old Plant <strong>in</strong> Middle East


General Corrosion: 3 Year Old Plant <strong>in</strong> Middle East


General Corrosion: 3 Year Old Plant <strong>in</strong> Middle East


General Corrosion: 3 Year Old Plant <strong>in</strong> Middle East


Sloppy Work and General Corrosion: 3 Year Old<br />

Plant <strong>in</strong> Middle East


General Corrosion: 3 Year Old Plant <strong>in</strong> Middle East


Glass Re<strong>in</strong>forced Plastic: 1 Year Old Plant <strong>in</strong> North<br />

Africa


Mar<strong>in</strong>e and Coastal Studies: Perth II<br />

• Water Levels<br />

• Wave Climate<br />

• Sediment Transport and Beach Erosion<br />

• Intake Structure<br />

• Pipel<strong>in</strong>e Protection<br />

• Pipel<strong>in</strong>e Profile<br />

• Outfall Structure


Water Level CD (m)<br />

Mar<strong>in</strong>e and Coastal Studies: Perth II<br />

Water Levels<br />

• Static Water Level<br />

• Tide<br />

• Sea Level Rise<br />

• Surge<br />

2.5<br />

2<br />

Tide<br />

Surge<br />

Total Water Level<br />

Long-term<br />

Operation<br />

Sample Storm Induced Water Level Variation<br />

1.5<br />

1<br />

0.5<br />

0<br />

10/12/2007<br />

00:00:00<br />

10/12/2007<br />

12:00:00<br />

11/12/2007<br />

00:00:00<br />

11/12/2007<br />

12:00:00<br />

12/12/2007<br />

00:00:00<br />

12/12/2007<br />

12:00:00<br />

13/12/2007<br />

00:00:00<br />

13/12/2007<br />

12:00:00<br />

Time


Mar<strong>in</strong>e and Coastal Studies: Perth II<br />

Water Levels<br />

• Tidal Levels<br />

• Datum<br />

• Chart Datum<br />

• <strong>Australia</strong>n Height<br />

Datum


Mar<strong>in</strong>e and Coastal Studies: Perth II<br />

Water Levels<br />

• Extreme High Water Level<br />

Structural Design<br />

Operational Limits<br />

Condition<br />

Stage<br />

Tide Component<br />

(mCD)<br />

Storm Surge (m)<br />

Sea Level Rise<br />

(m)<br />

Total Estimated<br />

WL (mCD)<br />

Maximum Still<br />

Water Level<br />

Now 0.9 1.2 0 2.1<br />

In 100 Years 0.9 1.2 0.45 2.55<br />

M<strong>in</strong>imum Still<br />

Water Level<br />

Now 0.1 0 0 0.1<br />

In 100 Years 0.1 0 0.45 0.55


Height (m)<br />

0<br />

100<br />

200<br />

300<br />

400<br />

500<br />

600<br />

700<br />

800<br />

900<br />

1000<br />

1100<br />

1200<br />

1300<br />

1400<br />

Probablity<br />

Mar<strong>in</strong>e and Coastal Studies: Perth II<br />

Water Levels<br />

• Dynamic Water Level<br />

Load<strong>in</strong>g and<br />

Structural Stability<br />

Surface Elevation Probablity of Occurence<br />

100%<br />

Offshore<br />

@ -10m Depth<br />

@ -8.5m Depth<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

5.5<br />

3.5<br />

1.5<br />

-0.5<br />

Surface Profile<br />

-5 -4 -3 -2 -1 0 1 2 3 4 5<br />

Surface Level (mCD)<br />

10%<br />

0%<br />

-2.5<br />

-4.5<br />

-6.5<br />

-8.5<br />

Water<br />

Phase<br />

Surface<br />

Angle (degrees)<br />

MSL Bed Level


Mar<strong>in</strong>e and Coastal Studies: Perth II<br />

Wave Parameters<br />

• Offshore<br />

• Based on available<br />

<strong>in</strong>formation from<br />

Rottnest Island<br />

• Near shore<br />

• Based on DHI MIKE SW<br />

Model<br />

• (Under Study)


Wave Height (m) / Wave Preiod (s)<br />

Mar<strong>in</strong>e and Coastal Studies: Perth II<br />

Sediment Transport<br />

12.00<br />

10.00<br />

Significant Wave Height<br />

Peak Wave Period<br />

8.00<br />

• Storm Induced Profile Evaluation<br />

6.00<br />

• Sample Design Storm<br />

4.00<br />

2.00<br />

0.00<br />

• Indicative Beach Profile<br />

Mon 12:00<br />

AM<br />

Mon 12:00<br />

PM<br />

Tue 12:00<br />

AM<br />

Tue 12:00<br />

PM<br />

Time<br />

Wed 12:00<br />

AM<br />

Wed 12:00<br />

PM<br />

Thu 12:00<br />

AM<br />

Thu 12:00<br />

PM<br />

•<br />

• S-Beach and 1D LitPro Models


Mar<strong>in</strong>e and Coastal Studies: Perth II


Mar<strong>in</strong>e and Coastal Studies: Perth II<br />

Intake Structure<br />

• Intakes to be located at -8.0mCD to -8.5mCD<br />

• One Intake for each Phase<br />

• Different options <strong>in</strong>clud<strong>in</strong>g:<br />

• alliance developed options<br />

• Submerged Intake Option<br />

• Seabed Infiltration Option (HDD)<br />

• proprietary <strong>in</strong>take structures such as passive Johnson Screens


GHD Alternative Intake Designs: Perth II<br />

Submerged Intake Option


Seawater Intake Structure – Conventional<br />

Submerged Intake – Perth II


Mar<strong>in</strong>e and Coastal Studies: Perth II<br />

Intake Structure<br />

• Adequate submergence<br />

• Structural stability<br />

• Acceptable <strong>in</strong>take<br />

velocity<br />

• Limited <strong>in</strong>take of<br />

suspended sediments<br />

• Constructability


Mar<strong>in</strong>e and Coastal Studies: Perth II<br />

Seawater Intake - Pipel<strong>in</strong>e


Mar<strong>in</strong>e and Coastal Studies: Perth II<br />

Pipel<strong>in</strong>e Trench


Mar<strong>in</strong>e and Coastal Studies: Perth II -<br />

Conventional Intake Pump<strong>in</strong>g Station


Conventional Seawater Pump Station –<br />

Compartmentalised to Ensure Flood<strong>in</strong>g<br />

Redundancy – Perth II


Conventional Seawater Pump Station – Compartmentalised<br />

to Ensure Flood<strong>in</strong>g Redundancy – Perth II


Conventional Intake - Seawater Screen<strong>in</strong>g – Perth II


Conventional Intake - Seawater Screen<strong>in</strong>g and UF<br />

Pre-treatment – Perth II


GHD Alternative Intake Designs: Perth II<br />

Seabed Infiltration Option (HDD)


Mar<strong>in</strong>e and Coastal Studies: Perth II –Alternative<br />

HDD Seabed Infiltration Intake


Mar<strong>in</strong>e and Coastal Studies: Perth II –Alternative<br />

HDD Pump Station


Mar<strong>in</strong>e and Coastal Studies: Perth II –Alternative<br />

HDD Pump Station


Mar<strong>in</strong>e and Coastal Studies: Perth II –Alternative<br />

HDD Pump Station


Mar<strong>in</strong>e and Coastal Studies: Perth II –Alternative<br />

HDD Pump Station


Mar<strong>in</strong>e and Coastal Studies: Perth II –Alternative<br />

HDD Pump Station


Seawater Pump Station – Perth II


GHD Waste Streams: Perth II


Waste Streams - Perth II<br />

Bypass po<strong>in</strong>ts<br />

Lime discharge<br />

Overflow<br />

UF Overflow<br />

Br<strong>in</strong>e and waste<br />

Discharge<br />

Roof Dra<strong>in</strong>age


Br<strong>in</strong>e & Filter Backwash Tank – Perth II


Br<strong>in</strong>e & Filter Backwash Tank – Perth II


Br<strong>in</strong>e Discharge Tower – Perth II


Br<strong>in</strong>e Discharge Tower – Perth II


Br<strong>in</strong>e Discharge Tower – Perth II


Br<strong>in</strong>e Outfall and Diffuser System – Perth II


Br<strong>in</strong>e Outfall and Diffuser System – Perth II


Intakes and Outfalls<br />

GHD Designs – 32 mgd SWRO Plant – M<strong>in</strong><strong>in</strong>g Company


32 mgd SWRO Plant: M<strong>in</strong><strong>in</strong>g Company – Screened Intake


EXTRACTION OF SURFACE WATER<br />

PASSIVE INTAKE SCREENS


PASSIVE INTAKE SCREEN


PASSIVE SCREEN - HYDROBURST SYSTEM<br />

AIR BACKWASH SYSTEM<br />

4 key components :<br />

4<br />

2<br />

A compressor<br />

A pressurized air receiver<br />

1<br />

One or several discharge valve(s)<br />

A control cubicle<br />

3


PASSIVE SCREEN - HYDROBURST SYSTEM<br />

• Air backwash siz<strong>in</strong>g depends on:<br />

• Intake size<br />

• Maximum backwash frequency<br />

• Distance between air receiver and <strong>in</strong>take<br />

• Key elements : receiver and air compressor<br />

• How it works<br />

• the compressor<br />

produces the compressed air that is then<br />

stored <strong>in</strong><br />

• the receiver<br />

Pressure vessel code construction.. Then<br />

• the valve<br />

opens and lets the air to one of the <strong>in</strong>takes<br />

• The PLC/Clock cubicle<br />

controls the backwash cycles<br />

transmits all the <strong>in</strong>fo to the SOE monitor<br />

allows local manual operation


PASSVE SCREEN - SITE ADAPTATION<br />

• Hydraulic: depend<strong>in</strong>g on the water flow one of the follow<strong>in</strong>g design<br />

can<br />

be selected<br />

SK 1:<br />

Deflector faces the water<br />

flow, forc<strong>in</strong>g debris away<br />

from the screen<br />

Elbow shields the screen<br />

from debris<br />

Stream


PASSVE SCREEN - SITE ADAPTATION<br />

SK 2:<br />

rails<br />

Stream<br />

Wharf <strong>in</strong>stallation with rails for clean<strong>in</strong>g


PASSVE SCREEN - SITE ADAPTATION<br />

SK 3 :<br />

Trough<br />

Stream<br />

Restriction trough to speed up flow<br />

and keep suspended solids from<br />

settl<strong>in</strong>g at the <strong>in</strong>take‟s location


PASSVE SCREEN - SITE ADAPTATION<br />

• Shallow waters:<br />

Make sure that there will always be at least 1/2 D of water above (tide,<br />

summer…) and below the <strong>in</strong>take.<br />

D/2 diameter (D)<br />

D/2


PASSVE SCREEN - SITE ADAPTATION<br />

• Entry canals, pits<br />

In these <strong>in</strong>stances where water speed is very small attention will be paid to<br />

the local conditions to avoid debris/silt accumulation .<br />

For <strong>in</strong>stance <strong>in</strong> a pit it may be worth <strong>in</strong>clud<strong>in</strong>g :<br />

• a sloped bottom<br />

• a pump hole to<br />

pump the dirt<br />

out of the pit<br />

• a pedestal to<br />

keep the <strong>in</strong>take<br />

away from the<br />

bottom


PASSIVE SCREEN - MOUNTING<br />

• Examples of support<br />

Overhang<strong>in</strong>g<br />

from the flange<br />

On a cradle<br />

Concrete foundation


PASSIVE SCREEN - CONFIGURATION<br />

• Several <strong>in</strong>takes<br />

Always try to keep thee flow balanced, i.e. same<br />

length of pip<strong>in</strong>g etc....<br />

Stream<br />

A No No !!


Cu-Ni Intake Screens


Sta<strong>in</strong>less Steel Passive Intake Screens


The Susta<strong>in</strong>ability of SWRO


The Susta<strong>in</strong>ability of SWRO<br />

Mammoth Water Condenser, Coolgardie Water Distillery, 132,000 gpd<br />

The ultimate <strong>in</strong> un-susta<strong>in</strong>ability<br />

In 1896 the worlds largest desal<strong>in</strong>ation plant was built <strong>in</strong> Western <strong>Australia</strong> at Coolgardie


It’s not about water.<br />

It’s aboutenergy!


The Susta<strong>in</strong>ability of SWRO<br />

Affordable <strong>Desal<strong>in</strong>ation</strong> Collaboration (ADC)<br />

Theoretical m<strong>in</strong>imum SEC for seawater @ 35000 mg/L TDS is 2.83 kWh/kgal (0.748 kWhr/m 3 )<br />

To convey 1 kgal of untreated water horizontally over 260 miles uses 12.38 kWh/kgal (3.3 kWh/m3)<br />

Gold Coast <strong>Desal<strong>in</strong>ation</strong> Plant produces high quality water locally at 12.38 kWh/kgal (3.3 kWh/m3)


The Susta<strong>in</strong>ability of SWRO<br />

Specific Energy Consumption for Different Water Sources<br />

Process Electrical Thermal Total<br />

(kWh/m 3 ) (kWh/m 3 ) (kWh/m 3 )<br />

MSF 3.2 – 3.7 9.8 – 6.8 13.0 – 10.5<br />

MED 2.5 - 2.9 6.6 - 4.5 9.0 – 7.4<br />

METC 2.0 - 2.5 12.0 - 6.5 14.0 - 9.0<br />

MVC 8.0 - 17.0 N/A N/A<br />

SWRO 3.3 - 8.5 N/A 3.3 - 8.5<br />

BWRO 1.0 - 2.5 N/A 1.0 - 2.5<br />

Waste Water Reuse 1.0 - 2.5 N/A 1.0 - 2.5<br />

Conventional 0.2 – 1.0 N/A 0.2 – 1.0<br />

Water piped > 250 Miles 3.3 N/A 3.3


The Susta<strong>in</strong>ability of SWRO<br />

Mar<strong>in</strong>e Energy Technologies<br />

• Mar<strong>in</strong>e Energy typically<br />

refers to:<br />

• Wave Power<br />

• Tidal Power<br />

• Ocean Thermal<br />

• Offshore W<strong>in</strong>d


The Susta<strong>in</strong>ability of SWRO<br />

Some Wave Concepts<br />

Ed<strong>in</strong>burgh Duck<br />

Archimedes Wave Sw<strong>in</strong>g<br />

Back Bent Ducted Buoy<br />

AquaBuOY<br />

PS Frog<br />

Grampus OWEL<br />

Bristol Cyl<strong>in</strong>der


The Susta<strong>in</strong>ability of SWRO<br />

Some Wave Concepts – cont‟d<br />

OPT PowerBuoy<br />

SeaVolt<br />

Sea Clam<br />

Fred Olsen FO 3<br />

Manchester Bobber<br />

Wave Dragon<br />

Ocean Wave Master<br />

WaveBob


The Susta<strong>in</strong>ability of SWRO<br />

Some Wave Concepts – cont‟d<br />

CETO<br />

Pelamis<br />

C-Wave<br />

Cockerell Raft<br />

Sperboy<br />

Frond


The Susta<strong>in</strong>ability of SWRO<br />

Some Wave Concepts – cont‟d<br />

CETO


The Susta<strong>in</strong>ability of SWRO<br />

Energy Recovery Devices<br />

CALDER – DWEER<br />

PRESSURE EXCHANGER<br />

KSB – SALTEC<br />

PRESSURE EXCHANGER<br />

AXIAL PISTON PRESSURE<br />

EXCHANGER PUMP<br />

PEI – TURBO BOOSTER<br />

CALDER - PELTON WHEEL<br />

IMPULSE TURBINE<br />

ERI - PX<br />

PRESSURE EXCHANGER


The Susta<strong>in</strong>ability of SWRO<br />

Energy Recovery Devices<br />

IDE – IRIS<br />

PRESSURE EXCHANGER<br />

DYPREX<br />

PRESSURE EXCHANGER<br />

ROVEX PRESSURE<br />

EXCHANGER<br />

FEDCO HYDRAULIC<br />

PRESSURE BOOSTER<br />

ERI – TITAN PX<br />

PRESSURE EXCHANGER


The Susta<strong>in</strong>ability of SWRO<br />

Energy Recovery Devices<br />

AQUALING – ORIGINAL RECUPERATOR<br />

PRESSURE EXCHANGER<br />

AQUALING – NEW RECUPERATOR<br />

PRESSURE EXCHANGER


The Susta<strong>in</strong>ability of SWRO<br />

Water Source Comparison (<strong>in</strong>clud<strong>in</strong>g another unsusta<strong>in</strong>able concept)<br />

14<br />

12<br />

Unit cost ($/m 3 )<br />

12.0<br />

10<br />

Power (kWh/m 3 )<br />

8<br />

6<br />

4<br />


The Susta<strong>in</strong>ability of SWRO<br />

Energy Comparison<br />

Old Fridge Energy Requirement<br />

= 1300 kWh/Year<br />

Efficient <strong>Desal<strong>in</strong>ation</strong> Plant (SEC)<br />

Specific Energy Consumption<br />

= 15.52 kWhr/kgal (4.1 kWh/m 3 )Total<br />

Equivalent Annual Water Production<br />

= 84000 gallons /year (317 m 3 /year)<br />

Garage Fridge<br />

= A s<strong>in</strong>gle total domestic water use<br />

per year <strong>in</strong>side and outside<br />

Reverse Cycle Air 8 kW @ 4 h/day <strong>in</strong><br />

W<strong>in</strong>ter and Summer (6 months)<br />

= 5760 kW/h (Water for 4.5 homes)


The Susta<strong>in</strong>ability of SWRO<br />

Energy Comparison – The MacMansion<br />

Temperature under black roof 61°C.<br />

Radiated Heat 39 °C <strong>in</strong>side house.<br />

Temperature under reflective roof 31°C.<br />

Radiated heat 26 °C <strong>in</strong>side house


The Susta<strong>in</strong>ability of SWRO<br />

Energy Comparison – The MacMansion<br />

If you look at all the energy requirements of new homes (City Beach 8858<br />

kW/hr per year average per home) you would not believe there is a<br />

greenhouse gas emission issue.<br />

Some Big Mac’s (supersized) have up to 15 kW air condition<strong>in</strong>g systems.<br />

To add <strong>in</strong>sult to <strong>in</strong>jury, the latest fashion is a black roof with no eaves –<br />

additional air condition<strong>in</strong>g required (high calories – just like the Big Mac<br />

supersized).<br />

Reverse Cycle Air 15 kW @ 4 hr/day <strong>in</strong> W<strong>in</strong>ter and Summer (6 months) =<br />

10800 kW/h (SWRO water for 8.5 homes<br />

I did not see one black roof on the Canary Islands (and I do not th<strong>in</strong>k it<br />

was just because the islanders have aesthetic appreciation).


The Susta<strong>in</strong>ability of SWRO<br />

Energy Comparison – The MacMansion<br />

The West <strong>Australia</strong>n Tuesday March 8 2007<br />

Record heat ru<strong>in</strong>s fruit,<br />

dra<strong>in</strong>s power<br />

Western Power claimed it coped with the<br />

<strong>in</strong>creased demand despite us<strong>in</strong>g temporary<br />

generators as power consumption hit a peak<br />

of 3574MW at 4.55 pm, beat<strong>in</strong>g Tuesday’s<br />

high of 3533 MW.<br />

The Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant uses<br />

0.67% of this energy, whilst Perth was<br />

us<strong>in</strong>g over 30% of the energy for aircondition<strong>in</strong>g.<br />

Note the new umbilical cords to ensure that the<br />

black roof keeps the Big Mac cool <strong>in</strong>side


So …<br />

How Many Jumbos


The Susta<strong>in</strong>ability of SWRO<br />

Energy Comparisons<br />

=<br />

+<br />

+<br />

+<br />

+<br />

+


The Susta<strong>in</strong>ability of SWRO<br />

Energy Comparisons<br />

or, how many PSDP‟s<br />

=<br />

+<br />

+


The Susta<strong>in</strong>ability of SWRO<br />

Energy Comparisons<br />

and the answer is!<br />

=<br />

One Jumbo Jet<br />

Tak<strong>in</strong>g Off Power<br />

Cruis<strong>in</strong>g Power<br />

Full Power of One Eng<strong>in</strong>e<br />

Full Power Requirement PSDP<br />

= 77 MW<br />

= 65 MW<br />

= 26 MW<br />

= 24 MW<br />

Water for 405,000 homes (Aus) 300,000 homes (USA) or a total<br />

116,000 passengers transported <strong>in</strong> one year assum<strong>in</strong>g Jumbo is<br />

always full, and Jumbo‟s cannot use renewable energy.<br />

+<br />

+


So …<br />

How Many Queen Mary II‟s


The Susta<strong>in</strong>ability of SWRO<br />

Energy Comparisons<br />

=<br />

+<br />

+<br />

+<br />

+<br />

+


The Susta<strong>in</strong>ability of SWRO<br />

Energy Comparisons<br />

=<br />

or, how many PSDP‟s<br />

+<br />

+<br />

+


The Susta<strong>in</strong>ability of SWRO<br />

Energy Comparisons<br />

=<br />

and the answer is!<br />

+<br />

Guest Capacity:<br />

• 2,592 lower berths<br />

• 3,056 maximum capacity (Incl. third and fourth berths)<br />

Crew:<br />

•1,253<br />

Power:<br />

•118 MW, gas turb<strong>in</strong>e/diesel electric plant<br />

+<br />

+


Annual Streamflow (GL)<br />

Not So Susta<strong>in</strong>able<br />

Surface Water Source – Serpent<strong>in</strong>e Dam<br />

Serpent<strong>in</strong>e Dam - Streamflow<br />

200.0<br />

180.0<br />

160.0<br />

140.0<br />

120.0<br />

100.0<br />

80.0<br />

60.0<br />

40.0<br />

20.0<br />

0.0<br />

1911<br />

1914<br />

1917<br />

1920<br />

1923<br />

Note: years are water years May to April<br />

Catchment Area 664 km2<br />

1926<br />

1929<br />

1932<br />

1935<br />

1938<br />

1941<br />

1944<br />

1947<br />

1950<br />

1953<br />

1956<br />

1959<br />

1962<br />

1965<br />

1968<br />

1971<br />

1974<br />

1977<br />

1980<br />

1983<br />

1986<br />

1989<br />

1992<br />

1995<br />

1998<br />

2001<br />

2004<br />

Streamflow Longterm average(62 GL) mov<strong>in</strong>g average<br />

1975 to 1994 MAF (37 GL) 1997 to 2004 MAF(24 GL) 2001 to 2005 MAF(19 GL)<br />

Courtesy of the Water Corporation


Seawater <strong>Desal<strong>in</strong>ation</strong> vs. Surface Water Source<br />

Footpr<strong>in</strong>t Comparison – Serpent<strong>in</strong>e Dam<br />

• Constructed from 1957 to 1961<br />

• Catchment area = 256 miles 2 (vs. 12 miles 2 )<br />

• Surface area at FSL = 2,636 acres (vs. 22 acres)<br />

• No <strong>in</strong>-stream flow allocations<br />

• Yield estimated <strong>in</strong> early 50s @ 40,552 acre-feet/year - 98% reliability<br />

• PSDP yield: 40,552 acre-feet/year + @ 100% reliability - 0% failure<br />

• Yield <strong>in</strong> 2006 was 4,055 acre-feet/year ; a 90% reduction<br />

• <strong>Desal<strong>in</strong>ation</strong> 0% failure = 40,552 acre-feet/year - 100% reliability


Future Developments


Future <strong>Desal<strong>in</strong>ation</strong> Developments<br />

SWRO will still become more efficient due to:<br />

• New high rejection membranes<br />

• Chlor<strong>in</strong>e Tolerant Membranes<br />

• New large diameter membranes<br />

• New energy recovery devices<br />

• Membrane pre-treatment advances<br />

• New materials (more plastics and composites)<br />

• Advanced pre-treatment and post treatment


Future <strong>Desal<strong>in</strong>ation</strong> Developments<br />

• Ceramic Membranes<br />

• Non-chemical treatments for dis<strong>in</strong>fection pre- and post treatment<br />

• Chang<strong>in</strong>g of WHO Boron Guidel<strong>in</strong>es to 2.4 mg/L from 0.5 mg/L<br />

(hence only one pass required with a potential sav<strong>in</strong>gs of 15%)<br />

• Optimal Control Systems and Configurations<br />

• Nano-technology and smart membranes<br />

• Forward Osmosis<br />

• High efficiency reverse osmosis (HERO) and Electro Dialysis<br />

Reversal (EDR) may become the solution for <strong>in</strong>land towns where<br />

groundwater sources are limited


Future Developments<br />

Reverse-Reverse Osmosis <br />

(Entropy Recovery - Forward Osmosis - Osmotic Power)<br />

Patents 1971, 1972, 1974, 1975<br />

Papers by Dr. Sid Loeb 1976 through 2000


PSDP L<strong>in</strong>ked to Wastewater Treatment Plant<br />

Gross Available Power<br />

216 ML/day (57 mgd) Seawater Concentrate<br />

216 ML/day (57 mgd) of UF Treated Secondary Wastewater<br />

5MW<br />

At the same time you would mix the wastewater with the concentrate limit<strong>in</strong>g stratification<br />

when return<strong>in</strong>g 34,500 mg/L mixed water to the ocean.


Osmotic Power<br />

Power From Seawater: First Prototype Out, More to Come<br />

FRESH WATER RUSHES TOWARD SALT WATER.<br />

PRESSURE BUILDS. POWER IS PRODUCED. NORWAY‟S FIRST PLANT OPENS BUT<br />

OTHERS ARE LOOKING AT IT AS WELL.<br />

Statkraft is the world’s leader <strong>in</strong> the development of osmotic power. Osmotic power is<br />

clean, renewable energy, with a global potential of 1 600 to 1 700 TWh – equal to Ch<strong>in</strong>a’s<br />

total electricity consumption <strong>in</strong> 2002.<br />

ON TUESDAY, 24 NOVEMBER 2009, HER ROYAL HIGHNESS CROWN PRINCESS METTE-MARIT<br />

OF NORWAY WILL BE OPENING THE WORLD’S FIRST OSMOTIC POWER PLANT AT TOFTE,<br />

OUTSIDE OSLO.<br />

Statkraft says a pilot facility that uses saltwater and freshwater to<br />

generate power could mark a next new source of renewable energy. The<br />

world‟s first osmotic power plant opened today at Tofte, outside of Oslo.<br />

And it <strong>in</strong>cluded a royal kickoff from the Crown Pr<strong>in</strong>cess Mette-Marit of<br />

Norway, who pushed the button that set the turb<strong>in</strong>es <strong>in</strong> motion.<br />

Osmotic power plant opens, with commercial scale ambitions


Osmotic Energy Recovery Patent Pend<strong>in</strong>g<br />

• Gauge Pressure of<br />

60 bar ~ 6 kwh/kgal<br />

Seawater<br />

desal<strong>in</strong>ation with<br />

gauge pressure<br />

recovery at<br />

9.3 kwh/kgal.<br />

• Osmotic Pressure of<br />

60 bar ~ 2.4 kwh/kgal<br />

Seawater desal<strong>in</strong>ation<br />

with gauge pressure<br />

recovery and with<br />

osmotic pressure<br />

recovery at 6.9<br />

kwh/kgal.<br />

Seawater<br />

Intake<br />

Br<strong>in</strong>e<br />

Discharge<br />

Courtesy of Boris Liberman, Ph.D.<br />

Vice-President – IDE Technologies Ltd.<br />

Patent Pend<strong>in</strong>g


Osmotic Energy Recovery Patent Pend<strong>in</strong>g<br />

Osmotic Pressure: 0.3 bar<br />

MBR Process<br />

Seawater<br />

Intake<br />

Br<strong>in</strong>e<br />

Discharge<br />

Gauge Pressure of 60 bar<br />

Osmotic Pressure of 60 bar<br />

Aquifer<br />

Recharge<br />

Well<br />

Groundwater<br />

Pump<strong>in</strong>g<br />

Well<br />

Courtesy of Boris Liberman, Ph.D.<br />

Vice-President – IDE Technologies Ltd.<br />

Patent Pend<strong>in</strong>g


Osmotic Energy Recovery Patent Pend<strong>in</strong>g<br />

MBR Process<br />

SWRO Process<br />

Seawater<br />

Intake<br />

Br<strong>in</strong>e<br />

Discharge<br />

Aquifer<br />

Recharge<br />

Well<br />

Groundwater<br />

Pump<strong>in</strong>g<br />

Well<br />

Courtesy of Boris Liberman, Ph.D.<br />

Vice-President – IDE Technologies Ltd.<br />

Patent Pend<strong>in</strong>g


Osmotic Energy Recovery Patent Pend<strong>in</strong>g<br />

SWRO br<strong>in</strong>e<br />

1m3/s<br />

Pg 60bar, Po 60bar<br />

MBR Treated Water<br />

1m3/s, Pg = 33bar<br />

POp = 0.3 bar<br />

POp 45 bar<br />

POp 0.45 bar<br />

NDF 17 bar<br />

PGp 59.5 bar<br />

PGp 32 bar<br />

SWRO br<strong>in</strong>e<br />

1.9m3/s<br />

Pg-59bar, Po-30bar<br />

MBR Water<br />

0.1m3/s<br />

Courtesy of Boris Liberman, Ph.D.<br />

Vice-President – IDE Technologies Ltd.<br />

Patent Pend<strong>in</strong>g


Why SWRO is Susta<strong>in</strong>able & the Future Solution<br />

1. SWRO reflects the “true benchmark value of water”, the “triple bottom l<strong>in</strong>e” as<br />

environmental, social and f<strong>in</strong>ancial costs are all <strong>in</strong>cluded <strong>in</strong> the unit cost of water.<br />

No conventional source adequately caters for environmental costs.<br />

2. SWRO is drought free and provides a totally new (orig<strong>in</strong>al) source, contrary to<br />

recycl<strong>in</strong>g.<br />

3. SWRO does not disturb rivers, estuaries, delta’s, the sea and associated habitat<br />

(fish, siltation, stagnation and <strong>in</strong>-stream flows). Dams result <strong>in</strong> the sea gett<strong>in</strong>g saltier<br />

<strong>in</strong> conf<strong>in</strong>ed gulfs e.g. Arabian Gulf. Even semi – conf<strong>in</strong>ed Cockburn Sound <strong>in</strong> Perth<br />

has not shown any signs of sal<strong>in</strong>ity <strong>in</strong>crease after 3 years of operation (DB09-278<br />

Perth, <strong>Australia</strong>: Two-year Feed Back on Operation and Environmental<br />

Impact).<br />

4. SWRO does not disturb aquifers and associated habitat (water table, seawater<br />

<strong>in</strong>trusion, spr<strong>in</strong>gs, acid sulphate soils and stygofauna).<br />

5. SWRO br<strong>in</strong>e discharges and residuals can be environmentally managed (this has<br />

been proven beyond any doubt <strong>in</strong> Perth (DB09-278).<br />

6. SWRO is efficient and becom<strong>in</strong>g more efficient with constant advances.


Why SWRO is Susta<strong>in</strong>able & the Future Solution<br />

7. SWRO submerged <strong>in</strong>takes adequately designed, entra<strong>in</strong> negligible algae, zooplankton<br />

and no fish. Entra<strong>in</strong>ment of sea life is m<strong>in</strong>imal with well designed submerged open<br />

<strong>in</strong>takes with low velocity. Only some algae and zooplankton (and no fish) <strong>in</strong> m<strong>in</strong>uscule<br />

quantities are entra<strong>in</strong>ed. Proven by Perth and Gold Coast <strong>Desal<strong>in</strong>ation</strong> Plants.<br />

8. SWRO can use w<strong>in</strong>d or any renewable energy to ensure no emissions.<br />

9. SWRO has the smallest environmental and terrestrial footpr<strong>in</strong>t of any source (Perth 16<br />

acres Land + 6 acres Sea + w<strong>in</strong>d farm 12 miles 2 for 17% of the city’s water).<br />

10. SWRO can be located near to where it is needed.<br />

11. SWRO need not utilise long pipel<strong>in</strong>es/canals (no need for millions of tons of steel,<br />

cement or massive excavations – such as required when “br<strong>in</strong>g<strong>in</strong>g water down from the<br />

north” and us<strong>in</strong>g 4.5 times less energy).<br />

12. SWRO results <strong>in</strong> m<strong>in</strong>imal greenhouse gas production dur<strong>in</strong>g the manufacture of<br />

components.<br />

13. SWRO results <strong>in</strong> m<strong>in</strong>imal greenhouse gas production dur<strong>in</strong>g the construction of the<br />

plant.


Why SWRO is Susta<strong>in</strong>able & the Future Solution<br />

14. The deployment of SWRO plants on coasts ensures that there is a water catchment<br />

plan <strong>in</strong> place (for water quality purposes), ensur<strong>in</strong>g the highest degree of ocean<br />

protection.<br />

15. SWRO results <strong>in</strong> zero evaporation, siltation or salt build-up <strong>in</strong> dams (e.g. Well<strong>in</strong>gton<br />

Dam, WA).<br />

16. SWRO water quality is not affected by bush fires, first ra<strong>in</strong> or activities <strong>in</strong> catchments<br />

which can affect water quality and future run-off (e.g. Melbourne).<br />

17. SWRO could ultimately be partially powered by osmotic power (a new form of<br />

renewable energy). Locate SWRO Plants adjacent to WWT Plants.<br />

18. SWRO can utilise greenhouse off–sets from renewable energy development from<br />

anywhere <strong>in</strong> the world, after all climate change is a global issue.<br />

19. SWRO can be provided at guaranteed full capacity with<strong>in</strong> two years of<br />

environmental clearances be<strong>in</strong>g obta<strong>in</strong>ed.<br />

20. The future development potential of SWRO is still amaz<strong>in</strong>g (especially membranes,<br />

materials, control systems and logic and energy reduction).


Conclusions<br />

• A clean unlimited energy supply is the key to most world problems, <strong>in</strong>clud<strong>in</strong>g<br />

water supply.<br />

• <strong>Desal<strong>in</strong>ation</strong> can have the smallest footpr<strong>in</strong>t of any source <strong>in</strong> <strong>Australia</strong>/ California.<br />

• A substantial component of <strong>Australia</strong>‟s water supply needs will be met by water<br />

reuse and seawater desal<strong>in</strong>ation <strong>in</strong> the medium to long term (18 SWRO and 10<br />

Reuse exist<strong>in</strong>g, under construction and proposed). California could be the same.<br />

• The Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant is the most sophisticated and susta<strong>in</strong>able<br />

SWRO plant <strong>in</strong> the world, utilis<strong>in</strong>g the most up-to-date components, it is be the<br />

world‟s model plant and the only large plant us<strong>in</strong>g w<strong>in</strong>d power.<br />

• PSDP will be eclipsed by a more efficient plant, somewhere <strong>in</strong> the world with<strong>in</strong> 3<br />

years, most likely Perth‟s second plant, the Southern Seawater <strong>Desal<strong>in</strong>ation</strong> Plant,<br />

which has to be 80% w<strong>in</strong>d and the other 20% other renewable plus membrane pretreatment.


Conclusions (Cont<strong>in</strong>ued)<br />

• PSDP will be eclipsed by a more efficient plant, somewhere <strong>in</strong> the<br />

world with<strong>in</strong> 3 years, most likely Perth‟s second plant, the Southern<br />

Seawater <strong>Desal<strong>in</strong>ation</strong> Plant, which has to be 80% w<strong>in</strong>d and the other<br />

20% other renewable plus membrane pre-treatment.<br />

• Water Reuse and desal<strong>in</strong>ation are susta<strong>in</strong>able water sources that will<br />

contribute to solv<strong>in</strong>g <strong>Australia</strong>‟s/ California‟s water resource issues.<br />

• SWRO will still become more efficient with new Low Energy High<br />

Rejection Membranes, Large Diameter Membranes, Membrane Pretreatment,<br />

new materials and logic and control systems.


Conclusions (Cont<strong>in</strong>ued)<br />

• State Governments are urged to undertake strategic forward plann<strong>in</strong>g<br />

<strong>in</strong> select<strong>in</strong>g SWRO desal<strong>in</strong>ation and wastewater treatment plant sites<br />

and associated corridors now. This should be planned for 50 years<br />

ahead.<br />

• Western <strong>Australia</strong> has been lead<strong>in</strong>g the country (and world) <strong>in</strong> the use<br />

of desal<strong>in</strong>ation technologies and the diversification of water sources<br />

SWRO, BWRO, MED, MVC, EDR, HERO, renewables.<br />

• Other desal<strong>in</strong>ation technologies to maximise recovery <strong>in</strong> a move to<br />

Zero Liquid Discharge (ZLD) <strong>in</strong>land <strong>in</strong>clude: ARROW, HEEPM, VSEP


“I have said that I thought if we could ever<br />

competitively get fresh water from<br />

saltwater…that it would be <strong>in</strong> the long range<br />

<strong>in</strong>terests of humanity which would really<br />

dwarf any other scientific accomplishment.”<br />

John F. Kennedy, September 22, 1961<br />

“If we could produce clean unlimited energy<br />

at a viable cost, that would <strong>in</strong>deed be a<br />

great service to humanity and would dwarf<br />

any other scientific accomplishment.”<br />

Gary J. Crisp, 2006


Perth Seawater <strong>Desal<strong>in</strong>ation</strong> Plant<br />

Awarded<br />

GWI World Membrane <strong>Desal<strong>in</strong>ation</strong><br />

Plant of the Year 2007<br />

ERI Awarded GWI<br />

Environmental<br />

Contribution of the<br />

Year 2007<br />

Courtesy of Water Corporation<br />

Courtesy of ERI


Gold Coast <strong>Desal<strong>in</strong>ation</strong> Plant<br />

Awarded<br />

GWI World Membrane <strong>Desal<strong>in</strong>ation</strong><br />

Plant of the Year 2009<br />

Courtesy of WaterSecure


International <strong>Desal<strong>in</strong>ation</strong> Association<br />

Awarded 2011 World Congress - to<br />

Perth<br />

Western<br />

<strong>Australia</strong><br />

See You There!


Can California Do the Same <strong>in</strong><br />

SWRO<br />

“Yes We Can”<br />

“Aqua La Vista - Baby”


Questions<br />

Thank you.<br />

GHD | CLIENTS | PEOPLE | PERFORMANCE<br />

Gary Crisp, Bus<strong>in</strong>ess Leader - <strong>Desal<strong>in</strong>ation</strong><br />

BSc. Civil Eng<strong>in</strong>eer<strong>in</strong>g, CP Eng., FIEAust, PMP<br />

T 61 7 3316 4107 | F 61 7 3316 3333 | gary.crisp@ghd.com.au<br />

201 Charlotte Street Brisbane QLD 4000 <strong>Australia</strong> | http://www.ghd.com.au<br />

GHD serves the global markets of: Infrastructure | M<strong>in</strong><strong>in</strong>g & Industry | Defence | Property & Build<strong>in</strong>gs | Environment

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!