31.01.2015 Views

"Generalised and asymptotic symmetries of hyperkähler manifolds"

"Generalised and asymptotic symmetries of hyperkähler manifolds"

"Generalised and asymptotic symmetries of hyperkähler manifolds"

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

”<strong>Generalised</strong> <strong>and</strong> <strong>asymptotic</strong> <strong>symmetries</strong> <strong>of</strong><br />

hyperkähler manifolds”<br />

Roger Bielawski<br />

Fribourg, July 3, 2008


Hyperkähler manifolds<br />

A Riemannian manifold (M,g) is hyperkähler if it possesses 3 almost<br />

complex structures I 1 ,I 2 ,I 3 , parallel for the Levi-Civita connection <strong>and</strong><br />

satisfying I 1 I 2 = −I 2 I 1 = I 3 etc.<br />

Holonomy <strong>of</strong> (M,g) is a subgroup <strong>of</strong> Sp(n).<br />

I 1 ,I 2 ,I 3 are integrable. In fact a whole 2-sphere <strong>of</strong> complex<br />

structures: a 1 I 1 + a 2 I 2 + a 3 I 3 , (a 1 ,a 2 ,a 3 ) ∈ S 2 .<br />

Three (or again a 2-sphere) Kähler forms ω i = g(I i·,·).<br />

Complex symplectic forms: ω 2 + √ −1ω 3 is an I 1 -holomorphic<br />

nondegenerate closed form.<br />

Examples: Flat R 4 or T 4 , K 3 surfaces, resolutions <strong>of</strong> Kleinian<br />

singularities C 2 /Γ, moduli spaces <strong>of</strong> topological solitons<br />

(instantons, monopoles), moduli spaces <strong>of</strong> Higgs bundles,<br />

coadjoint orbits <strong>of</strong> complex reductive Lie groups, quiver varieties,<br />

toric hyperkähler varieties.


Hyperkähler manifolds<br />

A Riemannian manifold (M,g) is hyperkähler if it possesses 3 almost<br />

complex structures I 1 ,I 2 ,I 3 , parallel for the Levi-Civita connection <strong>and</strong><br />

satisfying I 1 I 2 = −I 2 I 1 = I 3 etc.<br />

Holonomy <strong>of</strong> (M,g) is a subgroup <strong>of</strong> Sp(n).<br />

I 1 ,I 2 ,I 3 are integrable. In fact a whole 2-sphere <strong>of</strong> complex<br />

structures: a 1 I 1 + a 2 I 2 + a 3 I 3 , (a 1 ,a 2 ,a 3 ) ∈ S 2 .<br />

Three (or again a 2-sphere) Kähler forms ω i = g(I i·,·).<br />

Complex symplectic forms: ω 2 + √ −1ω 3 is an I 1 -holomorphic<br />

nondegenerate closed form.<br />

Examples: Flat R 4 or T 4 , K 3 surfaces, resolutions <strong>of</strong> Kleinian<br />

singularities C 2 /Γ, moduli spaces <strong>of</strong> topological solitons<br />

(instantons, monopoles), moduli spaces <strong>of</strong> Higgs bundles,<br />

coadjoint orbits <strong>of</strong> complex reductive Lie groups, quiver varieties,<br />

toric hyperkähler varieties.


Hyperkähler manifolds<br />

A Riemannian manifold (M,g) is hyperkähler if it possesses 3 almost<br />

complex structures I 1 ,I 2 ,I 3 , parallel for the Levi-Civita connection <strong>and</strong><br />

satisfying I 1 I 2 = −I 2 I 1 = I 3 etc.<br />

Holonomy <strong>of</strong> (M,g) is a subgroup <strong>of</strong> Sp(n).<br />

I 1 ,I 2 ,I 3 are integrable. In fact a whole 2-sphere <strong>of</strong> complex<br />

structures: a 1 I 1 + a 2 I 2 + a 3 I 3 , (a 1 ,a 2 ,a 3 ) ∈ S 2 .<br />

Three (or again a 2-sphere) Kähler forms ω i = g(I i·,·).<br />

Complex symplectic forms: ω 2 + √ −1ω 3 is an I 1 -holomorphic<br />

nondegenerate closed form.<br />

Examples: Flat R 4 or T 4 , K 3 surfaces, resolutions <strong>of</strong> Kleinian<br />

singularities C 2 /Γ, moduli spaces <strong>of</strong> topological solitons<br />

(instantons, monopoles), moduli spaces <strong>of</strong> Higgs bundles,<br />

coadjoint orbits <strong>of</strong> complex reductive Lie groups, quiver varieties,<br />

toric hyperkähler varieties.


Hyperkähler manifolds<br />

A Riemannian manifold (M,g) is hyperkähler if it possesses 3 almost<br />

complex structures I 1 ,I 2 ,I 3 , parallel for the Levi-Civita connection <strong>and</strong><br />

satisfying I 1 I 2 = −I 2 I 1 = I 3 etc.<br />

Holonomy <strong>of</strong> (M,g) is a subgroup <strong>of</strong> Sp(n).<br />

I 1 ,I 2 ,I 3 are integrable. In fact a whole 2-sphere <strong>of</strong> complex<br />

structures: a 1 I 1 + a 2 I 2 + a 3 I 3 , (a 1 ,a 2 ,a 3 ) ∈ S 2 .<br />

Three (or again a 2-sphere) Kähler forms ω i = g(I i·,·).<br />

Complex symplectic forms: ω 2 + √ −1ω 3 is an I 1 -holomorphic<br />

nondegenerate closed form.<br />

Examples: Flat R 4 or T 4 , K 3 surfaces, resolutions <strong>of</strong> Kleinian<br />

singularities C 2 /Γ, moduli spaces <strong>of</strong> topological solitons<br />

(instantons, monopoles), moduli spaces <strong>of</strong> Higgs bundles,<br />

coadjoint orbits <strong>of</strong> complex reductive Lie groups, quiver varieties,<br />

toric hyperkähler varieties.


Hyperkähler manifolds<br />

A Riemannian manifold (M,g) is hyperkähler if it possesses 3 almost<br />

complex structures I 1 ,I 2 ,I 3 , parallel for the Levi-Civita connection <strong>and</strong><br />

satisfying I 1 I 2 = −I 2 I 1 = I 3 etc.<br />

Holonomy <strong>of</strong> (M,g) is a subgroup <strong>of</strong> Sp(n).<br />

I 1 ,I 2 ,I 3 are integrable. In fact a whole 2-sphere <strong>of</strong> complex<br />

structures: a 1 I 1 + a 2 I 2 + a 3 I 3 , (a 1 ,a 2 ,a 3 ) ∈ S 2 .<br />

Three (or again a 2-sphere) Kähler forms ω i = g(I i·,·).<br />

Complex symplectic forms: ω 2 + √ −1ω 3 is an I 1 -holomorphic<br />

nondegenerate closed form.<br />

Examples: Flat R 4 or T 4 , K 3 surfaces, resolutions <strong>of</strong> Kleinian<br />

singularities C 2 /Γ, moduli spaces <strong>of</strong> topological solitons<br />

(instantons, monopoles), moduli spaces <strong>of</strong> Higgs bundles,<br />

coadjoint orbits <strong>of</strong> complex reductive Lie groups, quiver varieties,<br />

toric hyperkähler varieties.


Hyperkähler manifolds<br />

A Riemannian manifold (M,g) is hyperkähler if it possesses 3 almost<br />

complex structures I 1 ,I 2 ,I 3 , parallel for the Levi-Civita connection <strong>and</strong><br />

satisfying I 1 I 2 = −I 2 I 1 = I 3 etc.<br />

Holonomy <strong>of</strong> (M,g) is a subgroup <strong>of</strong> Sp(n).<br />

I 1 ,I 2 ,I 3 are integrable. In fact a whole 2-sphere <strong>of</strong> complex<br />

structures: a 1 I 1 + a 2 I 2 + a 3 I 3 , (a 1 ,a 2 ,a 3 ) ∈ S 2 .<br />

Three (or again a 2-sphere) Kähler forms ω i = g(I i·,·).<br />

Complex symplectic forms: ω 2 + √ −1ω 3 is an I 1 -holomorphic<br />

nondegenerate closed form.<br />

Examples: Flat R 4 or T 4 , K 3 surfaces, resolutions <strong>of</strong> Kleinian<br />

singularities C 2 /Γ, moduli spaces <strong>of</strong> topological solitons<br />

(instantons, monopoles), moduli spaces <strong>of</strong> Higgs bundles,<br />

coadjoint orbits <strong>of</strong> complex reductive Lie groups, quiver varieties,<br />

toric hyperkähler varieties.


Twistor space<br />

(M,g) Z<br />

Z = M × S 2 (S 2 - 2-sphere <strong>of</strong> complex structures).<br />

Z is a complex manifold with a holomorphic projection<br />

π : Z → CP 1 .<br />

Antiholomorphic involution τ on Z , induced by the antipodal map<br />

on S 2 .<br />

M is recovered as a space <strong>of</strong> τ-invariant sections <strong>of</strong> π, with<br />

normal bundle a sum <strong>of</strong> O(1)-s.<br />

The complex symplectic forms combine to give a twisted<br />

holomorphic symplectic form Ω : Λ 2 T V Z → O(2) on the fibres <strong>of</strong><br />

π, taking values in the line bundle O(2) on CP 1 .


Twistor space<br />

(M,g) Z<br />

Z = M × S 2 (S 2 - 2-sphere <strong>of</strong> complex structures).<br />

Z is a complex manifold with a holomorphic projection<br />

π : Z → CP 1 .<br />

Antiholomorphic involution τ on Z , induced by the antipodal map<br />

on S 2 .<br />

M is recovered as a space <strong>of</strong> τ-invariant sections <strong>of</strong> π, with<br />

normal bundle a sum <strong>of</strong> O(1)-s.<br />

The complex symplectic forms combine to give a twisted<br />

holomorphic symplectic form Ω : Λ 2 T V Z → O(2) on the fibres <strong>of</strong><br />

π, taking values in the line bundle O(2) on CP 1 .


Twistor space<br />

(M,g) Z<br />

Z = M × S 2 (S 2 - 2-sphere <strong>of</strong> complex structures).<br />

Z is a complex manifold with a holomorphic projection<br />

π : Z → CP 1 .<br />

Antiholomorphic involution τ on Z , induced by the antipodal map<br />

on S 2 .<br />

M is recovered as a space <strong>of</strong> τ-invariant sections <strong>of</strong> π, with<br />

normal bundle a sum <strong>of</strong> O(1)-s.<br />

The complex symplectic forms combine to give a twisted<br />

holomorphic symplectic form Ω : Λ 2 T V Z → O(2) on the fibres <strong>of</strong><br />

π, taking values in the line bundle O(2) on CP 1 .


Twistor space<br />

(M,g) Z<br />

Z = M × S 2 (S 2 - 2-sphere <strong>of</strong> complex structures).<br />

Z is a complex manifold with a holomorphic projection<br />

π : Z → CP 1 .<br />

Antiholomorphic involution τ on Z , induced by the antipodal map<br />

on S 2 .<br />

M is recovered as a space <strong>of</strong> τ-invariant sections <strong>of</strong> π, with<br />

normal bundle a sum <strong>of</strong> O(1)-s.<br />

The complex symplectic forms combine to give a twisted<br />

holomorphic symplectic form Ω : Λ 2 T V Z → O(2) on the fibres <strong>of</strong><br />

π, taking values in the line bundle O(2) on CP 1 .


Twistor space<br />

(M,g) Z<br />

Z = M × S 2 (S 2 - 2-sphere <strong>of</strong> complex structures).<br />

Z is a complex manifold with a holomorphic projection<br />

π : Z → CP 1 .<br />

Antiholomorphic involution τ on Z , induced by the antipodal map<br />

on S 2 .<br />

M is recovered as a space <strong>of</strong> τ-invariant sections <strong>of</strong> π, with<br />

normal bundle a sum <strong>of</strong> O(1)-s.<br />

The complex symplectic forms combine to give a twisted<br />

holomorphic symplectic form Ω : Λ 2 T V Z → O(2) on the fibres <strong>of</strong><br />

π, taking values in the line bundle O(2) on CP 1 .


ALE gravitational instantons<br />

ALE metrics on deformations <strong>of</strong> Kleinian singularities. The twistor<br />

spaces are (almost):<br />

A k : Z = { (x,y,z) ∈ O(k) ⊕O(k) ⊕O(2); xy − z k =<br />

a 1 z k−2 + ··· + a k−2<br />

}<br />

Note: A 1 is the flat space; Z ≃ O(1) ⊕O(1).<br />

D k : Z = { (x,y,z) ∈ O(k + 1) ⊕O(k) ⊕O(4); x 2 + y 2 z + z k+1 =<br />

a 1 z k−1 + ··· + a k−1 + b 1 y 2 + b 2 y }<br />

E 6 : Z = { (x,y,z) ∈ O(12) ⊕O(8) ⊕O(6); x 2 + y 3 + z 4 =<br />

a 1 z 2 + a 2 z + a 3 + y(b 1 z 2 + b 2 z + b 3 ) }<br />

E 7 : Z = { (x,y,z) ∈ O(18) ⊕O(12) ⊕O(8); x 2 + y 3 + yz 3 =<br />

a 1 z 2 + a 2 z + a 3 + y(b 1 z + b 2 ) + y 2 (c 1 z + c 2 ) }<br />

E 8 : Z = { (x,y,z) ∈ O(30) ⊕O(20) ⊕O(12); x 2 + y 3 + z 5 =<br />

a 1 z 3 + a 2 z 2 + a 3 z + a 4 + +y(b 1 z 3 + b 2 z 2 + b 3 z + b 4 ) }


ALE gravitational instantons<br />

ALE metrics on deformations <strong>of</strong> Kleinian singularities. The twistor<br />

spaces are (almost):<br />

A k : Z = { (x,y,z) ∈ O(k) ⊕O(k) ⊕O(2); xy − z k =<br />

a 1 z k−2 + ··· + a k−2<br />

}<br />

Note: A 1 is the flat space; Z ≃ O(1) ⊕O(1).<br />

D k : Z = { (x,y,z) ∈ O(k + 1) ⊕O(k) ⊕O(4); x 2 + y 2 z + z k+1 =<br />

a 1 z k−1 + ··· + a k−1 + b 1 y 2 + b 2 y }<br />

E 6 : Z = { (x,y,z) ∈ O(12) ⊕O(8) ⊕O(6); x 2 + y 3 + z 4 =<br />

a 1 z 2 + a 2 z + a 3 + y(b 1 z 2 + b 2 z + b 3 ) }<br />

E 7 : Z = { (x,y,z) ∈ O(18) ⊕O(12) ⊕O(8); x 2 + y 3 + yz 3 =<br />

a 1 z 2 + a 2 z + a 3 + y(b 1 z + b 2 ) + y 2 (c 1 z + c 2 ) }<br />

E 8 : Z = { (x,y,z) ∈ O(30) ⊕O(20) ⊕O(12); x 2 + y 3 + z 5 =<br />

a 1 z 3 + a 2 z 2 + a 3 z + a 4 + +y(b 1 z 3 + b 2 z 2 + b 3 z + b 4 ) }


(E-H)-formalism<br />

An alternative to the twistor language:<br />

The structure group <strong>of</strong> a hyperkähler manifold reduces to Sp(n).<br />

Let E be the vector bundle on M associated to the the st<strong>and</strong>ard<br />

representation <strong>of</strong> Sp(n). Then T C M ≃ E ⊗ H, where H is the<br />

trivial bundle <strong>of</strong> rank 2 (representation <strong>of</strong> Sp(1)).<br />

In dimension 4, E <strong>and</strong> H are spinor bundles.<br />

The representations <strong>of</strong> Sp(n) <strong>and</strong> Sp(1) are quaternionic, so<br />

there are anti-holomorphic involutions on E,H.<br />

Both E <strong>and</strong> H are symplectic vector bundles, with symplectic<br />

forms ω E ,ω H . The metric is given by g = ω E ⊗ ω H .


(E-H)-formalism<br />

An alternative to the twistor language:<br />

The structure group <strong>of</strong> a hyperkähler manifold reduces to Sp(n).<br />

Let E be the vector bundle on M associated to the the st<strong>and</strong>ard<br />

representation <strong>of</strong> Sp(n). Then T C M ≃ E ⊗ H, where H is the<br />

trivial bundle <strong>of</strong> rank 2 (representation <strong>of</strong> Sp(1)).<br />

In dimension 4, E <strong>and</strong> H are spinor bundles.<br />

The representations <strong>of</strong> Sp(n) <strong>and</strong> Sp(1) are quaternionic, so<br />

there are anti-holomorphic involutions on E,H.<br />

Both E <strong>and</strong> H are symplectic vector bundles, with symplectic<br />

forms ω E ,ω H . The metric is given by g = ω E ⊗ ω H .


(E-H)-formalism<br />

An alternative to the twistor language:<br />

The structure group <strong>of</strong> a hyperkähler manifold reduces to Sp(n).<br />

Let E be the vector bundle on M associated to the the st<strong>and</strong>ard<br />

representation <strong>of</strong> Sp(n). Then T C M ≃ E ⊗ H, where H is the<br />

trivial bundle <strong>of</strong> rank 2 (representation <strong>of</strong> Sp(1)).<br />

In dimension 4, E <strong>and</strong> H are spinor bundles.<br />

The representations <strong>of</strong> Sp(n) <strong>and</strong> Sp(1) are quaternionic, so<br />

there are anti-holomorphic involutions on E,H.<br />

Both E <strong>and</strong> H are symplectic vector bundles, with symplectic<br />

forms ω E ,ω H . The metric is given by g = ω E ⊗ ω H .


(E-H)-formalism<br />

An alternative to the twistor language:<br />

The structure group <strong>of</strong> a hyperkähler manifold reduces to Sp(n).<br />

Let E be the vector bundle on M associated to the the st<strong>and</strong>ard<br />

representation <strong>of</strong> Sp(n). Then T C M ≃ E ⊗ H, where H is the<br />

trivial bundle <strong>of</strong> rank 2 (representation <strong>of</strong> Sp(1)).<br />

In dimension 4, E <strong>and</strong> H are spinor bundles.<br />

The representations <strong>of</strong> Sp(n) <strong>and</strong> Sp(1) are quaternionic, so<br />

there are anti-holomorphic involutions on E,H.<br />

Both E <strong>and</strong> H are symplectic vector bundles, with symplectic<br />

forms ω E ,ω H . The metric is given by g = ω E ⊗ ω H .


(E-H)-formalism<br />

An alternative to the twistor language:<br />

The structure group <strong>of</strong> a hyperkähler manifold reduces to Sp(n).<br />

Let E be the vector bundle on M associated to the the st<strong>and</strong>ard<br />

representation <strong>of</strong> Sp(n). Then T C M ≃ E ⊗ H, where H is the<br />

trivial bundle <strong>of</strong> rank 2 (representation <strong>of</strong> Sp(1)).<br />

In dimension 4, E <strong>and</strong> H are spinor bundles.<br />

The representations <strong>of</strong> Sp(n) <strong>and</strong> Sp(1) are quaternionic, so<br />

there are anti-holomorphic involutions on E,H.<br />

Both E <strong>and</strong> H are symplectic vector bundles, with symplectic<br />

forms ω E ,ω H . The metric is given by g = ω E ⊗ ω H .


Symmetries<br />

A symmetry <strong>of</strong> a hyperkähler manifold is a vector field X which is<br />

Killing <strong>and</strong> tri-holomorphic.<br />

X is tri-Hamiltonian, if there are moment maps µ X 1 ,µX 2 ,µX 3 for the<br />

three Kähler forms.<br />

µ X = (µ X 1 ,µX 2 ,µX 3 ) : M → R3<br />

tri-Hamiltonian =⇒ Killing <strong>and</strong> tri-holomorphic.<br />

X is Hamiltonian w.r.t. to complex-symplectic forms, hence w.r.t.<br />

the twisted complex-symplectic form Ω on Z <strong>and</strong> induces a<br />

moment map µ : Z → O(2).<br />

X - Killing is equivalent to X in the kernel <strong>of</strong><br />

TM ∇ → TM ⊗ T ∗ M g → TM ⊗ TM ≃ Λ 2 TM ⊕ S 2 TM → S 2 TM.<br />

X is tri-Hamiltonian if it is in the image under the second<br />

projection <strong>of</strong> the kernel <strong>of</strong> the first projection in:<br />

S 2 H ∇ → S 2 H ⊗(E ⊗H) ≃ E ⊗(S 3 H ⊕H) → (E ⊗S 3 H)⊕(E ⊗H).


Symmetries<br />

A symmetry <strong>of</strong> a hyperkähler manifold is a vector field X which is<br />

Killing <strong>and</strong> tri-holomorphic.<br />

X is tri-Hamiltonian, if there are moment maps µ X 1 ,µX 2 ,µX 3 for the<br />

three Kähler forms.<br />

µ X = (µ X 1 ,µX 2 ,µX 3 ) : M → R3<br />

tri-Hamiltonian =⇒ Killing <strong>and</strong> tri-holomorphic.<br />

X is Hamiltonian w.r.t. to complex-symplectic forms, hence w.r.t.<br />

the twisted complex-symplectic form Ω on Z <strong>and</strong> induces a<br />

moment map µ : Z → O(2).<br />

X - Killing is equivalent to X in the kernel <strong>of</strong><br />

TM ∇ → TM ⊗ T ∗ M g → TM ⊗ TM ≃ Λ 2 TM ⊕ S 2 TM → S 2 TM.<br />

X is tri-Hamiltonian if it is in the image under the second<br />

projection <strong>of</strong> the kernel <strong>of</strong> the first projection in:<br />

S 2 H ∇ → S 2 H ⊗(E ⊗H) ≃ E ⊗(S 3 H ⊕H) → (E ⊗S 3 H)⊕(E ⊗H).


Symmetries<br />

A symmetry <strong>of</strong> a hyperkähler manifold is a vector field X which is<br />

Killing <strong>and</strong> tri-holomorphic.<br />

X is tri-Hamiltonian, if there are moment maps µ X 1 ,µX 2 ,µX 3 for the<br />

three Kähler forms.<br />

µ X = (µ X 1 ,µX 2 ,µX 3 ) : M → R3<br />

tri-Hamiltonian =⇒ Killing <strong>and</strong> tri-holomorphic.<br />

X is Hamiltonian w.r.t. to complex-symplectic forms, hence w.r.t.<br />

the twisted complex-symplectic form Ω on Z <strong>and</strong> induces a<br />

moment map µ : Z → O(2).<br />

X - Killing is equivalent to X in the kernel <strong>of</strong><br />

TM ∇ → TM ⊗ T ∗ M g → TM ⊗ TM ≃ Λ 2 TM ⊕ S 2 TM → S 2 TM.<br />

X is tri-Hamiltonian if it is in the image under the second<br />

projection <strong>of</strong> the kernel <strong>of</strong> the first projection in:<br />

S 2 H ∇ → S 2 H ⊗(E ⊗H) ≃ E ⊗(S 3 H ⊕H) → (E ⊗S 3 H)⊕(E ⊗H).


Symmetries<br />

A symmetry <strong>of</strong> a hyperkähler manifold is a vector field X which is<br />

Killing <strong>and</strong> tri-holomorphic.<br />

X is tri-Hamiltonian, if there are moment maps µ X 1 ,µX 2 ,µX 3 for the<br />

three Kähler forms.<br />

µ X = (µ X 1 ,µX 2 ,µX 3 ) : M → R3<br />

tri-Hamiltonian =⇒ Killing <strong>and</strong> tri-holomorphic.<br />

X is Hamiltonian w.r.t. to complex-symplectic forms, hence w.r.t.<br />

the twisted complex-symplectic form Ω on Z <strong>and</strong> induces a<br />

moment map µ : Z → O(2).<br />

X - Killing is equivalent to X in the kernel <strong>of</strong><br />

TM ∇ → TM ⊗ T ∗ M g → TM ⊗ TM ≃ Λ 2 TM ⊕ S 2 TM → S 2 TM.<br />

X is tri-Hamiltonian if it is in the image under the second<br />

projection <strong>of</strong> the kernel <strong>of</strong> the first projection in:<br />

S 2 H ∇ → S 2 H ⊗(E ⊗H) ≃ E ⊗(S 3 H ⊕H) → (E ⊗S 3 H)⊕(E ⊗H).


Symmetries<br />

A symmetry <strong>of</strong> a hyperkähler manifold is a vector field X which is<br />

Killing <strong>and</strong> tri-holomorphic.<br />

X is tri-Hamiltonian, if there are moment maps µ X 1 ,µX 2 ,µX 3 for the<br />

three Kähler forms.<br />

µ X = (µ X 1 ,µX 2 ,µX 3 ) : M → R3<br />

tri-Hamiltonian =⇒ Killing <strong>and</strong> tri-holomorphic.<br />

X is Hamiltonian w.r.t. to complex-symplectic forms, hence w.r.t.<br />

the twisted complex-symplectic form Ω on Z <strong>and</strong> induces a<br />

moment map µ : Z → O(2).<br />

X - Killing is equivalent to X in the kernel <strong>of</strong><br />

TM ∇ → TM ⊗ T ∗ M g → TM ⊗ TM ≃ Λ 2 TM ⊕ S 2 TM → S 2 TM.<br />

X is tri-Hamiltonian if it is in the image under the second<br />

projection <strong>of</strong> the kernel <strong>of</strong> the first projection in:<br />

S 2 H ∇ → S 2 H ⊗(E ⊗H) ≃ E ⊗(S 3 H ⊕H) → (E ⊗S 3 H)⊕(E ⊗H).


Symmetries<br />

A symmetry <strong>of</strong> a hyperkähler manifold is a vector field X which is<br />

Killing <strong>and</strong> tri-holomorphic.<br />

X is tri-Hamiltonian, if there are moment maps µ X 1 ,µX 2 ,µX 3 for the<br />

three Kähler forms.<br />

µ X = (µ X 1 ,µX 2 ,µX 3 ) : M → R3<br />

tri-Hamiltonian =⇒ Killing <strong>and</strong> tri-holomorphic.<br />

X is Hamiltonian w.r.t. to complex-symplectic forms, hence w.r.t.<br />

the twisted complex-symplectic form Ω on Z <strong>and</strong> induces a<br />

moment map µ : Z → O(2).<br />

X - Killing is equivalent to X in the kernel <strong>of</strong><br />

TM ∇ → TM ⊗ T ∗ M g → TM ⊗ TM ≃ Λ 2 TM ⊕ S 2 TM → S 2 TM.<br />

X is tri-Hamiltonian if it is in the image under the second<br />

projection <strong>of</strong> the kernel <strong>of</strong> the first projection in:<br />

S 2 H ∇ → S 2 H ⊗(E ⊗H) ≃ E ⊗(S 3 H ⊕H) → (E ⊗S 3 H)⊕(E ⊗H).


Symmetries<br />

A symmetry <strong>of</strong> a hyperkähler manifold is a vector field X which is<br />

Killing <strong>and</strong> tri-holomorphic.<br />

X is tri-Hamiltonian, if there are moment maps µ X 1 ,µX 2 ,µX 3 for the<br />

three Kähler forms.<br />

µ X = (µ X 1 ,µX 2 ,µX 3 ) : M → R3<br />

tri-Hamiltonian =⇒ Killing <strong>and</strong> tri-holomorphic.<br />

X is Hamiltonian w.r.t. to complex-symplectic forms, hence w.r.t.<br />

the twisted complex-symplectic form Ω on Z <strong>and</strong> induces a<br />

moment map µ : Z → O(2).<br />

X - Killing is equivalent to X in the kernel <strong>of</strong><br />

TM ∇ → TM ⊗ T ∗ M g → TM ⊗ TM ≃ Λ 2 TM ⊕ S 2 TM → S 2 TM.<br />

X is tri-Hamiltonian if it is in the image under the second<br />

projection <strong>of</strong> the kernel <strong>of</strong> the first projection in:<br />

S 2 H ∇ → S 2 H ⊗(E ⊗H) ≃ E ⊗(S 3 H ⊕H) → (E ⊗S 3 H)⊕(E ⊗H).


<strong>Generalised</strong> <strong>symmetries</strong><br />

Notion goes back to [Lindström <strong>and</strong> Roček, 1988], but it has been<br />

formalised by [-,1999] (in a twistor language) <strong>and</strong> by [Dunajski, 1999],<br />

[Dunajski & Mason, 2000, 2003] as follows:<br />

A (real) section <strong>of</strong> E ⊗ S k H (k -odd) is a generalised symmetry if it is<br />

in the kernel <strong>of</strong>:<br />

E ⊗S k H ∇ → (E ⊗S k H)⊗(E ∗ ⊗H ∗ ) → (S 2 E ⊗S k+1 H)⊕(Λ 2 E ⊗S k−1 H).<br />

Similarly, such a section is a tri-Hamiltonian generalised symmetry if it<br />

is in the image <strong>of</strong> the kernel <strong>of</strong><br />

S k+1 H ∇ → S k+1 H ⊗ (E ⊗ H) ≃ E ⊗ (S k+2 H ⊕ S k H) → E ⊗ S k+2 H<br />

under the map<br />

S k+1 H ∇ → S k+1 H ⊗ (E ⊗ H) ≃ E ⊗ (S k+2 H ⊕ S k H) → E ⊗ S k H.


<strong>Generalised</strong> <strong>symmetries</strong><br />

Notion goes back to [Lindström <strong>and</strong> Roček, 1988], but it has been<br />

formalised by [-,1999] (in a twistor language) <strong>and</strong> by [Dunajski, 1999],<br />

[Dunajski & Mason, 2000, 2003] as follows:<br />

A (real) section <strong>of</strong> E ⊗ S k H (k -odd) is a generalised symmetry if it is<br />

in the kernel <strong>of</strong>:<br />

E ⊗S k H ∇ → (E ⊗S k H)⊗(E ∗ ⊗H ∗ ) → (S 2 E ⊗S k+1 H)⊕(Λ 2 E ⊗S k−1 H).<br />

Similarly, such a section is a tri-Hamiltonian generalised symmetry if it<br />

is in the image <strong>of</strong> the kernel <strong>of</strong><br />

S k+1 H ∇ → S k+1 H ⊗ (E ⊗ H) ≃ E ⊗ (S k+2 H ⊕ S k H) → E ⊗ S k+2 H<br />

under the map<br />

S k+1 H ∇ → S k+1 H ⊗ (E ⊗ H) ≃ E ⊗ (S k+2 H ⊕ S k H) → E ⊗ S k H.


<strong>Generalised</strong> <strong>symmetries</strong><br />

Notion goes back to [Lindström <strong>and</strong> Roček, 1988], but it has been<br />

formalised by [-,1999] (in a twistor language) <strong>and</strong> by [Dunajski, 1999],<br />

[Dunajski & Mason, 2000, 2003] as follows:<br />

A (real) section <strong>of</strong> E ⊗ S k H (k -odd) is a generalised symmetry if it is<br />

in the kernel <strong>of</strong>:<br />

E ⊗S k H ∇ → (E ⊗S k H)⊗(E ∗ ⊗H ∗ ) → (S 2 E ⊗S k+1 H)⊕(Λ 2 E ⊗S k−1 H).<br />

Similarly, such a section is a tri-Hamiltonian generalised symmetry if it<br />

is in the image <strong>of</strong> the kernel <strong>of</strong><br />

S k+1 H ∇ → S k+1 H ⊗ (E ⊗ H) ≃ E ⊗ (S k+2 H ⊕ S k H) → E ⊗ S k+2 H<br />

under the map<br />

S k+1 H ∇ → S k+1 H ⊗ (E ⊗ H) ≃ E ⊗ (S k+2 H ⊕ S k H) → E ⊗ S k H.


Roček).<br />

Examples include all toric hyperkähler manifolds (all r i are 1),<br />

monopole metrics, <strong>asymptotic</strong> monopole metrics, gravitational<br />

instantons, <strong>and</strong> various quiver varieties, in particular, hyperkähler<br />

metrics on adjoint orbits <strong>of</strong> GL(n,C) <strong>and</strong> the natural metrics on<br />

Calogero-Moser spaces.<br />

In the twistor language, a generalised symmetry in Γ(E ⊗ S 2r−1 H)<br />

corresponds to a map Z → O(2r), Hamiltonian for the twisted<br />

symplectic form Ω. Examples: ALE spaces.<br />

hK manifolds <strong>of</strong> dim 4n with an abelian group <strong>of</strong> <strong>symmetries</strong> <strong>of</strong><br />

dimension n correspond to polyharmonic functions on R n ⊗ R 3<br />

(harmonic on every v ⊗ R 3 ) (Lindström-Roček).E.g.<br />

A k ALE space is given by ∑ k i=1<br />

1<br />

|x−x i | ,<br />

1<br />

|x−x i |<br />

A k ALF space is given by c + ∑ k i=1<br />

R n ⊗ R 3 is the image <strong>of</strong> the moment map (a space <strong>of</strong> τ-invariant<br />

sections <strong>of</strong> O(2) × C n );<br />

Similarly, hK manifolds <strong>of</strong> dimension 4n, with n commuting<br />

generalised <strong>symmetries</strong> (Z → L n<br />

i=1 O(2r i )) correspond to<br />

solutions <strong>of</strong> a system <strong>of</strong> linear PDEs on a space <strong>of</strong> sections <strong>of</strong><br />

L n<br />

i=1 O(2r i ) (generalised Legendre transform <strong>of</strong> Lindström <strong>and</strong>


Roček).<br />

Examples include all toric hyperkähler manifolds (all r i are 1),<br />

monopole metrics, <strong>asymptotic</strong> monopole metrics, gravitational<br />

instantons, <strong>and</strong> various quiver varieties, in particular, hyperkähler<br />

metrics on adjoint orbits <strong>of</strong> GL(n,C) <strong>and</strong> the natural metrics on<br />

Calogero-Moser spaces.<br />

In the twistor language, a generalised symmetry in Γ(E ⊗ S 2r−1 H)<br />

corresponds to a map Z → O(2r), Hamiltonian for the twisted<br />

symplectic form Ω. Examples: ALE spaces.<br />

hK manifolds <strong>of</strong> dim 4n with an abelian group <strong>of</strong> <strong>symmetries</strong> <strong>of</strong><br />

dimension n correspond to polyharmonic functions on R n ⊗ R 3<br />

(harmonic on every v ⊗ R 3 ) (Lindström-Roček).E.g.<br />

A k ALE space is given by ∑ k i=1<br />

1<br />

|x−x i | ,<br />

1<br />

|x−x i |<br />

A k ALF space is given by c + ∑ k i=1<br />

R n ⊗ R 3 is the image <strong>of</strong> the moment map (a space <strong>of</strong> τ-invariant<br />

sections <strong>of</strong> O(2) × C n );<br />

Similarly, hK manifolds <strong>of</strong> dimension 4n, with n commuting<br />

generalised <strong>symmetries</strong> (Z → L n<br />

i=1 O(2r i )) correspond to<br />

solutions <strong>of</strong> a system <strong>of</strong> linear PDEs on a space <strong>of</strong> sections <strong>of</strong><br />

L n<br />

i=1 O(2r i ) (generalised Legendre transform <strong>of</strong> Lindström <strong>and</strong>


Roček).<br />

Examples include all toric hyperkähler manifolds (all r i are 1),<br />

monopole metrics, <strong>asymptotic</strong> monopole metrics, gravitational<br />

instantons, <strong>and</strong> various quiver varieties, in particular, hyperkähler<br />

metrics on adjoint orbits <strong>of</strong> GL(n,C) <strong>and</strong> the natural metrics on<br />

Calogero-Moser spaces.<br />

In the twistor language, a generalised symmetry in Γ(E ⊗ S 2r−1 H)<br />

corresponds to a map Z → O(2r), Hamiltonian for the twisted<br />

symplectic form Ω. Examples: ALE spaces.<br />

hK manifolds <strong>of</strong> dim 4n with an abelian group <strong>of</strong> <strong>symmetries</strong> <strong>of</strong><br />

dimension n correspond to polyharmonic functions on R n ⊗ R 3<br />

(harmonic on every v ⊗ R 3 ) (Lindström-Roček).E.g.<br />

A k ALE space is given by ∑ k i=1<br />

1<br />

|x−x i | ,<br />

1<br />

|x−x i |<br />

A k ALF space is given by c + ∑ k i=1<br />

R n ⊗ R 3 is the image <strong>of</strong> the moment map (a space <strong>of</strong> τ-invariant<br />

sections <strong>of</strong> O(2) × C n );<br />

Similarly, hK manifolds <strong>of</strong> dimension 4n, with n commuting<br />

generalised <strong>symmetries</strong> (Z → L n<br />

i=1 O(2r i )) correspond to<br />

solutions <strong>of</strong> a system <strong>of</strong> linear PDEs on a space <strong>of</strong> sections <strong>of</strong><br />

L n<br />

i=1 O(2r i ) (generalised Legendre transform <strong>of</strong> Lindström <strong>and</strong>


Roček).<br />

Examples include all toric hyperkähler manifolds (all r i are 1),<br />

monopole metrics, <strong>asymptotic</strong> monopole metrics, gravitational<br />

instantons, <strong>and</strong> various quiver varieties, in particular, hyperkähler<br />

metrics on adjoint orbits <strong>of</strong> GL(n,C) <strong>and</strong> the natural metrics on<br />

Calogero-Moser spaces.<br />

In the twistor language, a generalised symmetry in Γ(E ⊗ S 2r−1 H)<br />

corresponds to a map Z → O(2r), Hamiltonian for the twisted<br />

symplectic form Ω. Examples: ALE spaces.<br />

hK manifolds <strong>of</strong> dim 4n with an abelian group <strong>of</strong> <strong>symmetries</strong> <strong>of</strong><br />

dimension n correspond to polyharmonic functions on R n ⊗ R 3<br />

(harmonic on every v ⊗ R 3 ) (Lindström-Roček).E.g.<br />

A k ALE space is given by ∑ k i=1<br />

1<br />

|x−x i | ,<br />

1<br />

|x−x i |<br />

A k ALF space is given by c + ∑ k i=1<br />

R n ⊗ R 3 is the image <strong>of</strong> the moment map (a space <strong>of</strong> τ-invariant<br />

sections <strong>of</strong> O(2) × C n );<br />

Similarly, hK manifolds <strong>of</strong> dimension 4n, with n commuting<br />

generalised <strong>symmetries</strong> (Z → L n<br />

i=1 O(2r i )) correspond to<br />

solutions <strong>of</strong> a system <strong>of</strong> linear PDEs on a space <strong>of</strong> sections <strong>of</strong><br />

L n<br />

i=1 O(2r i ) (generalised Legendre transform <strong>of</strong> Lindström <strong>and</strong>


Roček).<br />

Examples include all toric hyperkähler manifolds (all r i are 1),<br />

monopole metrics, <strong>asymptotic</strong> monopole metrics, gravitational<br />

instantons, <strong>and</strong> various quiver varieties, in particular, hyperkähler<br />

metrics on adjoint orbits <strong>of</strong> GL(n,C) <strong>and</strong> the natural metrics on<br />

Calogero-Moser spaces.<br />

In the twistor language, a generalised symmetry in Γ(E ⊗ S 2r−1 H)<br />

corresponds to a map Z → O(2r), Hamiltonian for the twisted<br />

symplectic form Ω. Examples: ALE spaces.<br />

hK manifolds <strong>of</strong> dim 4n with an abelian group <strong>of</strong> <strong>symmetries</strong> <strong>of</strong><br />

dimension n correspond to polyharmonic functions on R n ⊗ R 3<br />

(harmonic on every v ⊗ R 3 ) (Lindström-Roček).E.g.<br />

A k ALE space is given by ∑ k i=1<br />

1<br />

|x−x i | ,<br />

1<br />

|x−x i |<br />

A k ALF space is given by c + ∑ k i=1<br />

R n ⊗ R 3 is the image <strong>of</strong> the moment map (a space <strong>of</strong> τ-invariant<br />

sections <strong>of</strong> O(2) × C n );<br />

Similarly, hK manifolds <strong>of</strong> dimension 4n, with n commuting<br />

generalised <strong>symmetries</strong> (Z → L n<br />

i=1 O(2r i )) correspond to<br />

solutions <strong>of</strong> a system <strong>of</strong> linear PDEs on a space <strong>of</strong> sections <strong>of</strong><br />

L n<br />

i=1 O(2r i ) (generalised Legendre transform <strong>of</strong> Lindström <strong>and</strong>


Roček).<br />

Examples include all toric hyperkähler manifolds (all r i are 1),<br />

monopole metrics, <strong>asymptotic</strong> monopole metrics, gravitational<br />

instantons, <strong>and</strong> various quiver varieties, in particular, hyperkähler<br />

metrics on adjoint orbits <strong>of</strong> GL(n,C) <strong>and</strong> the natural metrics on<br />

Calogero-Moser spaces.<br />

In the twistor language, a generalised symmetry in Γ(E ⊗ S 2r−1 H)<br />

corresponds to a map Z → O(2r), Hamiltonian for the twisted<br />

symplectic form Ω. Examples: ALE spaces.<br />

hK manifolds <strong>of</strong> dim 4n with an abelian group <strong>of</strong> <strong>symmetries</strong> <strong>of</strong><br />

dimension n correspond to polyharmonic functions on R n ⊗ R 3<br />

(harmonic on every v ⊗ R 3 ) (Lindström-Roček).E.g.<br />

A k ALE space is given by ∑ k i=1<br />

1<br />

|x−x i | ,<br />

1<br />

|x−x i |<br />

A k ALF space is given by c + ∑ k i=1<br />

R n ⊗ R 3 is the image <strong>of</strong> the moment map (a space <strong>of</strong> τ-invariant<br />

sections <strong>of</strong> O(2) × C n );<br />

Similarly, hK manifolds <strong>of</strong> dimension 4n, with n commuting<br />

generalised <strong>symmetries</strong> (Z → L n<br />

i=1 O(2r i )) correspond to<br />

solutions <strong>of</strong> a system <strong>of</strong> linear PDEs on a space <strong>of</strong> sections <strong>of</strong><br />

L n<br />

i=1 O(2r i ) (generalised Legendre transform <strong>of</strong> Lindström <strong>and</strong>


The construction<br />

The maps f i : Z → O(2r i ) induce maps ˆfi from the space <strong>of</strong> sections <strong>of</strong><br />

Z , in particular from the manifold M, to the space <strong>of</strong> sections <strong>of</strong> O(2r i ),<br />

i.e. to the space <strong>of</strong> polynomials <strong>of</strong> degree 2r i , which we write as<br />

α i (ζ) =<br />

2r i<br />

∑<br />

a=0<br />

The real structure τ acts on this space by<br />

w i aζ a .<br />

τ(w i a) = (−1) r i+a w i 2r i −a<br />

<strong>and</strong>, consequently, we obtain a map<br />

) nM<br />

ˆf =<br />

(ˆf1 ,...,ˆfn : M → R 2ri+1 .<br />

The image <strong>of</strong> ˆf (<strong>and</strong> the hyperkähler structure <strong>of</strong> M) is, in turn,<br />

determined by a function F : L n<br />

i=1 R 2ri+1 → R satisfying the system <strong>of</strong><br />

PDE’s:<br />

F w i =<br />

a ,w j F<br />

b w i c ,w j (1)<br />

d<br />

for all a,b,c,d such that a + b = c + d.<br />

i=1


The construction<br />

The maps f i : Z → O(2r i ) induce maps ˆfi from the space <strong>of</strong> sections <strong>of</strong><br />

Z , in particular from the manifold M, to the space <strong>of</strong> sections <strong>of</strong> O(2r i ),<br />

i.e. to the space <strong>of</strong> polynomials <strong>of</strong> degree 2r i , which we write as<br />

α i (ζ) =<br />

2r i<br />

∑<br />

a=0<br />

The real structure τ acts on this space by<br />

w i aζ a .<br />

τ(w i a) = (−1) r i+a w i 2r i −a<br />

<strong>and</strong>, consequently, we obtain a map<br />

) nM<br />

ˆf =<br />

(ˆf1 ,...,ˆfn : M → R 2ri+1 .<br />

The image <strong>of</strong> ˆf (<strong>and</strong> the hyperkähler structure <strong>of</strong> M) is, in turn,<br />

determined by a function F : L n<br />

i=1 R 2ri+1 → R satisfying the system <strong>of</strong><br />

PDE’s:<br />

F w i =<br />

a ,w j F<br />

b w i c ,w j (1)<br />

d<br />

for all a,b,c,d such that a + b = c + d.<br />

i=1


The construction<br />

The maps f i : Z → O(2r i ) induce maps ˆfi from the space <strong>of</strong> sections <strong>of</strong><br />

Z , in particular from the manifold M, to the space <strong>of</strong> sections <strong>of</strong> O(2r i ),<br />

i.e. to the space <strong>of</strong> polynomials <strong>of</strong> degree 2r i , which we write as<br />

α i (ζ) =<br />

2r i<br />

∑<br />

a=0<br />

The real structure τ acts on this space by<br />

w i aζ a .<br />

τ(w i a) = (−1) r i+a w i 2r i −a<br />

<strong>and</strong>, consequently, we obtain a map<br />

) nM<br />

ˆf =<br />

(ˆf1 ,...,ˆfn : M → R 2ri+1 .<br />

The image <strong>of</strong> ˆf (<strong>and</strong> the hyperkähler structure <strong>of</strong> M) is, in turn,<br />

determined by a function F : L n<br />

i=1 R 2ri+1 → R satisfying the system <strong>of</strong><br />

PDE’s:<br />

F w i =<br />

a ,w j F<br />

b w i c ,w j (1)<br />

d<br />

for all a,b,c,d such that a + b = c + d.<br />

i=1


An equivalent characterization <strong>of</strong> (1) is that F is given by a contour<br />

integral <strong>of</strong> a holomorphic (possibly singular or multivalued) function <strong>of</strong><br />

2n + 1 variables G = G(ζ,α 1 ,...,α n )<br />

I<br />

F(wa) i =<br />

( G ζ,α 1 (ζ),...,α n (ζ) ) /ζ 2 dζ<br />

c<br />

where α i (ζ) = ∑ 2r i<br />

a=0 w i aζ a , or a sum <strong>of</strong> such contour integrals.<br />

The function F determines the hyperkähler structure as follows. The<br />

image <strong>of</strong> ˆf is given by<br />

F w i a<br />

= 0 if 2 ≤ a ≤ 2r i − 2. (2)<br />

We have local complex coordinates z 1 ,...,z n ,u 1 ,...,u n :<br />

{<br />

z i = w0, i u i if r i ≥ 2<br />

F w i<br />

1<br />

=<br />

u i + ū i if r i = 1.<br />

Then the hK metric <strong>of</strong> M is given by a Kähler potential:<br />

K = F −∑(u i w i 1 + ū i ¯w 1).<br />

i<br />

i


An equivalent characterization <strong>of</strong> (1) is that F is given by a contour<br />

integral <strong>of</strong> a holomorphic (possibly singular or multivalued) function <strong>of</strong><br />

2n + 1 variables G = G(ζ,α 1 ,...,α n )<br />

I<br />

F(wa) i =<br />

( G ζ,α 1 (ζ),...,α n (ζ) ) /ζ 2 dζ<br />

c<br />

where α i (ζ) = ∑ 2r i<br />

a=0 w i aζ a , or a sum <strong>of</strong> such contour integrals.<br />

The function F determines the hyperkähler structure as follows. The<br />

image <strong>of</strong> ˆf is given by<br />

F w i a<br />

= 0 if 2 ≤ a ≤ 2r i − 2. (2)<br />

We have local complex coordinates z 1 ,...,z n ,u 1 ,...,u n :<br />

{<br />

z i = w0, i u i if r i ≥ 2<br />

F w i<br />

1<br />

=<br />

u i + ū i if r i = 1.<br />

Then the hK metric <strong>of</strong> M is given by a Kähler potential:<br />

K = F −∑(u i w i 1 + ū i ¯w 1).<br />

i<br />

i


An equivalent characterization <strong>of</strong> (1) is that F is given by a contour<br />

integral <strong>of</strong> a holomorphic (possibly singular or multivalued) function <strong>of</strong><br />

2n + 1 variables G = G(ζ,α 1 ,...,α n )<br />

I<br />

F(wa) i =<br />

( G ζ,α 1 (ζ),...,α n (ζ) ) /ζ 2 dζ<br />

c<br />

where α i (ζ) = ∑ 2r i<br />

a=0 w i aζ a , or a sum <strong>of</strong> such contour integrals.<br />

The function F determines the hyperkähler structure as follows. The<br />

image <strong>of</strong> ˆf is given by<br />

F w i a<br />

= 0 if 2 ≤ a ≤ 2r i − 2. (2)<br />

We have local complex coordinates z 1 ,...,z n ,u 1 ,...,u n :<br />

{<br />

z i = w0, i u i if r i ≥ 2<br />

F w i<br />

1<br />

=<br />

u i + ū i if r i = 1.<br />

Then the hK metric <strong>of</strong> M is given by a Kähler potential:<br />

K = F −∑(u i w i 1 + ū i ¯w 1).<br />

i<br />

i


An equivalent characterization <strong>of</strong> (1) is that F is given by a contour<br />

integral <strong>of</strong> a holomorphic (possibly singular or multivalued) function <strong>of</strong><br />

2n + 1 variables G = G(ζ,α 1 ,...,α n )<br />

I<br />

F(wa) i =<br />

( G ζ,α 1 (ζ),...,α n (ζ) ) /ζ 2 dζ<br />

c<br />

where α i (ζ) = ∑ 2r i<br />

a=0 w i aζ a , or a sum <strong>of</strong> such contour integrals.<br />

The function F determines the hyperkähler structure as follows. The<br />

image <strong>of</strong> ˆf is given by<br />

F w i a<br />

= 0 if 2 ≤ a ≤ 2r i − 2. (2)<br />

We have local complex coordinates z 1 ,...,z n ,u 1 ,...,u n :<br />

{<br />

z i = w0, i u i if r i ≥ 2<br />

F w i<br />

1<br />

=<br />

u i + ū i if r i = 1.<br />

Then the hK metric <strong>of</strong> M is given by a Kähler potential:<br />

K = F −∑(u i w i 1 + ū i ¯w 1).<br />

i<br />

i


The construction is very similar to the case <strong>of</strong> an abelian symmetry, as<br />

explained by Dunajski <strong>and</strong> Mason. At least in the case, when all r i = r,<br />

the function F (without any extremisation conditions) produces a<br />

generalised hypercomplex manifold N with an actual n-dimensional<br />

symmetry.<br />

N has a twistor space Z(N) → CP 1 ; N is a space <strong>of</strong> real sections<br />

with normal bundle a sum <strong>of</strong> O(r)’s.<br />

N has dimension n(2r + 1) + n <strong>and</strong> is foliated by 4n-dimensional<br />

hK manifolds with generalised <strong>symmetries</strong>, cf. equation (2).<br />

The foliation corresponds to a sequence <strong>of</strong> blow-ups <strong>of</strong> Z(N) at a<br />

pair <strong>of</strong> points interchanged by τ.<br />

End <strong>of</strong> introduction.<br />

New examples, properties, <strong>asymptotic</strong>s:


The construction is very similar to the case <strong>of</strong> an abelian symmetry, as<br />

explained by Dunajski <strong>and</strong> Mason. At least in the case, when all r i = r,<br />

the function F (without any extremisation conditions) produces a<br />

generalised hypercomplex manifold N with an actual n-dimensional<br />

symmetry.<br />

N has a twistor space Z(N) → CP 1 ; N is a space <strong>of</strong> real sections<br />

with normal bundle a sum <strong>of</strong> O(r)’s.<br />

N has dimension n(2r + 1) + n <strong>and</strong> is foliated by 4n-dimensional<br />

hK manifolds with generalised <strong>symmetries</strong>, cf. equation (2).<br />

The foliation corresponds to a sequence <strong>of</strong> blow-ups <strong>of</strong> Z(N) at a<br />

pair <strong>of</strong> points interchanged by τ.<br />

End <strong>of</strong> introduction.<br />

New examples, properties, <strong>asymptotic</strong>s:


The construction is very similar to the case <strong>of</strong> an abelian symmetry, as<br />

explained by Dunajski <strong>and</strong> Mason. At least in the case, when all r i = r,<br />

the function F (without any extremisation conditions) produces a<br />

generalised hypercomplex manifold N with an actual n-dimensional<br />

symmetry.<br />

N has a twistor space Z(N) → CP 1 ; N is a space <strong>of</strong> real sections<br />

with normal bundle a sum <strong>of</strong> O(r)’s.<br />

N has dimension n(2r + 1) + n <strong>and</strong> is foliated by 4n-dimensional<br />

hK manifolds with generalised <strong>symmetries</strong>, cf. equation (2).<br />

The foliation corresponds to a sequence <strong>of</strong> blow-ups <strong>of</strong> Z(N) at a<br />

pair <strong>of</strong> points interchanged by τ.<br />

End <strong>of</strong> introduction.<br />

New examples, properties, <strong>asymptotic</strong>s:


The construction is very similar to the case <strong>of</strong> an abelian symmetry, as<br />

explained by Dunajski <strong>and</strong> Mason. At least in the case, when all r i = r,<br />

the function F (without any extremisation conditions) produces a<br />

generalised hypercomplex manifold N with an actual n-dimensional<br />

symmetry.<br />

N has a twistor space Z(N) → CP 1 ; N is a space <strong>of</strong> real sections<br />

with normal bundle a sum <strong>of</strong> O(r)’s.<br />

N has dimension n(2r + 1) + n <strong>and</strong> is foliated by 4n-dimensional<br />

hK manifolds with generalised <strong>symmetries</strong>, cf. equation (2).<br />

The foliation corresponds to a sequence <strong>of</strong> blow-ups <strong>of</strong> Z(N) at a<br />

pair <strong>of</strong> points interchanged by τ.<br />

End <strong>of</strong> introduction.<br />

New examples, properties, <strong>asymptotic</strong>s:


The construction is very similar to the case <strong>of</strong> an abelian symmetry, as<br />

explained by Dunajski <strong>and</strong> Mason. At least in the case, when all r i = r,<br />

the function F (without any extremisation conditions) produces a<br />

generalised hypercomplex manifold N with an actual n-dimensional<br />

symmetry.<br />

N has a twistor space Z(N) → CP 1 ; N is a space <strong>of</strong> real sections<br />

with normal bundle a sum <strong>of</strong> O(r)’s.<br />

N has dimension n(2r + 1) + n <strong>and</strong> is foliated by 4n-dimensional<br />

hK manifolds with generalised <strong>symmetries</strong>, cf. equation (2).<br />

The foliation corresponds to a sequence <strong>of</strong> blow-ups <strong>of</strong> Z(N) at a<br />

pair <strong>of</strong> points interchanged by τ.<br />

End <strong>of</strong> introduction.<br />

New examples, properties, <strong>asymptotic</strong>s:


GLT on spectral curves<br />

Recall that F = H c G/ζ2 dζ, where G can be multivalued. Instead, we<br />

can consider single-valued (meromorphic) functions on some<br />

branched covering <strong>of</strong> E = ⊕ n i=1O(2r i ).<br />

For example, when E = O(2) ⊕O(4) we can consider a 2-fold<br />

covering:<br />

D 1 = {(η,α 1 ,α 2 ) ∈ O(2) ⊕O(2) ⊕O(4); η 2 + α 1 η + α 2 = 0},<br />

or a 3-fold one:<br />

D 2 = {(η,α 1 ,α 2 ) ∈ O(2) ⊕O(2) ⊕O(4); (η + α 1 )(η 2 + α 2 ) = 0}.<br />

The space <strong>of</strong> real sections <strong>of</strong> E should be now viewed as a space <strong>of</strong><br />

spectral curves - all compact curves in |O(4)| for D 1 , <strong>and</strong> a subset <strong>of</strong><br />

the set <strong>of</strong> reducible compact curves in |O(6)| for D 2 .


GLT on spectral curves<br />

Recall that F = H c G/ζ2 dζ, where G can be multivalued. Instead, we<br />

can consider single-valued (meromorphic) functions on some<br />

branched covering <strong>of</strong> E = ⊕ n i=1O(2r i ).<br />

For example, when E = O(2) ⊕O(4) we can consider a 2-fold<br />

covering:<br />

D 1 = {(η,α 1 ,α 2 ) ∈ O(2) ⊕O(2) ⊕O(4); η 2 + α 1 η + α 2 = 0},<br />

or a 3-fold one:<br />

D 2 = {(η,α 1 ,α 2 ) ∈ O(2) ⊕O(2) ⊕O(4); (η + α 1 )(η 2 + α 2 ) = 0}.<br />

The space <strong>of</strong> real sections <strong>of</strong> E should be now viewed as a space <strong>of</strong><br />

spectral curves - all compact curves in |O(4)| for D 1 , <strong>and</strong> a subset <strong>of</strong><br />

the set <strong>of</strong> reducible compact curves in |O(6)| for D 2 .


GLT on spectral curves<br />

Recall that F = H c G/ζ2 dζ, where G can be multivalued. Instead, we<br />

can consider single-valued (meromorphic) functions on some<br />

branched covering <strong>of</strong> E = ⊕ n i=1O(2r i ).<br />

For example, when E = O(2) ⊕O(4) we can consider a 2-fold<br />

covering:<br />

D 1 = {(η,α 1 ,α 2 ) ∈ O(2) ⊕O(2) ⊕O(4); η 2 + α 1 η + α 2 = 0},<br />

or a 3-fold one:<br />

D 2 = {(η,α 1 ,α 2 ) ∈ O(2) ⊕O(2) ⊕O(4); (η + α 1 )(η 2 + α 2 ) = 0}.<br />

The space <strong>of</strong> real sections <strong>of</strong> E should be now viewed as a space <strong>of</strong><br />

spectral curves - all compact curves in |O(4)| for D 1 , <strong>and</strong> a subset <strong>of</strong><br />

the set <strong>of</strong> reducible compact curves in |O(6)| for D 2 .


Identify elements <strong>of</strong> L m l<br />

i=1 R2i+1 with τ-invariant polynomials<br />

P l (ζ,η) = η m l<br />

+ ∑ m l<br />

i=1 α i(ζ)η m l−i<br />

= 0;<br />

Identify elements <strong>of</strong> S = L k<br />

L ml<br />

l=1 i=1 R2i+1 with τ-invariant<br />

singular curves S = S 1 ∪ ··· ∪ S k given by the equation<br />

k<br />

∏<br />

l=1<br />

P l (ζ,η) = 0.<br />

Consider GLT given by a meromorphic function G(ζ,η) on S,<br />

<strong>and</strong> a the cycle c defined on these curves.<br />

Example<br />

Let k = 1 <strong>and</strong> let<br />

F = − 1 I<br />

η 2<br />

2πi ˜0 ζ dζ + η<br />

Ic<br />

3 ζ dζ, 2<br />

where ˜0 is the sum <strong>of</strong> simple contours around points in the fibre ζ = 0<br />

<strong>of</strong> S. We obtain the natural hyperkähler metric on the moduli space <strong>of</strong><br />

SU(2)-monopoles <strong>of</strong> charge m (Ivanov-Roček <strong>and</strong> Houghton).


Identify elements <strong>of</strong> L m l<br />

i=1 R2i+1 with τ-invariant polynomials<br />

P l (ζ,η) = η m l<br />

+ ∑ m l<br />

i=1 α i(ζ)η m l−i<br />

= 0;<br />

Identify elements <strong>of</strong> S = L k<br />

L ml<br />

l=1 i=1 R2i+1 with τ-invariant<br />

singular curves S = S 1 ∪ ··· ∪ S k given by the equation<br />

k<br />

∏<br />

l=1<br />

P l (ζ,η) = 0.<br />

Consider GLT given by a meromorphic function G(ζ,η) on S,<br />

<strong>and</strong> a the cycle c defined on these curves.<br />

Example<br />

Let k = 1 <strong>and</strong> let<br />

F = − 1 I<br />

η 2<br />

2πi ˜0 ζ dζ + η<br />

Ic<br />

3 ζ dζ, 2<br />

where ˜0 is the sum <strong>of</strong> simple contours around points in the fibre ζ = 0<br />

<strong>of</strong> S. We obtain the natural hyperkähler metric on the moduli space <strong>of</strong><br />

SU(2)-monopoles <strong>of</strong> charge m (Ivanov-Roček <strong>and</strong> Houghton).


Identify elements <strong>of</strong> L m l<br />

i=1 R2i+1 with τ-invariant polynomials<br />

P l (ζ,η) = η m l<br />

+ ∑ m l<br />

i=1 α i(ζ)η m l−i<br />

= 0;<br />

Identify elements <strong>of</strong> S = L k<br />

L ml<br />

l=1 i=1 R2i+1 with τ-invariant<br />

singular curves S = S 1 ∪ ··· ∪ S k given by the equation<br />

k<br />

∏<br />

l=1<br />

P l (ζ,η) = 0.<br />

Consider GLT given by a meromorphic function G(ζ,η) on S,<br />

<strong>and</strong> a the cycle c defined on these curves.<br />

Example<br />

Let k = 1 <strong>and</strong> let<br />

F = − 1 I<br />

η 2<br />

2πi ˜0 ζ dζ + η<br />

Ic<br />

3 ζ dζ, 2<br />

where ˜0 is the sum <strong>of</strong> simple contours around points in the fibre ζ = 0<br />

<strong>of</strong> S. We obtain the natural hyperkähler metric on the moduli space <strong>of</strong><br />

SU(2)-monopoles <strong>of</strong> charge m (Ivanov-Roček <strong>and</strong> Houghton).


Identify elements <strong>of</strong> L m l<br />

i=1 R2i+1 with τ-invariant polynomials<br />

P l (ζ,η) = η m l<br />

+ ∑ m l<br />

i=1 α i(ζ)η m l−i<br />

= 0;<br />

Identify elements <strong>of</strong> S = L k<br />

L ml<br />

l=1 i=1 R2i+1 with τ-invariant<br />

singular curves S = S 1 ∪ ··· ∪ S k given by the equation<br />

k<br />

∏<br />

l=1<br />

P l (ζ,η) = 0.<br />

Consider GLT given by a meromorphic function G(ζ,η) on S,<br />

<strong>and</strong> a the cycle c defined on these curves.<br />

Example<br />

Let k = 1 <strong>and</strong> let<br />

F = − 1 I<br />

η 2<br />

2πi ˜0 ζ dζ + η<br />

Ic<br />

3 ζ dζ, 2<br />

where ˜0 is the sum <strong>of</strong> simple contours around points in the fibre ζ = 0<br />

<strong>of</strong> S. We obtain the natural hyperkähler metric on the moduli space <strong>of</strong><br />

SU(2)-monopoles <strong>of</strong> charge m (Ivanov-Roček <strong>and</strong> Houghton).


Triviality <strong>of</strong> line bundles<br />

In this example, the extremisation condition F w i a<br />

= 0, 2 ≤ a ≤ 2i − 2,<br />

becomes equivalent to L 2 |S ≃ O, where L2 is the line bundle on TP 1<br />

with transition function exp(2η/ζ) (from ζ ≠ 0 to ζ ≠ ∞). In fact, this<br />

turns out to be always true:<br />

If F = ∑ q 1<br />

p=1<br />

Hc p<br />

G<br />

ζ 2 p (ζ,η)dζ on S = S(m 1 ,...,m k ), then the<br />

extremisation conditions for the GLT imply are equivalent to<br />

triviality <strong>of</strong> certain line bundles on each S l , l = 1,...,k.<br />

Example<br />

Let F be as for SU(2)-monopoles, but defined on S(m 1 ,...,m k ). The<br />

cycle c defines on each S l two divisors ∆ − l<br />

,∆ + l<br />

(entrance <strong>and</strong> exit<br />

points <strong>of</strong> c) <strong>of</strong> the same degree. The extremisation conditions are<br />

equivalent to<br />

L 2 |S l<br />

⊗ [∆ − l<br />

− ∆ + l<br />

] ≃ O<br />

on each S l .


Triviality <strong>of</strong> line bundles<br />

In this example, the extremisation condition F w i a<br />

= 0, 2 ≤ a ≤ 2i − 2,<br />

becomes equivalent to L 2 |S ≃ O, where L2 is the line bundle on TP 1<br />

with transition function exp(2η/ζ) (from ζ ≠ 0 to ζ ≠ ∞). In fact, this<br />

turns out to be always true:<br />

If F = ∑ q 1<br />

p=1<br />

Hc p<br />

G<br />

ζ 2 p (ζ,η)dζ on S = S(m 1 ,...,m k ), then the<br />

extremisation conditions for the GLT imply are equivalent to<br />

triviality <strong>of</strong> certain line bundles on each S l , l = 1,...,k.<br />

Example<br />

Let F be as for SU(2)-monopoles, but defined on S(m 1 ,...,m k ). The<br />

cycle c defines on each S l two divisors ∆ − l<br />

,∆ + l<br />

(entrance <strong>and</strong> exit<br />

points <strong>of</strong> c) <strong>of</strong> the same degree. The extremisation conditions are<br />

equivalent to<br />

L 2 |S l<br />

⊗ [∆ − l<br />

− ∆ + l<br />

] ≃ O<br />

on each S l .


Triviality <strong>of</strong> line bundles<br />

In this example, the extremisation condition F w i a<br />

= 0, 2 ≤ a ≤ 2i − 2,<br />

becomes equivalent to L 2 |S ≃ O, where L2 is the line bundle on TP 1<br />

with transition function exp(2η/ζ) (from ζ ≠ 0 to ζ ≠ ∞). In fact, this<br />

turns out to be always true:<br />

If F = ∑ q 1<br />

p=1<br />

Hc p<br />

G<br />

ζ 2 p (ζ,η)dζ on S = S(m 1 ,...,m k ), then the<br />

extremisation conditions for the GLT imply are equivalent to<br />

triviality <strong>of</strong> certain line bundles on each S l , l = 1,...,k.<br />

Example<br />

Let F be as for SU(2)-monopoles, but defined on S(m 1 ,...,m k ). The<br />

cycle c defines on each S l two divisors ∆ − l<br />

,∆ + l<br />

(entrance <strong>and</strong> exit<br />

points <strong>of</strong> c) <strong>of</strong> the same degree. The extremisation conditions are<br />

equivalent to<br />

L 2 |S l<br />

⊗ [∆ − l<br />

− ∆ + l<br />

] ≃ O<br />

on each S l .


Depending on the cycle chosen, this last example gives <strong>asymptotic</strong><br />

monopole metrics (when an SU(2)-monopole <strong>of</strong> charge m becomes<br />

<strong>asymptotic</strong>ally a superposition <strong>of</strong> monopoles <strong>of</strong> charges m 1 ,...,m k ) or<br />

the natural metric on the moduli space <strong>of</strong> SU(k + 1)-monopoles <strong>of</strong><br />

charge (m 1 ,...,m k ). Or (conjecturally) <strong>asymptotic</strong> metrics on moduli<br />

spaces <strong>of</strong> SU(k + 1)-monopoles.<br />

Replace L 2 with other line bundles on T P 1 .<br />

Most generally, define F on S(m 1 ,...,m k ) by<br />

I<br />

η<br />

F =<br />

ζ dζ − 1 k I<br />

1<br />

2 2πi ˜0l ζ 2 H l(ζ,η)dζ,<br />

c<br />

∑<br />

l=1<br />

where each H l is a linear combination <strong>of</strong> monomials η i /ζ j ,<br />

i,j > 0,<br />

get a (pseudo)-hyperkähler metric which lives on an open subset<br />

<strong>of</strong> reducible spectral curves S 1 ∪ ··· ∪ S k such that on each S l<br />

E l |Sl ≃ [ ∆ + l<br />

− ∆ − ]<br />

l ,<br />

where E l is the line bundle on T P 1 with transition function<br />

exp ∂H l<br />

∂η .


Depending on the cycle chosen, this last example gives <strong>asymptotic</strong><br />

monopole metrics (when an SU(2)-monopole <strong>of</strong> charge m becomes<br />

<strong>asymptotic</strong>ally a superposition <strong>of</strong> monopoles <strong>of</strong> charges m 1 ,...,m k ) or<br />

the natural metric on the moduli space <strong>of</strong> SU(k + 1)-monopoles <strong>of</strong><br />

charge (m 1 ,...,m k ). Or (conjecturally) <strong>asymptotic</strong> metrics on moduli<br />

spaces <strong>of</strong> SU(k + 1)-monopoles.<br />

Replace L 2 with other line bundles on T P 1 .<br />

Most generally, define F on S(m 1 ,...,m k ) by<br />

I<br />

η<br />

F =<br />

ζ dζ − 1 k I<br />

1<br />

2 2πi ˜0l ζ 2 H l(ζ,η)dζ,<br />

c<br />

∑<br />

l=1<br />

where each H l is a linear combination <strong>of</strong> monomials η i /ζ j ,<br />

i,j > 0,<br />

get a (pseudo)-hyperkähler metric which lives on an open subset<br />

<strong>of</strong> reducible spectral curves S 1 ∪ ··· ∪ S k such that on each S l<br />

E l |Sl ≃ [ ∆ + l<br />

− ∆ − ]<br />

l ,<br />

where E l is the line bundle on T P 1 with transition function<br />

exp ∂H l<br />

∂η .


Depending on the cycle chosen, this last example gives <strong>asymptotic</strong><br />

monopole metrics (when an SU(2)-monopole <strong>of</strong> charge m becomes<br />

<strong>asymptotic</strong>ally a superposition <strong>of</strong> monopoles <strong>of</strong> charges m 1 ,...,m k ) or<br />

the natural metric on the moduli space <strong>of</strong> SU(k + 1)-monopoles <strong>of</strong><br />

charge (m 1 ,...,m k ). Or (conjecturally) <strong>asymptotic</strong> metrics on moduli<br />

spaces <strong>of</strong> SU(k + 1)-monopoles.<br />

Replace L 2 with other line bundles on T P 1 .<br />

Most generally, define F on S(m 1 ,...,m k ) by<br />

I<br />

η<br />

F =<br />

ζ dζ − 1 k I<br />

1<br />

2 2πi ˜0l ζ 2 H l(ζ,η)dζ,<br />

c<br />

∑<br />

l=1<br />

where each H l is a linear combination <strong>of</strong> monomials η i /ζ j ,<br />

i,j > 0,<br />

get a (pseudo)-hyperkähler metric which lives on an open subset<br />

<strong>of</strong> reducible spectral curves S 1 ∪ ··· ∪ S k such that on each S l<br />

E l |Sl ≃ [ ∆ + l<br />

− ∆ − ]<br />

l ,<br />

where E l is the line bundle on T P 1 with transition function<br />

exp ∂H l<br />

∂η .


Depending on the cycle chosen, this last example gives <strong>asymptotic</strong><br />

monopole metrics (when an SU(2)-monopole <strong>of</strong> charge m becomes<br />

<strong>asymptotic</strong>ally a superposition <strong>of</strong> monopoles <strong>of</strong> charges m 1 ,...,m k ) or<br />

the natural metric on the moduli space <strong>of</strong> SU(k + 1)-monopoles <strong>of</strong><br />

charge (m 1 ,...,m k ). Or (conjecturally) <strong>asymptotic</strong> metrics on moduli<br />

spaces <strong>of</strong> SU(k + 1)-monopoles.<br />

Replace L 2 with other line bundles on T P 1 .<br />

Most generally, define F on S(m 1 ,...,m k ) by<br />

I<br />

η<br />

F =<br />

ζ dζ − 1 k I<br />

1<br />

2 2πi ˜0l ζ 2 H l(ζ,η)dζ,<br />

c<br />

∑<br />

l=1<br />

where each H l is a linear combination <strong>of</strong> monomials η i /ζ j ,<br />

i,j > 0,<br />

get a (pseudo)-hyperkähler metric which lives on an open subset<br />

<strong>of</strong> reducible spectral curves S 1 ∪ ··· ∪ S k such that on each S l<br />

E l |Sl ≃ [ ∆ + l<br />

− ∆ − ]<br />

l ,<br />

where E l is the line bundle on T P 1 with transition function<br />

exp ∂H l<br />

∂η .


Depending on the cycle chosen, this last example gives <strong>asymptotic</strong><br />

monopole metrics (when an SU(2)-monopole <strong>of</strong> charge m becomes<br />

<strong>asymptotic</strong>ally a superposition <strong>of</strong> monopoles <strong>of</strong> charges m 1 ,...,m k ) or<br />

the natural metric on the moduli space <strong>of</strong> SU(k + 1)-monopoles <strong>of</strong><br />

charge (m 1 ,...,m k ). Or (conjecturally) <strong>asymptotic</strong> metrics on moduli<br />

spaces <strong>of</strong> SU(k + 1)-monopoles.<br />

Replace L 2 with other line bundles on T P 1 .<br />

Most generally, define F on S(m 1 ,...,m k ) by<br />

I<br />

η<br />

F =<br />

ζ dζ − 1 k I<br />

1<br />

2 2πi ˜0l ζ 2 H l(ζ,η)dζ,<br />

c<br />

∑<br />

l=1<br />

where each H l is a linear combination <strong>of</strong> monomials η i /ζ j ,<br />

i,j > 0,<br />

get a (pseudo)-hyperkähler metric which lives on an open subset<br />

<strong>of</strong> reducible spectral curves S 1 ∪ ··· ∪ S k such that on each S l<br />

E l |Sl ≃ [ ∆ + l<br />

− ∆ − ]<br />

l ,<br />

where E l is the line bundle on T P 1 with transition function<br />

exp ∂H l<br />

∂η .


Example<br />

A huge class <strong>of</strong> hyperkähler metrics in dimension<br />

4n = 4(m 1 + ··· + m k )<br />

Many complete examples<br />

Further investigation necessary<br />

Let S be a spectral curve <strong>of</strong> degree k <strong>and</strong> let W S ⊂ S(1,...,k) (i.e.<br />

curves S 1 ∪ ··· ∪ S k , degS i = i) be defined by setting S k = S. Then<br />

the GLT w.r.t.<br />

I<br />

F = −<br />

c<br />

η<br />

dζ (3)<br />

ζ2 on W S defines a hyperkähler metric on (an open subset <strong>of</strong>) a coadjoint<br />

orbit <strong>of</strong> GL(k,C). When S is fully reducible, i.e. union <strong>of</strong> lines, then<br />

these are the metrics <strong>of</strong> Kronheimer-Biquard-Kovalev, otherwise we<br />

get their generalisation due to D’Amorim Santa-Cruz.<br />

(-) “Line bundles on spectral curves <strong>and</strong> the generalised Legendre<br />

transform”, arXiv:0806.0510


Example<br />

A huge class <strong>of</strong> hyperkähler metrics in dimension<br />

4n = 4(m 1 + ··· + m k )<br />

Many complete examples<br />

Further investigation necessary<br />

Let S be a spectral curve <strong>of</strong> degree k <strong>and</strong> let W S ⊂ S(1,...,k) (i.e.<br />

curves S 1 ∪ ··· ∪ S k , degS i = i) be defined by setting S k = S. Then<br />

the GLT w.r.t.<br />

I<br />

F = −<br />

c<br />

η<br />

dζ (3)<br />

ζ2 on W S defines a hyperkähler metric on (an open subset <strong>of</strong>) a coadjoint<br />

orbit <strong>of</strong> GL(k,C). When S is fully reducible, i.e. union <strong>of</strong> lines, then<br />

these are the metrics <strong>of</strong> Kronheimer-Biquard-Kovalev, otherwise we<br />

get their generalisation due to D’Amorim Santa-Cruz.<br />

(-) “Line bundles on spectral curves <strong>and</strong> the generalised Legendre<br />

transform”, arXiv:0806.0510


Example<br />

A huge class <strong>of</strong> hyperkähler metrics in dimension<br />

4n = 4(m 1 + ··· + m k )<br />

Many complete examples<br />

Further investigation necessary<br />

Let S be a spectral curve <strong>of</strong> degree k <strong>and</strong> let W S ⊂ S(1,...,k) (i.e.<br />

curves S 1 ∪ ··· ∪ S k , degS i = i) be defined by setting S k = S. Then<br />

the GLT w.r.t.<br />

I<br />

F = −<br />

c<br />

η<br />

dζ (3)<br />

ζ2 on W S defines a hyperkähler metric on (an open subset <strong>of</strong>) a coadjoint<br />

orbit <strong>of</strong> GL(k,C). When S is fully reducible, i.e. union <strong>of</strong> lines, then<br />

these are the metrics <strong>of</strong> Kronheimer-Biquard-Kovalev, otherwise we<br />

get their generalisation due to D’Amorim Santa-Cruz.<br />

(-) “Line bundles on spectral curves <strong>and</strong> the generalised Legendre<br />

transform”, arXiv:0806.0510


Example<br />

A huge class <strong>of</strong> hyperkähler metrics in dimension<br />

4n = 4(m 1 + ··· + m k )<br />

Many complete examples<br />

Further investigation necessary<br />

Let S be a spectral curve <strong>of</strong> degree k <strong>and</strong> let W S ⊂ S(1,...,k) (i.e.<br />

curves S 1 ∪ ··· ∪ S k , degS i = i) be defined by setting S k = S. Then<br />

the GLT w.r.t.<br />

I<br />

F = −<br />

c<br />

η<br />

dζ (3)<br />

ζ2 on W S defines a hyperkähler metric on (an open subset <strong>of</strong>) a coadjoint<br />

orbit <strong>of</strong> GL(k,C). When S is fully reducible, i.e. union <strong>of</strong> lines, then<br />

these are the metrics <strong>of</strong> Kronheimer-Biquard-Kovalev, otherwise we<br />

get their generalisation due to D’Amorim Santa-Cruz.<br />

(-) “Line bundles on spectral curves <strong>and</strong> the generalised Legendre<br />

transform”, arXiv:0806.0510


Asymptotics<br />

I<br />

F =<br />

c<br />

η<br />

ζ 2 dζ − 1<br />

2πi<br />

k<br />

∑<br />

l=1<br />

I<br />

˜0l<br />

1<br />

ζ 2 H l(ζ,η)dζ =<br />

I<br />

c<br />

k<br />

η<br />

ζ dζ − ∑ 2 h l (S l ),<br />

l=1<br />

where h l is a polynomial depending only on the coefficients <strong>of</strong> P l<br />

defining S l .<br />

We consider the <strong>asymptotic</strong>s <strong>of</strong> the manifold M, when the curves<br />

S tend to infinity (as polynomials).<br />

If all h l ≡ 0, the function F <strong>and</strong> the metric are homogeneous: M is<br />

a cone (in particular, Euclidean volume growth)<br />

If some h l ≢ 0, let m n be a sequence <strong>of</strong> points M such that the<br />

coefficients <strong>of</strong> the corresponding P l tend to ∞.<br />

Rescale P l (ζ,η) ↦→ P l /R m l<br />

(ζ,R˜η) so that the limit exists <strong>and</strong><br />

defines a compact curve S ∞ l<br />

.<br />

If ∂h l<br />

(2 ≤ a ≤ 2i − 2) has a nonzero limit after rescaling, then S ∞ wa<br />

i l<br />

cannot have components <strong>of</strong> degree ≥ 1.


Asymptotics<br />

I<br />

F =<br />

c<br />

η<br />

ζ 2 dζ − 1<br />

2πi<br />

k<br />

∑<br />

l=1<br />

I<br />

˜0l<br />

1<br />

ζ 2 H l(ζ,η)dζ =<br />

I<br />

c<br />

k<br />

η<br />

ζ dζ − ∑ 2 h l (S l ),<br />

l=1<br />

where h l is a polynomial depending only on the coefficients <strong>of</strong> P l<br />

defining S l .<br />

We consider the <strong>asymptotic</strong>s <strong>of</strong> the manifold M, when the curves<br />

S tend to infinity (as polynomials).<br />

If all h l ≡ 0, the function F <strong>and</strong> the metric are homogeneous: M is<br />

a cone (in particular, Euclidean volume growth)<br />

If some h l ≢ 0, let m n be a sequence <strong>of</strong> points M such that the<br />

coefficients <strong>of</strong> the corresponding P l tend to ∞.<br />

Rescale P l (ζ,η) ↦→ P l /R m l<br />

(ζ,R˜η) so that the limit exists <strong>and</strong><br />

defines a compact curve S ∞ l<br />

.<br />

If ∂h l<br />

(2 ≤ a ≤ 2i − 2) has a nonzero limit after rescaling, then S ∞ wa<br />

i l<br />

cannot have components <strong>of</strong> degree ≥ 1.


Asymptotics<br />

I<br />

F =<br />

c<br />

η<br />

ζ 2 dζ − 1<br />

2πi<br />

k<br />

∑<br />

l=1<br />

I<br />

˜0l<br />

1<br />

ζ 2 H l(ζ,η)dζ =<br />

I<br />

c<br />

k<br />

η<br />

ζ dζ − ∑ 2 h l (S l ),<br />

l=1<br />

where h l is a polynomial depending only on the coefficients <strong>of</strong> P l<br />

defining S l .<br />

We consider the <strong>asymptotic</strong>s <strong>of</strong> the manifold M, when the curves<br />

S tend to infinity (as polynomials).<br />

If all h l ≡ 0, the function F <strong>and</strong> the metric are homogeneous: M is<br />

a cone (in particular, Euclidean volume growth)<br />

If some h l ≢ 0, let m n be a sequence <strong>of</strong> points M such that the<br />

coefficients <strong>of</strong> the corresponding P l tend to ∞.<br />

Rescale P l (ζ,η) ↦→ P l /R m l<br />

(ζ,R˜η) so that the limit exists <strong>and</strong><br />

defines a compact curve S ∞ l<br />

.<br />

If ∂h l<br />

(2 ≤ a ≤ 2i − 2) has a nonzero limit after rescaling, then S ∞ wa<br />

i l<br />

cannot have components <strong>of</strong> degree ≥ 1.


Asymptotics<br />

I<br />

F =<br />

c<br />

η<br />

ζ 2 dζ − 1<br />

2πi<br />

k<br />

∑<br />

l=1<br />

I<br />

˜0l<br />

1<br />

ζ 2 H l(ζ,η)dζ =<br />

I<br />

c<br />

k<br />

η<br />

ζ dζ − ∑ 2 h l (S l ),<br />

l=1<br />

where h l is a polynomial depending only on the coefficients <strong>of</strong> P l<br />

defining S l .<br />

We consider the <strong>asymptotic</strong>s <strong>of</strong> the manifold M, when the curves<br />

S tend to infinity (as polynomials).<br />

If all h l ≡ 0, the function F <strong>and</strong> the metric are homogeneous: M is<br />

a cone (in particular, Euclidean volume growth)<br />

If some h l ≢ 0, let m n be a sequence <strong>of</strong> points M such that the<br />

coefficients <strong>of</strong> the corresponding P l tend to ∞.<br />

Rescale P l (ζ,η) ↦→ P l /R m l<br />

(ζ,R˜η) so that the limit exists <strong>and</strong><br />

defines a compact curve S ∞ l<br />

.<br />

If ∂h l<br />

(2 ≤ a ≤ 2i − 2) has a nonzero limit after rescaling, then S ∞ wa<br />

i l<br />

cannot have components <strong>of</strong> degree ≥ 1.


Asymptotics<br />

I<br />

F =<br />

c<br />

η<br />

ζ 2 dζ − 1<br />

2πi<br />

k<br />

∑<br />

l=1<br />

I<br />

˜0l<br />

1<br />

ζ 2 H l(ζ,η)dζ =<br />

I<br />

c<br />

k<br />

η<br />

ζ dζ − ∑ 2 h l (S l ),<br />

l=1<br />

where h l is a polynomial depending only on the coefficients <strong>of</strong> P l<br />

defining S l .<br />

We consider the <strong>asymptotic</strong>s <strong>of</strong> the manifold M, when the curves<br />

S tend to infinity (as polynomials).<br />

If all h l ≡ 0, the function F <strong>and</strong> the metric are homogeneous: M is<br />

a cone (in particular, Euclidean volume growth)<br />

If some h l ≢ 0, let m n be a sequence <strong>of</strong> points M such that the<br />

coefficients <strong>of</strong> the corresponding P l tend to ∞.<br />

Rescale P l (ζ,η) ↦→ P l /R m l<br />

(ζ,R˜η) so that the limit exists <strong>and</strong><br />

defines a compact curve S ∞ l<br />

.<br />

If ∂h l<br />

(2 ≤ a ≤ 2i − 2) has a nonzero limit after rescaling, then S ∞ wa<br />

i l<br />

cannot have components <strong>of</strong> degree ≥ 1.


This follows from: the derivative <strong>of</strong> the first term with respect to a<br />

coefficient w i a (2 ≤ a ≤ 2i − 2) <strong>of</strong> P l is R γ l<br />

Ω ai , where Ω ai is a<br />

holomorphic differential on S l .<br />

Consider the region U <strong>of</strong> M, where there exists a rescaling with<br />

the limit being the union <strong>of</strong> rational curves, without multiple<br />

components.<br />

The metric on U approaches the metric defined by the ordinary<br />

Legendre transform (i.e. with n commuting tri-holomorphic Killing<br />

vector fields) exponentially fast.<br />

The generalised <strong>symmetries</strong> become asympotically genuine<br />

<strong>symmetries</strong>.<br />

U is <strong>asymptotic</strong>ally an R p × T n−p -bundle over ∏ k l=1 C m l<br />

(R 3 )<br />

(C ml (R 3 ) - the configuration space <strong>of</strong> m l distinct points in R 3 ).<br />

At least in the case, when all E l correspond to L s , the infinity <strong>of</strong> M<br />

should be the quotient <strong>of</strong> an R p × T n−p -bundle over the unit<br />

sphere in R 3n by the product <strong>of</strong> symmetric groups ∏ k l=1 Σ ml .


This follows from: the derivative <strong>of</strong> the first term with respect to a<br />

coefficient w i a (2 ≤ a ≤ 2i − 2) <strong>of</strong> P l is R γ l<br />

Ω ai , where Ω ai is a<br />

holomorphic differential on S l .<br />

Consider the region U <strong>of</strong> M, where there exists a rescaling with<br />

the limit being the union <strong>of</strong> rational curves, without multiple<br />

components.<br />

The metric on U approaches the metric defined by the ordinary<br />

Legendre transform (i.e. with n commuting tri-holomorphic Killing<br />

vector fields) exponentially fast.<br />

The generalised <strong>symmetries</strong> become asympotically genuine<br />

<strong>symmetries</strong>.<br />

U is <strong>asymptotic</strong>ally an R p × T n−p -bundle over ∏ k l=1 C m l<br />

(R 3 )<br />

(C ml (R 3 ) - the configuration space <strong>of</strong> m l distinct points in R 3 ).<br />

At least in the case, when all E l correspond to L s , the infinity <strong>of</strong> M<br />

should be the quotient <strong>of</strong> an R p × T n−p -bundle over the unit<br />

sphere in R 3n by the product <strong>of</strong> symmetric groups ∏ k l=1 Σ ml .


This follows from: the derivative <strong>of</strong> the first term with respect to a<br />

coefficient w i a (2 ≤ a ≤ 2i − 2) <strong>of</strong> P l is R γ l<br />

Ω ai , where Ω ai is a<br />

holomorphic differential on S l .<br />

Consider the region U <strong>of</strong> M, where there exists a rescaling with<br />

the limit being the union <strong>of</strong> rational curves, without multiple<br />

components.<br />

The metric on U approaches the metric defined by the ordinary<br />

Legendre transform (i.e. with n commuting tri-holomorphic Killing<br />

vector fields) exponentially fast.<br />

The generalised <strong>symmetries</strong> become asympotically genuine<br />

<strong>symmetries</strong>.<br />

U is <strong>asymptotic</strong>ally an R p × T n−p -bundle over ∏ k l=1 C m l<br />

(R 3 )<br />

(C ml (R 3 ) - the configuration space <strong>of</strong> m l distinct points in R 3 ).<br />

At least in the case, when all E l correspond to L s , the infinity <strong>of</strong> M<br />

should be the quotient <strong>of</strong> an R p × T n−p -bundle over the unit<br />

sphere in R 3n by the product <strong>of</strong> symmetric groups ∏ k l=1 Σ ml .


This follows from: the derivative <strong>of</strong> the first term with respect to a<br />

coefficient w i a (2 ≤ a ≤ 2i − 2) <strong>of</strong> P l is R γ l<br />

Ω ai , where Ω ai is a<br />

holomorphic differential on S l .<br />

Consider the region U <strong>of</strong> M, where there exists a rescaling with<br />

the limit being the union <strong>of</strong> rational curves, without multiple<br />

components.<br />

The metric on U approaches the metric defined by the ordinary<br />

Legendre transform (i.e. with n commuting tri-holomorphic Killing<br />

vector fields) exponentially fast.<br />

The generalised <strong>symmetries</strong> become asympotically genuine<br />

<strong>symmetries</strong>.<br />

U is <strong>asymptotic</strong>ally an R p × T n−p -bundle over ∏ k l=1 C m l<br />

(R 3 )<br />

(C ml (R 3 ) - the configuration space <strong>of</strong> m l distinct points in R 3 ).<br />

At least in the case, when all E l correspond to L s , the infinity <strong>of</strong> M<br />

should be the quotient <strong>of</strong> an R p × T n−p -bundle over the unit<br />

sphere in R 3n by the product <strong>of</strong> symmetric groups ∏ k l=1 Σ ml .


This follows from: the derivative <strong>of</strong> the first term with respect to a<br />

coefficient w i a (2 ≤ a ≤ 2i − 2) <strong>of</strong> P l is R γ l<br />

Ω ai , where Ω ai is a<br />

holomorphic differential on S l .<br />

Consider the region U <strong>of</strong> M, where there exists a rescaling with<br />

the limit being the union <strong>of</strong> rational curves, without multiple<br />

components.<br />

The metric on U approaches the metric defined by the ordinary<br />

Legendre transform (i.e. with n commuting tri-holomorphic Killing<br />

vector fields) exponentially fast.<br />

The generalised <strong>symmetries</strong> become asympotically genuine<br />

<strong>symmetries</strong>.<br />

U is <strong>asymptotic</strong>ally an R p × T n−p -bundle over ∏ k l=1 C m l<br />

(R 3 )<br />

(C ml (R 3 ) - the configuration space <strong>of</strong> m l distinct points in R 3 ).<br />

At least in the case, when all E l correspond to L s , the infinity <strong>of</strong> M<br />

should be the quotient <strong>of</strong> an R p × T n−p -bundle over the unit<br />

sphere in R 3n by the product <strong>of</strong> symmetric groups ∏ k l=1 Σ ml .


This follows from: the derivative <strong>of</strong> the first term with respect to a<br />

coefficient w i a (2 ≤ a ≤ 2i − 2) <strong>of</strong> P l is R γ l<br />

Ω ai , where Ω ai is a<br />

holomorphic differential on S l .<br />

Consider the region U <strong>of</strong> M, where there exists a rescaling with<br />

the limit being the union <strong>of</strong> rational curves, without multiple<br />

components.<br />

The metric on U approaches the metric defined by the ordinary<br />

Legendre transform (i.e. with n commuting tri-holomorphic Killing<br />

vector fields) exponentially fast.<br />

The generalised <strong>symmetries</strong> become asympotically genuine<br />

<strong>symmetries</strong>.<br />

U is <strong>asymptotic</strong>ally an R p × T n−p -bundle over ∏ k l=1 C m l<br />

(R 3 )<br />

(C ml (R 3 ) - the configuration space <strong>of</strong> m l distinct points in R 3 ).<br />

At least in the case, when all E l correspond to L s , the infinity <strong>of</strong> M<br />

should be the quotient <strong>of</strong> an R p × T n−p -bundle over the unit<br />

sphere in R 3n by the product <strong>of</strong> symmetric groups ∏ k l=1 Σ ml .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!