30.01.2015 Views

on the 3 order linear differential equation - Kathmandu University

on the 3 order linear differential equation - Kathmandu University

on the 3 order linear differential equation - Kathmandu University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY<br />

VOL. 8, No. II, DECEMBER, 2012, 7-10<br />

ON THE 3 rd ORDER LINEAR DIFFERENTIAL EQUATION<br />

1 B. L. Moreno-Ley, 1 J. López-B<strong>on</strong>illa*, 2 B. Man Tuladhar<br />

1 ESIME-Zacatenco-ICE, Instituto Politécnico Naci<strong>on</strong>al, CP 07738 México DF<br />

2 <strong>Kathmandu</strong> <strong>University</strong>, Dhulikhel, Kavre, Nepal,<br />

*Corresp<strong>on</strong>ding address: jlopezb@ipn.mx<br />

Received 01 June, 2012; Revised 21 September, 2012<br />

ABSTRACT<br />

If for an arbitrary 3th <strong>order</strong> <strong>linear</strong> <strong>differential</strong> equati<strong>on</strong>, n<strong>on</strong>-homogeneous, we know two soluti<strong>on</strong>s of its<br />

associated homogeneous equati<strong>on</strong> (HE), <strong>the</strong>n we show how to determine <strong>the</strong> third soluti<strong>on</strong> of HE and <strong>the</strong><br />

particular soluti<strong>on</strong> of <strong>the</strong> original equati<strong>on</strong>.<br />

Keywords: Wr<strong>on</strong>skian, Linear <strong>differential</strong> equati<strong>on</strong>s, Method of variati<strong>on</strong> of parameters<br />

INTRODUCTION<br />

If for <strong>the</strong> <strong>linear</strong> <strong>differential</strong> equati<strong>on</strong> of third <strong>order</strong>:<br />

(1)<br />

we know <strong>the</strong> soluti<strong>on</strong><br />

of <strong>the</strong> corresp<strong>on</strong>ding homogeneous equati<strong>on</strong> (HE):<br />

(2)<br />

<strong>the</strong>n it is possible to obtain <strong>the</strong> soluti<strong>on</strong> of (2) and <strong>the</strong> particular soluti<strong>on</strong> of (1) [1-5]:<br />

(3)<br />

where is <strong>the</strong> Wr<strong>on</strong>skian of <strong>the</strong> two independent soluti<strong>on</strong>s of (2), with <strong>the</strong> Abel –<br />

Liouville – Ostrogradski identity:<br />

(4)<br />

7


KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY<br />

VOL. 8, No. II, DECEMBER, 2012, 7-10<br />

The expressi<strong>on</strong> (3) for<br />

can be c<strong>on</strong>structed via method of variati<strong>on</strong> of parameters of Euler<br />

(1741) – Lagrange (1777), or employing <strong>the</strong> technique of adjoint-exact <strong>linear</strong> <strong>differential</strong><br />

operator .<br />

Here we c<strong>on</strong>sider <strong>the</strong> <strong>differential</strong> equati<strong>on</strong> of third <strong>order</strong>:<br />

(5)<br />

and we accept <strong>the</strong> knowledge of <strong>the</strong> soluti<strong>on</strong>s & of its HE:<br />

(6)<br />

with <strong>the</strong> aim to find expressi<strong>on</strong>s for <strong>the</strong> particular soluti<strong>on</strong> of (5) and <strong>the</strong> soluti<strong>on</strong> of (6).<br />

THIRD ORDER LINEAR DIFFERENTIAL EQUATION<br />

In this case, <strong>the</strong> HE (6) has three soluti<strong>on</strong>s:<br />

(7)<br />

whose <strong>linear</strong> independence implies a n<strong>on</strong>-null Wr<strong>on</strong>skian :<br />

W (8)<br />

The derivative of (8) gives:<br />

, (9)<br />

with <strong>the</strong> notati<strong>on</strong>:<br />

(10)<br />

If (9) is multiplied by u(x) and we use (7), <strong>the</strong>n:<br />

8


KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY<br />

VOL. 8, No. II, DECEMBER, 2012, 7-10<br />

but, without loss of generality, we may take k=1 because we can multiply <strong>the</strong><br />

by an<br />

adequate scale factor (<strong>the</strong>y are soluti<strong>on</strong>s of a HE), <strong>the</strong>refore:<br />

(11)<br />

is <strong>the</strong> Abel – Liouville – Ostrogradski identity for (5).<br />

The expansi<strong>on</strong> of <strong>the</strong> determinant (8), via <strong>the</strong> third column, implies:<br />

(12)<br />

where, in accordance with (10):<br />

(13)<br />

It is interesting to see that<br />

satisfies <strong>the</strong> HE (6) of 3 th <strong>order</strong>, and besides it is a particular<br />

soluti<strong>on</strong> of <strong>the</strong> n<strong>on</strong>-homogeneous equati<strong>on</strong> (12) of 2 th <strong>order</strong>. It is simple to verify that<br />

&<br />

are soluti<strong>on</strong>s of <strong>the</strong> HE of (12):<br />

(14)<br />

<strong>the</strong>n <strong>the</strong> method of variati<strong>on</strong> of parameters gives <strong>the</strong> particular soluti<strong>on</strong> for (12):<br />

(15)<br />

thus is determined employing & .<br />

With (8) and (10) it is easy to prove <strong>the</strong> identities:<br />

(16)<br />

9


KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY<br />

VOL. 8, No. II, DECEMBER, 2012, 7-10<br />

which permit to c<strong>on</strong>struct <strong>the</strong> particular soluti<strong>on</strong> of (5):<br />

(17)<br />

with W given by (11).<br />

The relati<strong>on</strong>s (15) and (17) are <strong>the</strong> generalizati<strong>on</strong>s of (3) for <strong>the</strong> 3 th <strong>order</strong> case, and <strong>the</strong>y are<br />

not explicitly given in <strong>the</strong> literature.<br />

REFERENCES<br />

[1] Spiegel M R, Applied <strong>differential</strong> equati<strong>on</strong>s, Prentice-Hall, Mexico (1983) ISBN<br />

968- 880-053-8.<br />

[2] Ahsan Z, Differential equati<strong>on</strong>s and <strong>the</strong>ir applicati<strong>on</strong>s, Prentice-Hall, New Delhi<br />

(2004) ISBN 812-032-523-0.<br />

[3] Clegg J, A new factorizati<strong>on</strong> of a general sec<strong>on</strong>d <strong>order</strong> <strong>differential</strong> equati<strong>on</strong>, Int. J.<br />

Math. Educ. Sci. Tech. 37, No.1 (2006)51.<br />

[4] López-B<strong>on</strong>illa J, Zaldivar – Sandoval A & M<strong>on</strong>tiel J Y, 2th <strong>order</strong> <strong>linear</strong> <strong>differential</strong><br />

operator in its exact form, J. Vect. Rel. 5, No. 1 (2010)139.<br />

[5] López-B<strong>on</strong>illa J, Zaldivar – Sandoval A & M<strong>on</strong>tiel J Y, Integrating factor for an<br />

arbitrary 2th <strong>order</strong> <strong>linear</strong> <strong>differential</strong> equati<strong>on</strong>, Bol. Soc. Cub. Mat. Comp. 8, No. 1<br />

(2010) 35.<br />

10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!