30.01.2015 Views

quantum games with atoms and cavities - Electrodynamique ...

quantum games with atoms and cavities - Electrodynamique ...

quantum games with atoms and cavities - Electrodynamique ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Entanglement, complementarity <strong>and</strong> decoherence:<br />

<strong>quantum</strong> <strong>games</strong> <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

J.M. Raimond<br />

Laboratoire Kastler Brossel,<br />

ENS, UPMC <strong>and</strong> IUF<br />

Florence, Mai 2004 Support:JST (ICORP), EC, CNRS, UMPC, IUF, CdF 1


A century of <strong>quantum</strong> mechanics<br />

An enormous range of applications, from superstrings to universe<br />

(a) (b) (c)<br />

10 -35 m<br />

10 -15 m<br />

10 -10 m<br />

(d) (e) (f)<br />

10 -8 m<br />

1 m<br />

10 8 m<br />

(g)<br />

(h)<br />

10 20 m<br />

10 26 m<br />

Florence, Mai 2004 2


A century of <strong>quantum</strong> mechanics<br />

One of the most precise theories so far.<br />

• QED: <strong>quantum</strong> description of electromagnetic interactions.<br />

– Spectrum of hydrogen atom at 10 -12 level<br />

– Gyromagnetic ratio of a free electron<br />

• St<strong>and</strong>ard model: a unified description of all interaction (but gravitation)<br />

Florence, Mai 2004 3


A wealth of applications:<br />

A century of <strong>quantum</strong> mechanics<br />

– Computers <strong>and</strong> the transistor revolution<br />

From the ENIAC to the laptop<br />

Florence, Mai 2004 4


A century of <strong>quantum</strong> mechanics<br />

• Nuclear magnetic imagers for medicine<br />

Florence, Mai 2004 5


A century of <strong>quantum</strong> mechanics<br />

• Lasers<br />

Florence, Mai 2004 6


A century of <strong>quantum</strong> mechanics<br />

• Ultrastable clocks <strong>and</strong> the GPS system<br />

Florence, Mai 2004 7


A century of <strong>quantum</strong> mechanics<br />

• Tailoring structures at the atomic level<br />

Florence, Mai 2004 8


A century of <strong>quantum</strong> mechanics<br />

• And yet an intriguing theory.<br />

– A microscopic world that defies our “classical” intuition.<br />

• These lectures will be devoted to the theoretical investigation <strong>and</strong> the<br />

experimental exploration of the most ‘bizarre’ aspects of the <strong>quantum</strong><br />

world.<br />

– Superposition principle<br />

– Complementarity<br />

– Quantum entanglement <strong>and</strong> non locality.<br />

– Quantum information processing<br />

– Quantum decoherence<br />

Florence, Mai 2004 9


The “strangeness” of the <strong>quantum</strong><br />

• Superposition principle <strong>and</strong> <strong>quantum</strong> interferences<br />

– The sum of <strong>quantum</strong> states is yet another possible state<br />

– A system “suspended” between two different classical realities<br />

D<br />

d<br />

a<br />

I<br />

Ψ =Ψ<br />

1<br />

+Ψ2<br />

= I + 2Re Ψ Ψ<br />

D<br />

a = λ<br />

d<br />

0 1 2<br />

– Feynman: Young’s slits experiment contains all the mysteries of the<br />

<strong>quantum</strong><br />

Florence, Mai 2004 10


The “strangeness” of the <strong>quantum</strong><br />

• Young interferences <strong>with</strong> electrons (A. Tonomura, 1989)<br />

Florence, Mai 2004 11


The “strangeness” of the <strong>quantum</strong><br />

• Quantum Young interferences <strong>with</strong> <strong>atoms</strong> (Shimizu 1992)<br />

Florence, Mai 2004 12


The “strangeness” of the <strong>quantum</strong><br />

• Complementarity (From Einstein-Bohr at the 1927 Solvay congress)<br />

– Microscopic slit: set in motion when deflecting particle. Which path<br />

information <strong>and</strong> no fringes<br />

– Macroscopic slit: impervious to interfering particle. No which path<br />

information <strong>and</strong> fringes<br />

– Wave <strong>and</strong> particle are complementary aspects of the <strong>quantum</strong> object.<br />

Florence, Mai 2004 13


The “strangeness” of the <strong>quantum</strong><br />

• Complementarity <strong>and</strong> Heisenberg uncertainty relations<br />

Particle's momentum p=h/λ<br />

Momentum transfer ∆P=pd/D<br />

Measure screen momentum <strong>with</strong>in ∆P:<br />

∆x=a<br />

Position uncertainty ∆X=h/∆P<br />

d<br />

D<br />

Position uncertainty= interfrange.<br />

Complete washing out of fringes<br />

Localisation <strong>and</strong> wave behavior are incompatible<br />

Florence, Mai 2004 14


• No cloning theorem<br />

The “strangeness” of the <strong>quantum</strong><br />

– It is impossible to produce two exact copies of an arbitrary <strong>quantum</strong><br />

states (violates unitarity of Schrödinger evolution): No <strong>quantum</strong> fax<br />

Florence, Mai 2004 15


• Entanglement<br />

The “strangeness” of the <strong>quantum</strong><br />

– Two systems after an interaction described by a single global state<br />

– No system has a-well defined state on his own<br />

• A measurement performed on one system affects the state of the<br />

other<br />

• Quantum correlations irrespective of the distance between<br />

entangled systems<br />

– At the heart of <strong>quantum</strong> non-locality<br />

– Einstein did not like that…<br />

• <strong>and</strong> he was wrong (Bell inequalities violation)<br />

Florence, Mai 2004 16


• Bell inequalities.<br />

The “strangeness” of the <strong>quantum</strong><br />

– Two observers (Alice <strong>and</strong> Bob) share a pair of two level particles<br />

(levels 0 <strong>and</strong> 1 eg spin ½) in one of four “Bell states”<br />

– Spin operators (more in further lectures)<br />

– Essential property<br />

Florence, Mai 2004 17


The “strangeness” of the <strong>quantum</strong><br />

• Bell inequalities (cont’d)<br />

– Einstein argument<br />

• Alice can tell <strong>with</strong> certainty what value she gets for a measurement<br />

of any σ u by asking Bob to make the measurement<br />

• An “element of reality” is associated to any component of Alice’s<br />

spin in XOZ plane<br />

• Classical vision: any experimental result is predetermined at pair<br />

preparation time (“hidden variable apporoach”)<br />

– CHSH version of Bell inequalities<br />

0<br />

a<br />

EPR<br />

b<br />

0<br />

1 a' Alice source<br />

Bob<br />

b'<br />

1<br />

Florence, Mai 2004 18


The “strangeness” of the <strong>quantum</strong><br />

• Bell inequalities (cont’d)<br />

– If hidden variables are right:<br />

– But <strong>quantum</strong> mechanics predicts:<br />

With<br />

We get:<br />

Florence, Mai 2004 19


The “strangeness” of the <strong>quantum</strong><br />

• Bell inequalities (cont’d)<br />

3<br />

2<br />

1<br />

S Bell<br />

−2 2 ≤S<br />

≤2<br />

2<br />

0<br />

-1<br />

-2<br />

-3<br />

0,0 0,5 1,0 θ/π<br />

1,5 2,0<br />

• Possible experimental test of <strong>quantum</strong> mechanics versus local realism.<br />

• A major step in our underst<strong>and</strong>ing of <strong>quantum</strong> mechanics<br />

Florence, Mai 2004 20


A severe test<br />

The “strangeness” of the <strong>quantum</strong><br />

• Correlations between two polarization-entangled photons 400 m apart.<br />

• Correlation signal S


The “strangeness” of the <strong>quantum</strong><br />

• Quantum/classical limit<br />

– No <strong>quantum</strong> superpositions at<br />

macroscopic scale<br />

– The "Schrödinger cat"<br />

• Decoherence<br />

1<br />

2<br />

( )<br />

+ ⇔<br />

Environment<br />

– A macroscopic system is strongly<br />

coupled to a complex<br />

environment<br />

– No entangled states neither.<br />

We only observe a very small fraction of<br />

all possible <strong>quantum</strong> states<br />

WHY <br />

– In all models, this coupling<br />

• leaves only a few states<br />

intact (preferred basis)<br />

• destroys very rapidly the<br />

<strong>quantum</strong> superpositions of<br />

these states<br />

Decoherence<br />

Florence, Mai 2004 22


Main features of decoherence<br />

Very fast process<br />

A simple decoherence model<br />

superposition lifetime<br />

=<br />

relaxation time<br />

separation betweenstates<br />

-<br />

0<br />

∆x<br />

+<br />

Depends upon the initial <strong>quantum</strong> state<br />

(distance between states or<br />

"macroscopicity" parameter)<br />

Needle in a superposition of positions<br />

Background gas. Particles <strong>with</strong> de<br />

Broglie wavelength λ 0<br />

.<br />

Not a trivial relaxation mechanism<br />

(but explained by st<strong>and</strong>ard relaxation<br />

theory for simple models)<br />

When ∆x>λ 0<br />

, the first collision destroys<br />

the coherence (Heisenberg<br />

microscope: the environment "knows"<br />

the needle position)<br />

Extraordinarily fast decoherence<br />

Strong link <strong>with</strong> complementarity:<br />

environment acquires "which path"<br />

information<br />

Florence, Mai 2004 23


The importance of decoherence<br />

Measurement theory<br />

Applications of <strong>quantum</strong> weirdness<br />

Decoherence plays an essential role in<br />

<strong>quantum</strong> measurement:<br />

Prevents meters from being in a<br />

<strong>quantum</strong> superposition!<br />

1<br />

2<br />

( + )<br />

Only statistical mixtures of meter states,<br />

corresponding to exclusive classical<br />

probabilities<br />

1<br />

2<br />

-<br />

0<br />

+<br />

-<br />

( +<br />

)<br />

-<br />

0<br />

+<br />

-<br />

0<br />

+<br />

"Stable" states <strong>and</strong> hence measured<br />

observable determined by relaxation<br />

dynamics<br />

0<br />

-<br />

+<br />

0<br />

+<br />

-<br />

0<br />

+<br />

Manipulate complex entangled states for<br />

<strong>quantum</strong> information processing or<br />

computing<br />

Decoherence affects these states.<br />

Very fast loss of <strong>quantum</strong> information<br />

A terrible obstacle to these applications<br />

NB: decoherence does not prohibit<br />

macroscopic <strong>quantum</strong> states (BEC,<br />

superfluids): a single <strong>quantum</strong> state<br />

Florence, Mai 2004 24


Why explorations of the <strong>quantum</strong> world <br />

A fundamental interest<br />

Promising applications<br />

Better underst<strong>and</strong>ing of <strong>quantum</strong><br />

postulates<br />

• Superposition<br />

• Measurement<br />

• Entanglement <strong>and</strong> non-locality<br />

Exploration of the <strong>quantum</strong>-classical<br />

boundary<br />

Realize some of the gendankenexperiments<br />

used by the founding<br />

fathers of <strong>quantum</strong> mechanics.<br />

«we never experiment <strong>with</strong> just one electron<br />

or atom or (small) molecule. In thoughtexperiments<br />

we sometimes assume that we<br />

do; this invariably entails ridiculous<br />

consequences…. »<br />

Use <strong>quantum</strong> weirdness to realize new<br />

functions for information transmission<br />

or processing<br />

From bits (0 or 1) to qubits (|0> <strong>and</strong> |1>)<br />

• Quantum cryptography<br />

• Quantum teleportation<br />

• Quantum information processing<br />

• Quantum computing<br />

All rely on sophisticated <strong>quantum</strong><br />

entanglement manipulations<br />

(Schrödinger British Journal of the Philosophy of<br />

Sciences, Vol 3, 1952)<br />

Florence, Mai 2004 25


Quantum cryptography<br />

Key distribution<br />

Practical realization<br />

With photons<br />

Two operators (Alice <strong>and</strong> Bob) share an<br />

entangled pair.<br />

Their measurements are correlated.<br />

Measure same observable: a r<strong>and</strong>om<br />

but common bit.<br />

Eavesdropper: measurements <strong>and</strong><br />

unavoidable perturbation of the<br />

correlations (no more Bell inequalities<br />

violation)<br />

Detect any eavesdropper<br />

Unconditionally secure key<br />

• Optical telecom fibers; distances up<br />

to 60 km<br />

• Free space: in principle possible for<br />

satellite-ground communication<br />

"Commercial" realizations available<br />

Long haul communication: lack of a<br />

"<strong>quantum</strong> repeater"<br />

Florence, Mai 2004 26


Quantum teleportation<br />

Principle<br />

Experimental realizations<br />

Photons polarization states<br />

Innsbruck+Rome<br />

Quantum fluctuations of a laser<br />

field<br />

Caltech<br />

A very beautiful illustration of<br />

<strong>quantum</strong> non-locality<br />

Transmit exactly an arbitrary<br />

<strong>quantum</strong> state from one station to<br />

another<br />

Impossible <strong>with</strong> measurements<br />

Use <strong>quantum</strong> non-locality<br />

No matter creation, no superluminal<br />

propagation<br />

Quite far from Star-Trek !!<br />

Florence, Mai 2004 27


Quantum teleportation<br />

• Principle of <strong>quantum</strong> teleportation<br />

|ψ 〉<br />

Bell<br />

Measurement<br />

2 classical bits<br />

U<br />

u<br />

a<br />

b<br />

|ψ 〉<br />

EPR Source<br />

• Bell states basis<br />

Florence, Mai 2004 28


– Initial state<br />

Quantum teleportation<br />

– Measurement of u <strong>and</strong> a in the “Bell basis” projects b on a state<br />

differing of the initial one by a trivial unitary transformation.<br />

– Knowing the result of Alice measurement bob can render the initial<br />

state.<br />

– Before Alice’s measurement, Bob has a statistical mixture of all four<br />

states i.e. an equal mixture of 0 <strong>and</strong> 1.<br />

– No matter creation, no superluminal communication.<br />

– A splendid illustration of <strong>quantum</strong> non-locality.<br />

Florence, Mai 2004 29


Quantum computing<br />

From bits to qubits<br />

Quantum parallelism<br />

Classical computer: bits<br />

0 or 1<br />

Quantum computer: qubits<br />

Two-level system<br />

states |0> <strong>and</strong> |1><br />

A qubit can be in a state superposition<br />

A <strong>quantum</strong> computer <strong>with</strong> an n qubits<br />

register can manipulate a <strong>quantum</strong><br />

superposition of all numbers <strong>and</strong><br />

perform simultaneously 2 n<br />

calculations !<br />

Quantum mechanics linearity:<br />

State superpositions available<br />

1<br />

2<br />

( 0 + 1 )<br />

is a possible state for a qubit<br />

Exponentially more efficient than a<br />

classical computer<br />

( + )<br />

Makes easy a few difficult problems<br />

• Shor : factorization<br />

• Grover : search in an unsorted<br />

database<br />

Florence, Mai 2004 30<br />

1<br />

2


Organisation of a <strong>quantum</strong> computer<br />

Quantum gates<br />

Any operation can be decomposed<br />

in a set of elementary operations<br />

p qubits<br />

(1 or 2 qubits)<br />

U<br />

Any <strong>quantum</strong> algorithm can be<br />

realized <strong>with</strong> a network of<br />

<strong>quantum</strong> gates<br />

Universal gates:<br />

p qubits<br />

A set of one or two gates allowing<br />

the realization of any network<br />

Some <strong>quantum</strong> gates<br />

1 qubit: arbitrary rotation<br />

iψ<br />

⎛ cosϕ<br />

e sinϕ<br />

⎞<br />

U ( ϕψ , ) = ⎜ −iψ<br />

⎟<br />

⎝−e<br />

sinϕ<br />

cosϕ<br />

⎠<br />

2 qubits: <strong>quantum</strong> phase gate<br />

0,0 ⎯⎯→ 0,0<br />

0,1 ⎯⎯→ 0,1<br />

1, 0 ⎯⎯→ 1, 0<br />

i<br />

1,1 ⎯⎯→ 1,1<br />

e Φ<br />

Conditional dynamics<br />

Florence, Mai 2004 31


Quantum entanglement manipulations<br />

• Quantum non locality, complementarity, computation all boil down to<br />

sophisticated <strong>quantum</strong> entanglement manipulations !<br />

• Not easy experimentally. Criteria to be met<br />

– Two-level systems.<br />

– Individually addressed<br />

– Prepared in a given state (initialization)<br />

– Final state completely analyzable (read out)<br />

– Strong common interaction to produce entanglement<br />

– Weak coupling to outside world to limit decoherence<br />

• Two last requirements clearly incompatible<br />

– Few suitable systems.<br />

– Even fewer achieved entanglement control <strong>and</strong> manipulation<br />

Florence, Mai 2004 32


Tools for fundamental <strong>quantum</strong> mechanics studies<br />

• Nuclear magnetic resonance<br />

– Controlled <strong>quantum</strong> states evolution for nuclear spins<br />

– Intramolecular interaction lead to spin/spin entanglement<br />

– Various applications to <strong>quantum</strong> computing<br />

– Thermodynamic ensembles of large number of molecules. No<br />

individual <strong>quantum</strong> systems<br />

Florence, Mai 2004 33


Tools for fundamental <strong>quantum</strong> mechanics studies<br />

• Entangled “twin” photons<br />

Correlation<br />

– Photon pairs naturally produced in an entangled state<br />

– Easy manipulation <strong>and</strong> transport of individual photons<br />

– Widely used for non-locality tests, <strong>quantum</strong> cryptography <strong>and</strong><br />

<strong>quantum</strong> teleportation<br />

– Weak photon-photon interaction. Further entanglement processing<br />

difficult. No photon-photon universal <strong>quantum</strong> gate.<br />

Florence, Mai 2004 34


Tools for fundamental <strong>quantum</strong> mechanics studies<br />

• Cold <strong>atoms</strong> <strong>and</strong> BE condensates<br />

– Atoms in optical lattices: control of individual <strong>atoms</strong> (one per site)<br />

– Controlled collisions <strong>and</strong> <strong>quantum</strong> gates<br />

– Not yet individual access to <strong>atoms</strong><br />

Florence, Mai 2004 35


• Ions in traps<br />

Tools for fundamental <strong>quantum</strong> mechanics studies<br />

– Single addressable long-lived <strong>quantum</strong> systems<br />

– Two ion <strong>quantum</strong> gates<br />

– Simple algorithms, teleportation.<br />

– One of the most promising systems for few qubits implementations<br />

– Great experimental difficulties<br />

Florence, Mai 2004 36


• Mesoscopic circuits<br />

Tools for fundamental <strong>quantum</strong> mechanics studies<br />

– Long-lived two level systems (artificial <strong>atoms</strong>)<br />

– Two qubits <strong>quantum</strong> gates<br />

– Promising for ‘large scale’ integration<br />

– Decoherence not well understood<br />

Florence, Mai 2004 37


Tools for fundamental <strong>quantum</strong> mechanics studies<br />

• Cavity <strong>quantum</strong> electrodynamics<br />

– Realizes the simplest matter-field system: a single atom coherently<br />

coupled to a few photons in a single mode of the radiation field,<br />

sustained by a high quality cavity.<br />

– Perfect test bench for fundamental <strong>quantum</strong> behaviors<br />

– Can be used for proof of principle demonstrations of <strong>quantum</strong> logics<br />

– Not really scalable to large scale architectures<br />

• Comes in two regimes<br />

– Weak coupling: radiative properties modifications<br />

– Strong coupling: atom-field interaction overwhelms dissipative<br />

processes (focus here)<br />

• Comes in two flavours<br />

– Optical CQED<br />

– Microwave CQED<br />

Florence, Mai 2004 38


A short history of cavity QED<br />

• The genesis<br />

• The strong coupling regime<br />

Purcell 46: spontaneous emission rate<br />

modification for a spin in a resonant<br />

circuit<br />

• The beginning<br />

Drexhage (70's) : Spontaneous emission<br />

spatial pattern modification for a<br />

molecule near a mirror<br />

• The weak coupling regime<br />

One- <strong>and</strong> two-photon micromasers<br />

(Munich, ENS,85-90)<br />

Vacuum Rabi splitting (Kimble, 92)<br />

Quantum Rabi oscillations<br />

• Using strong coupling for<br />

entanglement manipulations<br />

In progress<br />

• The "industrial" age<br />

Spontaneous emission acceleration<br />

(Goy, 83)<br />

Spontaneous emission inhibition<br />

(Kleppner, 85)<br />

Observed since then on many systems<br />

Use spontaneous emission modification<br />

for light emitting devices (VCSEL's<br />

<strong>and</strong> LED's)<br />

Florence, Mai 2004 39


Optical CEQD<br />

• A single atom in a high Q optical cavity (Fabry Perot)<br />

– Strong coupling regime<br />

– Easy interface <strong>with</strong> propagating photons (<strong>quantum</strong> communication)<br />

– Large atom-field forces: atom trapping <strong>with</strong> single photons<br />

– Single atom lasers <strong>and</strong> single photon deterministic sources<br />

– Fast pace <strong>and</strong> difficult control of entanglement.<br />

• Caltech, Munich, Stony brook,…<br />

Florence, Mai 2004 40


Microwave CQED<br />

• A single Rydberg atom interacting <strong>with</strong> a superconducting cavity<br />

– With circular <strong>atoms</strong>: both <strong>atoms</strong> <strong>and</strong> field long-lived<br />

– Very strong coupling regime<br />

– Fundamental <strong>quantum</strong> mechanics illustrations<br />

– Complex entanglement manipulations<br />

• Munich <strong>and</strong> ENS<br />

Florence, Mai 2004 41


‘Programme’ of these lectures<br />

• A detailed description of microwave CQED experiments<br />

– An opportunity to review many basic <strong>quantum</strong> concepts<br />

• Complementarity, decoherence, entanglement<br />

– A good introduction to basic <strong>quantum</strong> optics techniques<br />

• Quantum fields, Wigner representation, relaxation theory, <strong>quantum</strong><br />

Monte Carlo trajectories, dressed atom…<br />

– An opportunity to review <strong>quantum</strong> information concepts<br />

• Quantum computing, algorithms, <strong>quantum</strong> error correction<br />

codes…<br />

Florence, Mai 2004 42


An “appetizer” chapter<br />

• A brief survey of CQED <strong>with</strong> circular Rydberg <strong>atoms</strong> <strong>and</strong> superconducting<br />

<strong>cavities</strong><br />

• An experiment on complementarity<br />

• A direct study of the decoherence process<br />

Florence, Mai 2004 43


CQED <strong>with</strong> circular Rydberg <strong>atoms</strong> <strong>and</strong> superconducting <strong>cavities</strong><br />

Florence, Mai 2004 44


Circular Rydberg <strong>atoms</strong><br />

High principal <strong>quantum</strong> number<br />

Maximal orbital <strong>and</strong> magnetic <strong>quantum</strong><br />

numbers<br />

• Long lifetime<br />

• Microwave two-level transition<br />

• Huge dipole matrix element<br />

• Stark tuning<br />

• Field ionization detection<br />

– selective <strong>and</strong> sensitive<br />

• Velocity selection<br />

– Controlled interaction time<br />

– Well-known sample position<br />

Atoms individually addressed<br />

(centimeter separation between <strong>atoms</strong>)<br />

Full control of individual transformations<br />

51 (level e)<br />

51.1 GHz<br />

50 (level g)<br />

Complex preparation (53 photons ! )<br />

Stable in a weak directing electric field<br />

Single atom preparation: brute force !<br />

Florence, Mai 2004 45


Superconducting cavity<br />

Design<br />

Highly polished niobium Mirrors<br />

• Open Fabry Perot cavity <strong>with</strong> a<br />

"photon recirculating ring"<br />

• Compatible <strong>with</strong> a static electric field<br />

(circular state stability <strong>and</strong> Stark<br />

tuning)<br />

• Very sensitive to geometric quality of<br />

mirrors<br />

Cavity Damping time: 1 ms<br />

Field energy (db)<br />

29<br />

28<br />

27<br />

26<br />

25<br />

24<br />

-2 0 2 4 6 8 10<br />

Florence, Mai 2004 46<br />

time (ms)


General scheme of the experiments<br />

Rev. Mod. Phys. 73, 565 (2001)<br />

Florence, Mai 2004 47


From Dream to Reality<br />

Atoms preparation<br />

detection<br />

lasers<br />

Atomic<br />

beam<br />

Florence, Mai 2004 48


An object at the <strong>quantum</strong>/classical boundary<br />

Coherent field in a cavity<br />

From <strong>quantum</strong> to classical<br />

• State produced by a classical source<br />

in the cavity mode<br />

• Small field:<br />

α<br />

α = e ∑<br />

2<br />

−α<br />

/2<br />

n<br />

n n!<br />

– |n>: photon number state<br />

– Defined by complex amplitude α<br />

• A picture in phase space (Fresnel<br />

plane)<br />

n<br />

Im α<br />

| α|<br />

Φ<br />

n<br />

1<br />

∆Φ<br />

Re α<br />

2<br />

= α ∆ n=<br />

n<br />

∆N∆Φ≈1<br />

– Large <strong>quantum</strong> fluctuations. A<br />

field at the single-photon level is<br />

a <strong>quantum</strong> object<br />

• Large field<br />

– Small <strong>quantum</strong> fluctuations. A<br />

field <strong>with</strong> more than 10 photons is<br />

almost a classical object.<br />

Florence, Mai 2004 49<br />

a<br />

φ


Resonant atom-cavity interaction<br />

Quantum Rabi oscillations<br />

Initial state |e,0><br />

|3><br />

|2><br />

e><br />

g><br />

|1><br />

|0><br />

Atom Cavity<br />

Ω<br />

|3><br />

|2><br />

|e><br />

|1><br />

|g> |0><br />

Atom Cavity<br />

P e<br />

(t)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

time ( µ s)<br />

0 30 60 90<br />

Oscillatory Spontaneous emission <strong>and</strong> strong coupling regime<br />

Florence, Mai 2004 50


Rabi oscillation in a small coherent field<br />

1.0<br />

P e<br />

(t)<br />

0.5<br />

0.0<br />

Time ( µs)<br />

• A more complex signal<br />

0 30 60 90<br />

• π/2 pulse possible for any cavity field by proper tuning of interaction time<br />

Florence, Mai 2004 51


Rabi oscillation in a small coherent field:<br />

observing discrete Rabi frequencies<br />

Fourier transform of the Rabi oscillation signal<br />

Ω 0<br />

Ω 0<br />

2<br />

Ω 0<br />

3<br />

Discrete peaks<br />

corresponding to<br />

discrete photon numbers<br />

FFT (arb. u.)<br />

Direct observation<br />

of field quantization<br />

in a "box"<br />

0 25 50 75 100 125 150<br />

Frequency (kHz)<br />

Florence, Mai 2004 52


Rabi oscillation in a small coherent field:<br />

Measuring the photon number distribution<br />

1<br />

P () ( ) 1 cos<br />

( )<br />

g<br />

t = ∑ P N − Ω<br />

0t<br />

N + 1 . e<br />

2<br />

N<br />

( )<br />

−t<br />

/ τ<br />

Fit of P(n) on the Rabi oscillation signal:<br />

0,5<br />

0,4<br />

Measured P(n)<br />

Poisson law<br />

P(n)<br />

0,3<br />

0,2<br />

N = 0.85<br />

0,1<br />

0,0<br />

0 1 2 3 4 5<br />

Photon number<br />

accurate field statistics measurement<br />

Florence, Mai 2004 53


All results<br />

• 0<br />

• 0.4<br />

• 0.85<br />

• 1.77<br />

1.0<br />

0.5<br />

0.0<br />

1.0<br />

0.0 0.5 1.0<br />

n = 0.06<br />

th<br />

n = 0.4<br />

coh<br />

photons<br />

P e<br />

(t)<br />

0.5<br />

0.0<br />

1.0<br />

0.5<br />

0.0<br />

1.0<br />

FFT Amplitude<br />

P(n)<br />

0.0 0.5<br />

0.0 0.5<br />

n = 0.85<br />

coh<br />

n = 1.77<br />

coh<br />

0.5<br />

0.0<br />

0.0 0.3<br />

0 30 60 90<br />

0 50 100 150<br />

0 1 2 3 4 5<br />

Time (<br />

µs)<br />

Frequency (kHz)<br />

n<br />

Florence, Mai 2004 54


Field quantization<br />

• Many evidences of field quantization since Compton effect<br />

• Note that photoelectric effect is not a proof of field quantization (Dirac <strong>and</strong><br />

Wenzel 1926)<br />

• Quantization of Rabi frequencies provide a visceral evidence of field<br />

quantization<br />

• A direct insight into field statistics<br />

Florence, Mai 2004 55


Quantum Rabi oscillations: state transformations<br />

Initial state<br />

e,0<br />

1<br />

e,0 e⎯⎯→−<br />

,0 e,0 ⎯⎯→ eg,0<br />

,1 2π ( epulse<br />

,0 + g,1<br />

)<br />

2<br />

g,1 ( ⎯⎯→− ce e + cg π/2 spontaneous g,1) 0 ⎯⎯→ g<br />

Conditional ( ce 1 + c<br />

emission dynamics<br />

g<br />

0 )<br />

pulse<br />

π spontaneous emission pulse<br />

g,0 ⎯⎯→+ Entanglement g,0<br />

Quantum<br />

creation<br />

Atom/cavity state copy phase gate<br />

Atom-cavity EPR pair<br />

P e<br />

(t)<br />

0.8<br />

51 (level e)<br />

0.6<br />

51.1 GHz<br />

50 (level g)<br />

0.4<br />

0.2<br />

0.0<br />

Brune et al, PRL 76, 1800 (96)<br />

time ( µ s)<br />

0 30 60 90<br />

Florence, Mai 2004 56


Three "stitches" to "knit" <strong>quantum</strong> entanglement<br />

Combine elementary transformations to create complex entangled states<br />

• State copy <strong>with</strong> a π pulse<br />

– Quantum memory : PRL 79, 769 (97)<br />

• Creation of entanglement <strong>with</strong> a π/2 pulse<br />

– EPR atomic pairs : PRL 79, 1 (97)<br />

• Quantum phase gate based on a 2π pulse<br />

– Quantum gate : PRL 83, 5166 (99)<br />

– Absorption-free detection of a single photon: Nature 400, 239 (99)<br />

• Entanglement of three systems (six operations on four qubits)<br />

– GHZ Triplets : Science 288, 2024 (00)<br />

• Entanglement of two radiation field modes<br />

– Phys. Rev. A 64, 050301 (2001)<br />

• Direct entanglement of two <strong>atoms</strong> in a cavity-assisted collision<br />

– Phys. Rev. Lett. 87, 037902 (2001)<br />

Florence, Mai 2004 57


An experiment on complementarity<br />

a realization of Bohr’s 1927 gedankenexperiment<br />

Florence, Mai 2004 58


A “modern” version of Bohr’s proposal<br />

• Mach Zehnder interferometer<br />

φ<br />

φ<br />

D<br />

•Interference between two well-separated paths.<br />

• Getting a which-path<br />

information<br />

Florence, Mai 2004 59


A “modern” version of Bohr’s proposal<br />

• Mach-Zehnder interferometer <strong>with</strong> a moving slit<br />

φ<br />

φ<br />

D<br />

• Massive slit: negligible motion, no which- path information, fringes<br />

• Microscopic slit: which path information <strong>and</strong> no fringes<br />

Florence, Mai 2004 60


Complementarity <strong>and</strong> uncertainty relations<br />

Get a which path information<br />

P>∆p<br />

(∆p <strong>quantum</strong> fluctuations of<br />

beam splitter’s momentum)<br />

Hence<br />

∆x > h/∆p > h/P=λ<br />

B 1<br />

b<br />

P<br />

O<br />

φ<br />

a<br />

B 2<br />

M<br />

D<br />

φ<br />

M'<br />

Beam splitter’s <strong>quantum</strong> position fluctuations larger than wavelength: no<br />

fringes<br />

Florence, Mai 2004 61


Complementarity <strong>and</strong> entanglement<br />

• A more general analysis of Bohr’s experiment<br />

– Initial beam-splitter state<br />

– Final state for path b<br />

α<br />

0<br />

B 1<br />

M'<br />

b<br />

P<br />

a<br />

O<br />

φ<br />

B 2<br />

M<br />

D<br />

φ<br />

– Particle/beam-splitter state<br />

Ψ = Ψ<br />

a<br />

0 + Ψb α<br />

– Final fringes signal<br />

• Small mass, large kick<br />

– Particle/beam-splitter entanglement<br />

– (an EPR pair if states orthogonal)<br />

NO FRINGES<br />

• Large mass, small kick<br />

FRINGES<br />

Ψa Ψb 0 α<br />

0 α = 0<br />

0 α = 1<br />

Florence, Mai 2004 62


Entanglement <strong>and</strong> complementarity<br />

Entanglement <strong>with</strong> another system destroys interference<br />

• explicit detector (beam-splitter/ external)<br />

• uncontrolled measurement by the environment (decoherence)<br />

φ<br />

φ<br />

D<br />

Complementarity, decoherence <strong>and</strong> entanglement intimately linked<br />

Florence, Mai 2004 63


A more realistic system: Ramsey interferometry<br />

• Two resonant π/2 classical pulses on an atomic transition e/g<br />

1.0<br />

a<br />

M<br />

0.8<br />

B 1<br />

R 1<br />

R 2<br />

P g<br />

0.6<br />

0.4<br />

b<br />

φ<br />

0.2<br />

0.0<br />

M'<br />

B 2<br />

Fréquence relative (kHz)<br />

0 10 20 30 40 50 60<br />

D<br />

Which path information<br />

Atom emits one photon in R 1<br />

or R 2<br />

Ordinary macroscopic fields<br />

(heavy beam-splitter)<br />

Field state not appreciably affected. No "which path" information<br />

FRINGES<br />

Mesoscopic Ramsey field<br />

(light beam-splitter)<br />

Addition of one photon changes the field. "which path" info<br />

NO FRINGES<br />

Florence, Mai 2004 64


Experimental requirements<br />

• Ramsey interferometry<br />

– Long atomic lifetimes<br />

– Millimeter-wave transitions<br />

• Circular Rydberg <strong>atoms</strong><br />

• π/2 pulses in mesoscopic fields<br />

– Very strong atom-field coupling<br />

• Circular Rydberg <strong>atoms</strong><br />

• Field coherent over atom/field interaction<br />

• Superconducting millimeter-wave <strong>cavities</strong><br />

Florence, Mai 2004 65


Bohr’s experiment <strong>with</strong> a Ramsey interferometer<br />

• Illustrating complementarity: Store one Ramsey field in a cavity<br />

S<br />

Atom-cavity interaction time<br />

Tuned for π/2 pulse<br />

Possible even if C empty<br />

– Initial cavity state α<br />

1<br />

Ψ = e, αe<br />

+ g,<br />

αg<br />

– Intermediate atom-cavity state 2<br />

• Ramsey fringes contrast α α<br />

– Large field<br />

e<br />

α ≈ α ≈ α<br />

• FRINGES<br />

e<br />

g<br />

e<br />

R 1<br />

R 2<br />

g<br />

C<br />

φ<br />

( )<br />

g<br />

D<br />

φ<br />

– Small field<br />

α<br />

= 0, α = 1<br />

• NO FRINGE<br />

e<br />

g<br />

Florence, Mai 2004 66


Quantum/classical limit for an interferometer<br />

Fringes contrast<br />

Fringes contrast versus photon number N<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0 2 4 6 8 10 12 14 16<br />

Nature, 411, 166 (2001)<br />

N<br />

Fringes vanish for <strong>quantum</strong><br />

field<br />

photon number plays<br />

the role of the beamsplitter's<br />

"mass"<br />

An illustration of the ∆N∆Φ<br />

uncertainty relation :<br />

• Ramsey fringes reveal<br />

field pulses phase<br />

correlations.<br />

• Small <strong>quantum</strong> field: large<br />

phase uncertainty <strong>and</strong> low<br />

fringe contrast<br />

Not a trivial blurring of the<br />

fringes by a classical noise:<br />

atom/cavity entanglement<br />

can be erased<br />

Florence, Mai 2004 67


An elementary <strong>quantum</strong> eraser<br />

• Another thought experiment<br />

φ<br />

φ<br />

D<br />

Two interactions <strong>with</strong> the same beamsplitter assembly erase the which path information<br />

<strong>and</strong> restore the interference fringes<br />

Florence, Mai 2004 68


Ramsey “<strong>quantum</strong> eraser”<br />

• A second interaction <strong>with</strong> the mode erases the atom-cavity entanglement<br />

1.0<br />

Resonant Non-resonant Resonant<br />

0.9<br />

0.8<br />

0.7<br />

φ<br />

0.6<br />

0.5<br />

Pe<br />

0.4<br />

e,0<br />

1<br />

( ,0 + ,1 )<br />

2 e g<br />

g,1<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

10 12 14 16 18 20 22 24<br />

• Ramsey fringes <strong>with</strong>out fields !<br />

– Quantum interference fringes <strong>with</strong>out external field<br />

– A good tool for <strong>quantum</strong> manipulations<br />

Florence, Mai 2004 69


A genuine <strong>quantum</strong> eraser<br />

Manipulating atom/cavity entanglement<br />

• Atom A i<br />

interacts <strong>with</strong> cavity field<br />

• Copy cavity state on another atom A e<br />

(π pulse)<br />

e<br />

A e<br />

Erasing entanglement<br />

π/2 pulse on A e<br />

mixes the states<br />

Resulting state:<br />

1<br />

2<br />

⎡<br />

⎣<br />

( − + ) + ( + )<br />

e e g g e g<br />

e i i e i i<br />

⎤<br />

⎦<br />

g<br />

A i<br />

Detection of A e<br />

projects A i<br />

onto a state<br />

superposition <strong>with</strong> a well-defined<br />

phase depending upon state of A e<br />

.<br />

State of two <strong>atoms</strong>:<br />

1<br />

2<br />

( e, g − g , e )<br />

i e i e<br />

An atomic EPR pair (PRL 79, 1 (97))<br />

FRINGES<br />

after a classical π/2 pulse on A i<br />

Phase conditioned to state of A e<br />

Direct detection of A e<br />

:no fringes on A i<br />

Entanglement <strong>with</strong> A e<br />

or C provides<br />

"which path" information on A i<br />

.<br />

Florence, Mai 2004 70


An EPR experiment revisited<br />

Conditional fringes on A i<br />

0 20 40 60 80<br />

1.0<br />

0.8<br />

A e<br />

in e<br />

A e<br />

in g<br />

1.0<br />

No fringes when<br />

tracing on A e<br />

Conditional Probabilities<br />

0.6<br />

0.4<br />

0.2<br />

Probability<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Relative frequency (kHz)<br />

0.0<br />

0 20 40 60 80<br />

Relative Frequency (kHz)<br />

PRL 79, 1 (97)<br />

A <strong>quantum</strong> eraser demonstration <strong>and</strong> controlled entanglement of two <strong>atoms</strong><br />

Florence, Mai 2004 71


A direct study of the decoherence process<br />

Florence, Mai 2004 72


Another experiment on complementarity<br />

e<br />

Cavity as an external detector in the<br />

Ramsey interferometer<br />

Cavity contains initially a coherent field<br />

Non-resonant atom-field interaction:<br />

e<br />

g<br />

R 1<br />

R 2<br />

α<br />

C<br />

Atom modifies the cavity field phase<br />

Phase shift α 1/δ<br />

S<br />

(index of refraction effect)<br />

⎯⎯→<br />

⎯⎯→<br />

e<br />

g<br />

(δ:atom-cavity detuning)<br />

1<br />

g<br />

D<br />

φ<br />

"Which path" information:<br />

• Small phase shift (large δ)<br />

(smaller than <strong>quantum</strong> phase noise)<br />

– field phase almost unchanged<br />

– No which path information<br />

– St<strong>and</strong>ard Ramsey fringes<br />

• Large phase shift (small δ)<br />

(larger than <strong>quantum</strong> phase noise)<br />

– Cavity fields associated to the<br />

two paths distinguishable<br />

– Unambiguous which path<br />

information<br />

– No Ramsey fringes<br />

Florence, Mai 2004 73


Fringes <strong>and</strong> field state<br />

1.0<br />

0.5<br />

Complementarity<br />

Fringes contrast <strong>and</strong> phase<br />

60<br />

n=9.5 (0.1)<br />

6<br />

Ramsey Fringe Signal<br />

0.0<br />

1.0<br />

0.5<br />

712 kHz<br />

Vacuum<br />

712 kHz,<br />

9.5 phot ons<br />

Fringe Contr ast (%)<br />

40<br />

20<br />

0<br />

0.0 0.2 0.4 0.6 0.8<br />

φ (radians)<br />

0.0 0.2 0.4 0 2<br />

φ (radians)<br />

4<br />

Fringe Shift (rd)<br />

0.0<br />

104 kHz<br />

0 2 4 6 8 10<br />

ν (kHz)<br />

347 kHz<br />

PRL 77, 4887 (96)<br />

• Excellent agreement <strong>with</strong> theoretical<br />

predictions.<br />

• Not a trivial fringes washing out effect<br />

Calibration of the cavity field<br />

9.5 (0.1) photons<br />

Florence, Mai 2004 74


A laboratory version of the Schrödinger cat<br />

Field state after atomic detection<br />

1<br />

2<br />

( + )<br />

A coherent superposition of two<br />

"classical" states.<br />

Very similar to the Schrödinger cat<br />

An atom to probe field coherence<br />

Quantum interferences involving the<br />

cavity state<br />

First atom<br />

Φ<br />

−Φ<br />

D<br />

Second atom<br />

Decoherence will transform this<br />

superposition into a statistical mixture<br />

Slow relaxation: possible to study the<br />

decoherence dynamics<br />

Decoherence caught in the act<br />

Two indistinguishable <strong>quantum</strong> paths to<br />

the same final state:<br />

2Φ<br />

−2Φ<br />

Florence, Mai 2004 75


A decoherence study<br />

Atomic correlation signal<br />

Decoherence versus size of the cat<br />

Two-Atom Correlation Signal<br />

0.0 0.1 0.2<br />

n=3.3 δ/2π =70 <strong>and</strong> 170 kHz<br />

0 1 2<br />

t/T<br />

r<br />

0 1 2 PRL 77, 4887 (1996)<br />

τ/T<br />

r<br />

Florence, Mai 2004 76<br />

correlation signal<br />

correlation signal<br />

δ/2π =70 kHz<br />

20<br />

16<br />

n=5.5<br />

12<br />

8<br />

4<br />

0<br />

0 1 2<br />

20<br />

t/T<br />

r<br />

16<br />

12<br />

n=3.3<br />

8<br />

4<br />

0


Decoherence features<br />

• Faster than cavity relaxation<br />

• Faster when distance between states increases<br />

• Decoherence time scale depends upon a "macroscopicity" parameter<br />

• Directly linked to complementarity <strong>and</strong> entanglement (environment<br />

acquires information on the <strong>quantum</strong> system)<br />

Not a trivial relaxation mechanism, if described by st<strong>and</strong>ard relaxation theory<br />

Essential for <strong>quantum</strong> measurement<br />

meters are not in superposition states<br />

Difficulty for applications of QM<br />

the more complex the entangled state, the faster the decoherence<br />

Florence, Mai 2004 77


The ENS team<br />

• Permanent members<br />

– Serge Haroche, Michel Brune, Gilles Nogues, Jean-Michel Raimond<br />

• Thesis students<br />

– F. Bernardot, P. Nussenzveig, A. Maali, J. Dreyer, X. Maître, P.<br />

Domokos, G. Nogues, A. Rauschenbeutel, P. Bertet, S. Osnaghi, A.<br />

Auffeves, P. Maioli, T. Meunier, P. Hyafil, J. Mozley, S. Gleyzes<br />

• Post doctoral visitors<br />

– F. Schmidt-Kaler, E. Hagley, P. Milman, S. Kuhr<br />

• Theoretical collaborations<br />

– L. Davidovich, N. Zagury (Rio)<br />

– D. Vitali, P. Tombesi (Camerino)<br />

• Optical CQED<br />

– V. Lefèvre, J. Hare<br />

Florence, Mai 2004 78


Structure of the lectures<br />

• I) Introduction<br />

• II) The tools of CQED<br />

• III) Experimental illustrations of fundamental <strong>quantum</strong> mechanics<br />

• IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• V) Schrödinger cats <strong>and</strong> decoherence<br />

• VI) Cavity QED <strong>with</strong> dielectric microspheres<br />

• VII) Perspectives<br />

Florence, Mai 2004 79


Structure of the lectures<br />

• I) Introduction<br />

• II) The tools of CQED<br />

• III) Experimental illustrations of fundamental <strong>quantum</strong> mechanics<br />

• IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• V) Schrödinger cats <strong>and</strong> decoherence<br />

• VI) Cavity QED <strong>with</strong> dielectric microspheres<br />

• VII) Perspectives<br />

Florence, Mai 2004 80


II) The tools of CQED<br />

• 1) Quantum fields<br />

• 2) Field relaxation<br />

• 3) A simple <strong>quantum</strong> device: the beamsplitter<br />

• 4) Atom-field coupling<br />

• 5) Experimental tools<br />

Florence, Mai 2004 81


II) The tools of CQED<br />

• 1) Quantum fields<br />

• 2) Field relaxation<br />

• 3) A simple <strong>quantum</strong> device: the beamsplitter<br />

• 4) Atom-field coupling<br />

• 5) Experimental tools<br />

Florence, Mai 2004 82


• Hamiltonian<br />

A mechanical oscillator<br />

• Dimensionless coordinates<br />

• Creation <strong>and</strong> annihilation operators<br />

• Fock states<br />

• |0>: “vacuum” state<br />

Florence, Mai 2004 83


A mechanical oscillator<br />

• Fock states wavefunctions<br />

Florence, Mai 2004 84


A mechanical oscillator<br />

• Operators evolution in Heisenberg point of view<br />

– Annihilation operators evolves in the same way as the classical<br />

amplitude<br />

Florence, Mai 2004 85


A cavity field mode<br />

• Quadratic hamiltonian as in the case of mechanical oscillator (field is a<br />

collection of harmonic oscillators)<br />

• Photon annihilation <strong>and</strong> creation operators<br />

• Electric field operator<br />

– normalization factor (dimension of a field)<br />

– local polarization<br />

– relative field mode amplitude <strong>and</strong> polarization (1 at field maximum)<br />

a solution of Helmoltz equation <strong>with</strong> cavity limiting conditions<br />

• Heisenberg picture<br />

Florence, Mai 2004 86


Field normalisation<br />

• Energy of Fock states<br />

• Cavity mode volume<br />

Florence, Mai 2004 87


Case of an open Fabry Perot cavity<br />

• Field amplitude<br />

(a)<br />

Elastic blade<br />

Ring<br />

R<br />

L<br />

2w 0<br />

PZT<br />

• Free space field quantization: introduction of a fictitious quantization box.<br />

Volume goes to infinity. Here: a real “photon box”. Field per photon<br />

perfectly defined. No need for complex limit taking.<br />

Florence, Mai 2004 88


Field quadratures<br />

• Coordinates for a two-dimensional phase space (generalizes X <strong>and</strong> P)<br />

• Eigenstates are non-normalizable (position/momentum eigenstates)<br />

• Pictorial representation of wave-functions in phase space<br />

Florence, Mai 2004 89


Phase space representation<br />

• Vacuum <strong>and</strong> three photon states<br />

Xφ+π/2<br />

X π/2<br />

X π/2<br />

X φ<br />

φ<br />

X 0<br />

X 0<br />

(a)<br />

(b)<br />

Florence, Mai 2004 90


Fock states<br />

• Fock states have a zero expectation value for the electric field (prop to a)<br />

<strong>and</strong> the vector potential<br />

• Fock states have a non zero electromagnetic energy<br />

• Fock states cannot be interpreted in terms of a classical field: a first<br />

example of non-classical states<br />

Florence, Mai 2004 91


Coherent states<br />

• Fock states are utterly non-classical. Other states<br />

Displacement operator<br />

• Physical interpretation of the displacement operator<br />

– Glauber formula (valid when A, B commute <strong>with</strong> their commutator)<br />

Translation operator<br />

Along X 0<br />

Florence, Mai 2004 92


Coherent state as a displacement of vacuum<br />

X π/2<br />

α<br />

Imα<br />

Reα<br />

X 0<br />

• The coherent state is a displaced vacuum. Hence a minimum uncertainty<br />

state<br />

Florence, Mai 2004 93


Creating coherent field <strong>with</strong> a classical current<br />

• Classical current density coupled to the mode (at origin for the sake of<br />

simplicity)<br />

• Source cavity coupling<br />

• Neglect the two terms oscillating at twice cavity frequency (RWA)<br />

• State evolution<br />

• Recognize for<br />

• A classical current produces a displacement <strong>and</strong> a coherent state.<br />

Florence, Mai 2004 94


Displacement <strong>and</strong> annihilation operator<br />

• Action of the displacement on the annihilation: calculate<br />

writes<br />

With<br />

– Baker-Hausdorf Lemma<br />

– two terms only<br />

Florence, Mai 2004 95


Combination of displacements<br />

• Displacement of a coherent state<br />

• Quantum analogue of classical homodyning<br />

Florence, Mai 2004 96


• Again Glauber<br />

Fock states expansion of coherent states<br />

• Last term leaves vacuum invariant.<br />

• Exp<strong>and</strong> second term in power series <strong>and</strong> note that<br />

• Essential property<br />

• NB a non hermitic. Admits complex eigenvalues<br />

• Non zero electric field value (not the case for Fock state)<br />

Florence, Mai 2004 97


Photon number distribution<br />

•<br />

0.5<br />

p<br />

c<br />

(n)<br />

0.4<br />

(a)<br />

p<br />

c<br />

(n)<br />

0.08<br />

(b)<br />

0.3<br />

0.06<br />

0.2<br />

0.04<br />

0.1<br />

0.02<br />

0.0<br />

0 1 2 3 4 5 6 7 8<br />

n<br />

0.00<br />

0 5 10 15 20 25 30 35<br />

n<br />

Florence, Mai 2004 98


Pictorial representation of a coherent state<br />

• A simple qualitative phase space diagram<br />

Im α<br />

1<br />

| α|<br />

Φ<br />

∆Φ<br />

Re α<br />

n<br />

2<br />

= α ∆ n= n ∆N∆Φ ≈1<br />

Florence, Mai 2004 99


A basis of coherent states<br />

• Scalar product of coherent states<br />

• Overcomplete basis<br />

• No unique decomposition (zero is also a coherent state)<br />

Florence, Mai 2004 100


Coherent states wavefunctions<br />

• Use<br />

• Inject between exponentials closure on<br />

• is the wavefunction of vacuum in P representation<br />

• A gaussian along the real axis, <strong>with</strong> a modulation reflecting the translation<br />

along the imaginary axis. Probability distribution<br />

Florence, Mai 2004 101


Time evolution of a coherent state<br />

• Evolution of coherent state given by<br />

(b)<br />

Im α<br />

Recover classical trajectory<br />

Of amplitude in phase space<br />

ω c<br />

t<br />

Re α<br />

Florence, Mai 2004 102


Quasi-probability distributions<br />

• Give a quantitative status to the description of <strong>quantum</strong> states in phase<br />

space.<br />

• For classical fields, any state represented by a probability distribution in<br />

phase space (cf statistical physics)<br />

• For <strong>quantum</strong> states no analog (because of Heisenberg uncertainty<br />

limitations)<br />

• Possible to define quasi probability distributions in phase space. They<br />

contain all possible information on the <strong>quantum</strong> state but they may be<br />

negative or singular.<br />

• Use here two distributions<br />

– Q function (very pictorial but not very useful)<br />

– W function (Wigner distribution). Extremely useful <strong>and</strong> precious<br />

insights in <strong>quantum</strong> states<br />

Florence, Mai 2004 103


The Q function<br />

• Definition for an arbitrary state<br />

– For a pure state: square of the overlap <strong>with</strong> the coherent state<br />

• Alternative definition<br />

– Probability to get zero photons in a field displaced by –α. Leads to<br />

simple experimental schemes to measure Q<br />

• Q for a coherent state<br />

Florence, Mai 2004 104


Examples of Q functions<br />

• Five photons coherent state <strong>and</strong> two-photon Fock state<br />

-4 -2<br />

0<br />

Q<br />

2<br />

4<br />

0.3<br />

0.2<br />

0.1<br />

α ι<br />

-4<br />

-2<br />

0<br />

2<br />

α r<br />

0<br />

4<br />

-4 -2<br />

0<br />

2<br />

4<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

-4<br />

-2<br />

0<br />

2<br />

0<br />

4<br />

Florence, Mai 2004 105


Properties of the Q function.Link <strong>with</strong> characteristic function<br />

in anti-normal order<br />

Q(α) is a function ≥ 0, determined by « sweeping » phase space <strong>with</strong> a coherent state<br />

<strong>and</strong> attributing to each of its « positions » the expectation value in this state of the field<br />

density operator, divided by π .<br />

Another definition of Q: Fourier transform of the expectation value in the field state<br />

of the operator exp (-λ ∗ a) exp(λa + ) (characteristic function of the field in antinormal<br />

order):<br />

(ρ<br />

C )<br />

an<br />

(λ) = ∫∫ d 2 α Q (ρ ) (α) e λα * −λ * α<br />

= 1 π Tr ∫∫ d 2 αρα α e λα * −λ * α<br />

= 1 π Tr d 2 αρe −λ * a<br />

∫∫ α α e λa+<br />

= Tr ρ e −λ* a<br />

e λa + = e −λ* a<br />

e λa+ ρ<br />

(3 − 4)<br />

Operators in anti-normal (an) order<br />

<strong>and</strong> by inverse transformation (normalization checked by substituting in first line of (3-4)):<br />

Q (ρ ) (α) = 1 d 2 λ C (ρ)<br />

π 2<br />

an<br />

(λ) e λ* α −λα<br />

∫∫ *<br />

(3 − 5)<br />

Florence, Mai 2004 106


Wigner function: an insight into a <strong>quantum</strong> state<br />

A quasi-probability distribution in phase space.<br />

• Characterizes completely the <strong>quantum</strong> state<br />

• Negative for non-classical states.<br />

p<br />

Im(α)<br />

Describes the motion of a particle or<br />

a <strong>quantum</strong> single mode field<br />

Motion<br />

of a particle<br />

q<br />

Re(α)<br />

Electromagnetic<br />

field<br />

Florence, Mai 2004 107


Wigner function<br />

• Definition<br />

• By inverse Fourier transform<br />

• In particular<br />

• The probability distribution of x is obtained by integrating W over p<br />

• This property should obviously be invariant by rotation in phase space<br />

∫<br />

W q cosθ − p sin θ, q sinθ + p cosθ<br />

dp<br />

( )<br />

θ θ θ θ θ<br />

= P q = q Uˆ<br />

θ ˆ ρUˆ<br />

θ q<br />

( ) ( ) ( )<br />

†<br />

θ<br />

• All elements of density matrix derived from W: contains all possible<br />

information on <strong>quantum</strong> state.<br />

Florence, Mai 2004 108


Wigner function<br />

• Wigner function is normalized<br />

∫ dpdqW(q,p)=1<br />

• W may be negative. If cancels (nodes of<br />

wavefunction in x representation), W should have negative parts. Cannot<br />

be a full fledged probability distribution in all cases<br />

• W gives all averages of operators in symmetric ordering<br />

Tr ⎡⎣ ˆ ρ ( xp ˆˆ + px ˆˆ )/2 ⎤⎦ = ∫ dxdpW ( x,<br />

p)<br />

xp<br />

ˆ<br />

ˆ<br />

ˆ<br />

A =Tr[ρA]= ∫ dpdqW(q,p)f<br />

s(q,p)<br />

Florence, Mai 2004 109


A few Wigner functions<br />

• Vacuum<br />

• Coherent state<br />

• Fock state<br />

• Thermal field<br />

Florence, Mai 2004 110


Vacuum |0><br />

Examples of Wigner functions<br />

-2<br />

0<br />

2<br />

2<br />

Coherent state |β><br />

(β=1.5+1.5i)<br />

-4 -2 0 2 4<br />

2<br />

Thermal field n th<br />

=1<br />

-4 -2 0 2 4<br />

2<br />

1<br />

1<br />

1<br />

0<br />

0<br />

0<br />

-2<br />

0<br />

2<br />

-1<br />

-2<br />

-4<br />

-2<br />

0<br />

2<br />

-1<br />

-2<br />

4 -4<br />

-2<br />

0<br />

2<br />

-1<br />

-2<br />

4 Fock state |1><br />

-2 0 2<br />

2<br />

-4<br />

5 photons Fock state<br />

4<br />

2<br />

0<br />

-2<br />

1<br />

0<br />

0<br />

-1<br />

-0.3<br />

-2<br />

2<br />

0<br />

-2<br />

-4<br />

-2<br />

0<br />

2<br />

Florence, Mai 2004 111<br />

4


A classicality criterion<br />

• A field whose Wigner function is positive can be understood as a classical<br />

field <strong>with</strong> fluctuations described by a classical probability distribution<br />

– Coherent states, thermal states<br />

• A field <strong>with</strong> negative W cannot be understood classically<br />

– Fock states<br />

Florence, Mai 2004 112


An alternative simple expression of W<br />

• Two simple expressions left as an exercise<br />

• Parity operator<br />

• +1 for even Fock states, -1 for odd Fock states<br />

• Leads to a very simple experimental determination of W<br />

L. Davidovich, Private comm<br />

Florence, Mai 2004 113


Wigner function in terms of the characteristic function<br />

• Definition. Symmetric ordering<br />

• D unitary<br />

• Coherent field<br />

• Fock state<br />

• Wigner function<br />

• Normal order characteristic function<br />

* 2<br />

• Relation <strong>with</strong> anti normal order ( ρ) λa<br />

λ a λ /2 ( ρ)<br />

C ( λ) Trρe + −<br />

= = e C ( λ)<br />

s<br />

an<br />

Florence, Mai 2004 114


Schrödinger cat states<br />

• An example of non-classical state<br />

– Quantum superposition of two coherent fields <strong>with</strong> opposite phases.<br />

– No classical counterpart<br />

X π/2<br />

– Evidence the coherence<br />

−β<br />

β<br />

X 0<br />

– Photon number distribution: only even photon numbers contribute<br />

(even cat)<br />

P(n)<br />

– Odd cat<br />

024<br />

– Eigenstates of <strong>with</strong> +1 <strong>and</strong> -1 eigenvalues<br />

13 5<br />

Florence, Mai 2004 115


Quadrature distributions<br />

• X wavefunction of the even cat<br />

– Sum of two gaussian<br />

• P distribution of the even cat<br />

– With<br />

– Modulation revealing coherence<br />

Florence, Mai 2004 116


Graphical interpretation of quadrature distributions<br />

(a) (b) (c)<br />

X π/2<br />

X 0<br />

X π/2 X π/2<br />

X ϕ<br />

X 0<br />

X 0<br />

Florence, Mai 2004 117


Q<br />

( β +−β<br />

)<br />

Q function of a cat<br />

1<br />

( α) =<br />

2<br />

[<br />

π +<br />

−2<br />

β<br />

2 (1 e )<br />

e<br />

2 2<br />

2 2<br />

−α−β<br />

− α+<br />

β<br />

+ e<br />

+ α β −α β<br />

− ( α + β )<br />

2e<br />

cos 2(<br />

1 2 2 1)]<br />

-4 -2<br />

0<br />

2<br />

4<br />

0.15<br />

0.1<br />

0.05<br />

-4<br />

-2<br />

0<br />

2<br />

0<br />

4<br />

Exponential suppression of interferences near the origin revealing cat coherence.<br />

Q function of a cat similar to one of a mixture.<br />

Q is not well adapted to displaying mesoscopic <strong>quantum</strong> superpositions<br />

Florence, Mai 2004 118


Wigner function of phase-cat states ( β real)<br />

W ( β +−β ) (α) =<br />

1<br />

2π 2 (1 + e −2β 2 )<br />

d 2 λ e (αλ* −α * λ)<br />

[ ∫∫ ( β D(λ) β + −β D(λ) −β + β D(λ) −β + −β D(λ) β )] (3− 26)<br />

W (coherence) (α) =<br />

« Incoherent » terms (sum of Wigner functions<br />

of the two states |β> <strong>and</strong> |-β>)<br />

Coherent interference<br />

cohérent terms<br />

(W (coherence) )<br />

1<br />

[ dλ<br />

2π 2 (1+ e −2β 2 1<br />

dλ 2<br />

e 2i(α 2λ 1<br />

−α 1<br />

λ 2<br />

)<br />

∫∫<br />

−β D(λ) β + term β →−β] )<br />

(3 − 27)<br />

we can write the matrix element < −β |D(λ)|β > as (assuming β real <strong>with</strong>out loss of generality):<br />

−β D(λ) β = e iβλ 2<br />

−β β + λ = exp[−2β(β + λ 1<br />

) − λ 1 2 /2− λ 2 2 /2] (3− 28)<br />

<strong>and</strong> from (3-27) <strong>and</strong> (3-28) we find Gaussian integrals in λ 1 <strong>and</strong> λ 2 , from which the expression of W<br />

can easily be derived (see next page):<br />

dλ 1<br />

dλ 2<br />

e 2i(α 2λ 1<br />

−α 1<br />

λ 2<br />

)<br />

∫∫ −β D(λ) β = ∫ dλ 1<br />

exp[− 1 2 (λ 1<br />

+ 2(β − iα 2<br />

)) 2 − 2α 22<br />

− 4iβα 2<br />

]<br />

× ∫ dλ 2<br />

exp[− 1 2 (λ 2<br />

+ 2iα 1<br />

) 2 − 2α 12<br />

] = 2π e −2 α 2 e −4iβα 2<br />

(3− 29)<br />

Florence, Mai 2004 119


Graphs of Wigner functions of coherent states <strong>and</strong> of<br />

Vacuum<br />

their superpositions<br />

-2<br />

0<br />

2<br />

2<br />

Phase cat | β>+|−β><br />

1<br />

0<br />

W ( β +−β ) (α) =<br />

1<br />

[ ] (3 − 30)<br />

π(1 + e −2β 2 ) e−2α −β 2 + e −2α + β 2 + 2e −2α 2 cos4βα 2<br />

-1<br />

2<br />

(β real here)<br />

2<br />

-2<br />

-2<br />

0<br />

(case β=3)<br />

The interference term around |α|=0 has<br />

negative parts. The integral along<br />

directions parallel to the α 1 axis<br />

corresponding to fixed α 2 vanishes for<br />

some values of α 2 : «dark fringes» of P π/2<br />

(α) (see Lectures 1 <strong>and</strong> 2)<br />

-4<br />

-2<br />

0<br />

2<br />

4<br />

Florence, Mai 2004 120<br />

-2<br />

-1<br />

α 1<br />

α 2<br />

0<br />

1<br />

1<br />

0<br />

-1<br />

2<br />

-2<br />

-4<br />

Statistical<br />

mixture of<br />

|β> <strong>and</strong> |−β><br />

-2<br />

0<br />

2<br />

4<br />

-2<br />

-1<br />

0<br />

1<br />

1<br />

0<br />

-1<br />

2 -2<br />

2


II) The tools of CQED<br />

• 1) Quantum fields<br />

• 2) Field relaxation<br />

• 3) A simple <strong>quantum</strong> device: the beamsplitter<br />

• 4) Atom-field coupling<br />

• 5) Experimental tools<br />

Florence, Mai 2004 121


The problem<br />

• The field mode (system S) is coupled to a complex environment E<br />

– Charge carriers in the mirrors, other propagating modes coupled by<br />

mirror defects<br />

• The S+E system undergoes an hamiltonian evolution <strong>and</strong> is described by<br />

a pure state<br />

• The environment state is not accessible. We are interested only in the<br />

system’s reduced density matrix<br />

• Find the evolution equation of system’s density matrix.<br />

Florence, Mai 2004 122


The Kraus approach<br />

• Any mapping of a density matrix onto another density matrix (completely<br />

positive <strong>quantum</strong> map) can be put (non unambiguously) under the form<br />

– With a number of Kraus operators at most N² (N dimension of Hilbert<br />

space)<br />

• Assume that evolution ruled by a differential equation: mapping between<br />

ρ(t) <strong>and</strong> ρ(t+dt) (Markov approximation)<br />

• M i depends only upon dt if we assume that environment state not<br />

appreciably modified by system’s evolution (Born approximation)<br />

Florence, Mai 2004 123


Kraus cont’d<br />

• One of the operators is order zero in dt. Without loss of generality<br />

– (H <strong>and</strong> K hermitian) <strong>and</strong><br />

• As we get<br />

• Hence, H identified <strong>with</strong> the hamiltonian<br />

• Relaxation modelled by a Liouvillian in Lindbladt form<br />

Florence, Mai 2004 124


Physical interpretation of the L i<br />

• Evolution of a wavefunction during dt<br />

– Either system unchanged or (<strong>with</strong> a probability of order dt) evolution<br />

towards a wavefunction<br />

– L i describes the system evolution when some event occurs in the<br />

environment (eg apparition or disparition of a photon in the<br />

environment).<br />

– L i : “jump operator” (cf Monte carlo approach)<br />

– Underlying model: continuous monitoring of the environment. Change<br />

in the environment reflected by the action of one jump operator onto<br />

the system<br />

Florence, Mai 2004 125


• Jump operators<br />

Application to the cavity case<br />

– Zero temperature cavity: only event escape of one photon from the<br />

cavity, detected in the environment.<br />

• Associated jump operator a (annihilation operator) <strong>with</strong>in a<br />

normalization factor<br />

– Finite temperature cavity: also transfer of a thermal photon from the<br />

environment into the cavity.<br />

• Associated jump operator α a + (creation operator)<br />

• Complete Lindblad form:<br />

Florence, Mai 2004 126


A more st<strong>and</strong>ard approach<br />

• A simple environment model: collection of harmonic oscillators spanning a<br />

large frequency interval, weakly <strong>and</strong> linearly coupled to cavity mode (final<br />

result is model independent)<br />

• Cavity-environment hamiltonian<br />

• Interaction representation vs free hamiltonians<br />

• Many modes between ∆ <strong>and</strong> ∆+d∆, average coupling g(∆), “coupling<br />

density (proportional to g <strong>and</strong> mode density) γ(∆)<br />

Florence, Mai 2004 127


Evolution of density matrix<br />

• Global <strong>and</strong> reduced evolution equations<br />

• Second order expansion<br />

• Assume cavity <strong>and</strong> environment initially uncorrelated<br />

• Assume reservoir state unchanged (Born approx)<br />

• All first order terms cancel. Only second order contributions. 16 terms…<br />

Florence, Mai 2004 128


One term out of 16<br />

• One of the terms when developing second order onto the F operators<br />

• Equation of evolution for cavity density matrix<br />

• Large frequency span of reservoir. K has a short time memory. Markov<br />

approximation<br />

Florence, Mai 2004 129


• Gathering all terms<br />

Final Liouville-Lindblad equation<br />

• Same form as from Kraus approach.<br />

• More cumbersome approach but finer underst<strong>and</strong>ing of underlying<br />

mechanisms<br />

• Same equation for all environment models (eg two level <strong>atoms</strong>) provided<br />

large environment, wide frequency range <strong>and</strong> linear coupling<br />

• A trustable equation for relaxation, depending upon a single, classically<br />

measurable, parameter: cavity quality factor Q<br />

Florence, Mai 2004 130


Heisenberg picture: Langevin forces<br />

• Evolution of field operators in the Heisenberg approach<br />

• Classical damping of a (evolves as classical damped field amplitude) plus<br />

additional noise term. Brownian motion preserving commutation relations.<br />

• Leads to simple physical pictures of the evolution<br />

Florence, Mai 2004 131


Application: photon number distribution relaxation<br />

• Evolution of diagonal density matrix terms<br />

• Steady state solution: detailed balance condition<br />

• variance<br />

Florence, Mai 2004 132


Thermal field vs coherent field<br />

Florence, Mai 2004 133


Fock states lifetime<br />

• Single photon lifetime (at zero temperature)<br />

• κ -1 =T c The classical field energy damping time<br />

• |n> lifetime : T c /n<br />

• A simple effect but also a decoherence effect (fast relaxation of a nonclassical<br />

field)<br />

• Relaxation of coherent states can be obtained by a complex algebraic<br />

derivation. Here, simpler to use the Monte Carlo approach or a simple<br />

beam-splitter model (later on)<br />

Florence, Mai 2004 134


Quantum Monte Carlo trajectories<br />

• Model the relaxation in terms of stochastic wavefunctions.<br />

• Instead of tracing the environment, assume that it is (virtually) monitored.<br />

Continuous measurement of photon escapes for cavity by an array of<br />

detectors in the environment. At any time, the system is described by a<br />

wavefunction.<br />

• Two kind of evolutions<br />

– Jumps when an environment detector ‘clicks’<br />

– Non-unitary evolution between clicks. Not detecting a photon gives<br />

some hints that the cavity might be empty. The longer the time interval<br />

for no detection, the higher the probability that the cavity is empty. A<br />

no-detection gives information on the system, albeit more ambiguous<br />

than a click.<br />

• System density matrix recovered by averaging wavefunctions over very<br />

many trajectories.<br />

• A rigorous derivation based on Kraus approach.<br />

• Here: give the recipe <strong>and</strong> check consistent <strong>with</strong> Lindblad<br />

Florence, Mai 2004 135


Quantum Monte Carlo: general principle<br />

• During dt probability for a jump described by L i<br />

• Total jump probability<br />

• Wavefunction evolution if jump L i<br />

• Evolution if no jump<br />

– With<br />

• Iterate over time following this procedure. At each step, choose r<strong>and</strong>omly<br />

jump/no jump <strong>and</strong> L i if jump<br />

• Extremely efficient numerically for large systems (cold <strong>atoms</strong>)<br />

Florence, Mai 2004 136


Equivalence <strong>with</strong> Lindblad<br />

• Average over very many trajectories the projector on wavefunction.<br />

Evolution equation:<br />

• Replace jump <strong>and</strong> no-jump wavefunctions by their expression <strong>and</strong> get<br />

• St<strong>and</strong>ard Lindblad form associated <strong>with</strong> L i .<br />

Florence, Mai 2004 137


Case of cavity relaxation at zero temperature<br />

• Jump operators proportional to a<br />

• Jump probability per unit time<br />

– Obvious interpretation in terms of photon loss<br />

• Effective hamiltonian (interaction <strong>with</strong> respect to cavity hamiltonian)<br />

– Proportional to photon number<br />

• No-jump evolution<br />

Florence, Mai 2004 138


Relaxation of a Fock state<br />

• Fock state is an eigenstate of the no-jump evolution. Invariant in the nojump<br />

periods<br />

• Photon number decreases by one at each jump<br />

• Staircase decrease of the photon number. R<strong>and</strong>om step times<br />

• Ordinary exponential relaxation of energy recovered by averaging many<br />

trajectories.<br />

• Photon number variance zero initially <strong>and</strong> at long times. Maximum during<br />

evolution due to dispersion in jumps timing.<br />

Florence, Mai 2004 139


Relaxation of a coherent state<br />

• Coherent state eigenstate of jump operator. No evolution when jump ie<br />

photon detected in the environment. Counterintuitive<br />

– Loosing a photon reduces the photon number but<br />

– Seeing a photon gives an indication that the field amplitude is nonzero.<br />

Results in an increase of average photon number which exactly<br />

compensates the effect above.<br />

• Evolution between jumps only. Deterministic evolution. System remains at<br />

any time in a pure state<br />

• Evolution under the free cavity hamiltonian <strong>and</strong><br />

• Amounts to adding an imaginary part to<br />

• frequency ω+ικ/2<br />

Florence, Mai 2004 140


Relaxation in terms of characteristic functions<br />

• A simple result for the normal order characteristic function for a zero<br />

temperature relaxation. Very useful for relaxation of Schrödinger cats.<br />

Consider formally λ <strong>and</strong> λ* as<br />

Independent variables<br />

• Transforms Lindblad equation into a differential equation for C n<br />

– Associate formally a C n function to all combinations of ρ <strong>with</strong> a, a +<br />

(terms in the Lindblad equation)<br />

– Show that<br />

Florence, Mai 2004 141


Equation for C n<br />

• Substitution in Lindblad<br />

• Explicit solution<br />

• Extremely simple solution. Obtain it by characteristic method of check<br />

validity by direct substitution<br />

Florence, Mai 2004 142


Relaxation of a Schrödinger cat<br />

• Zero temperature evolution of a cat<br />

Florence, Mai 2004 143


Relaxation of a Schrödinger cat<br />

• Identify C n (t) <strong>with</strong> a density matrix<br />

• Damping of non diagonal terms <strong>with</strong> a rate 2κ|α|². Lifetime of the<br />

mesoscopic coherent Tc/2n. A typical decoherence effect (much more on<br />

that later)<br />

Florence, Mai 2004 144


Underst<strong>and</strong>ing fast decoherence<br />

• Decoherence time scale much shorter than energy lifetime.<br />

• Monte carlo approach: <strong>quantum</strong> jumps due to the action of a operator<br />

• A jump changes the parity of the cat <strong>with</strong>out changing the components<br />

amplitudes<br />

• A no-jump slightly reduces the components amplitudes <strong>with</strong>out affecting<br />

parity.<br />

• Average over many trajectories: washing out of parity information in a<br />

time typical of first photon escape ie Tc/n.<br />

• Fast evolution towards a statistical mixture<br />

• Then slow evolution (no jump terms) towards vacuum<br />

• Parity jumps can be corrected. Idea of a feedback method (feeding cats<br />

<strong>with</strong> <strong>quantum</strong> food) More later.<br />

Florence, Mai 2004 145


Decoherence in the Wigner point of view<br />

• Equation for Wigner function<br />

• Fokker planck equation. Drift to origin (damping of amplitude) <strong>and</strong><br />

diffusion.<br />

• Cat: fringes near origin <strong>with</strong> spacing 1/β. Washed out by diffusion process<br />

faster <strong>and</strong> faster when amplitude increases<br />

• Note: explicit solution (<strong>with</strong> κ=1)<br />

Florence, Mai 2004 146


Illustrated cat relaxation<br />

Florence, Mai 2004 147


II) The tools of CQED<br />

• 1) Quantum fields<br />

• 2) Field relaxation<br />

• 3) A simple <strong>quantum</strong> device: the beam-splitter<br />

• 4) Atom-field coupling<br />

• 5) Experimental tools<br />

Florence, Mai 2004 148


Beamsplitters<br />

• A semi transparent plate couples two propagating modes <strong>with</strong> the same<br />

polarization. Which <strong>quantum</strong> operations<br />

• An equivalent model: a fibre coupler<br />

• Classical amplitudes transformations<br />

Florence, Mai 2004 149


A simple <strong>quantum</strong> model<br />

• Models wave packet ‘collision’ on the beamsplitter<br />

• Transient linear coupling of the two modes <strong>with</strong> hamiltonian<br />

• Operators evolution in Heisenberg point of view<br />

– With Baker-Hausdorf lemma<br />

Florence, Mai 2004 150


A simple <strong>quantum</strong> model<br />

• With <strong>and</strong> group odd <strong>and</strong> even terms,<br />

proportional to a <strong>and</strong> b, in factor of expansions of cosθ <strong>and</strong> sinθ<br />

• Similarly<br />

• Mode annihilation operators transform as classical field amplitudes<br />

• Taking conjugate <strong>and</strong> <strong>with</strong><br />

• Examine now (in Schrödinger point of view) the action of the beamsplitter<br />

on simple states<br />

Florence, Mai 2004 151


Action on simple states<br />

• Mode b always in vacuum to start <strong>with</strong><br />

• Mode a in vacuum<br />

– Output state |0,0><br />

• Mode a in |1><br />

• Case of a balanced beam-splitter (θ=π/4)<br />

• Creation of an entangled state of the two modes (of EPR type)<br />

Florence, Mai 2004 152


• Fock state input<br />

Action on simple states<br />

• Massively entangled two mode state. Superposition of all possible<br />

partitions<br />

Florence, Mai 2004 153


• Coherent input<br />

Action on simple states<br />

• Two unentangled coherent outputs. Amplitudes follow the classical laws.<br />

• Coherent states impervious to entanglement <strong>with</strong> other modes<br />

• Important consequences for their relaxation<br />

Florence, Mai 2004 154


Action on simple states<br />

• Modes a <strong>and</strong> b contain a single photon<br />

• Case of a balanced beamsplitter θ=π/4<br />

• Both photons emerge in the same mode (M<strong>and</strong>el dip). A genuinely<br />

<strong>quantum</strong> effect. A direct manifestation of bosonic nature of photons.<br />

Destructive <strong>quantum</strong> interference between the direct <strong>and</strong> exchange paths<br />

cancels the probability for having one photon in each output<br />

Florence, Mai 2004 155


A partial Bell state analyzer<br />

• Each mode sustains two orthogonal polarizations H or V.<br />

• Assume splitting amplitudes independent of polarization<br />

• Two impinging photons. Four Bell states HH+/-VV, HV+/-VH<br />

• Three symmetric Bell states. The two photons emerge in the same path<br />

as for HH or VV<br />

• One antisymmetric polarization state HV-VH. Global state must be<br />

symmetric. Only possibility: antisymmetric mode combination. One photon<br />

in each output path.<br />

• Can be checked easily by an explicit calculation along the same lines left<br />

as an exercise<br />

• A possibility to distinguish one Bell state among four.<br />

• Teleportation, entanglement swapping experiments based on this<br />

process.<br />

Florence, Mai 2004 156


• Two interfering paths<br />

• Coherent state input<br />

Mach-zehnder: a <strong>quantum</strong> interferometer<br />

• After B 1<br />

• Dephaser<br />

• After B 2<br />

• Final photon count<br />

• Obviously the classical result<br />

• However phase of the incoming<br />

field plays no role. Same interference<br />

Pattern <strong>with</strong> a Fock state<br />

Florence, Mai 2004 157


Interferences <strong>with</strong>out phase: Fock state input<br />

• n photons Fock state as input<br />

• Final state<br />

• (action of a tunable beam-splitter on the Fock state)<br />

• Partition of the n photons in the two output ports <strong>with</strong> probabilities<br />

• Only the relative phase of the two interfering paths is important. The initial<br />

coherence plays no role. Same interference pattern <strong>with</strong> coherent states<br />

<strong>and</strong> single photon input.<br />

• A photon always interferes <strong>with</strong> itself (Dirac)<br />

Florence, Mai 2004 158


Single photon interferences in a Mach Zehnder<br />

• From Grangier et al 1986<br />

Florence, Mai 2004 159


Sensitivity of the interferometer<br />

• Quantum (shot noise) limits for the detection of small phases<br />

• Fock state input. Noise on the a detector<br />

• Sensitivity: η, inverse of the smallest dephasing changing the output<br />

photon number by more than these flucutations<br />

• Independent of phase. At fringes extrema, no variation of N <strong>with</strong> φ, but no<br />

noise either<br />

Florence, Mai 2004 160


• Coherent input<br />

Sensitivity of the interferometer<br />

• At φ=π/2 times larger than for Fock states<br />

• Initial photon number fluctuations add up <strong>with</strong> partition noise<br />

• Sensitivity<br />

• Optimum sensitivity on a dark fringe (no influence of input<br />

noise)<br />

• Same optimum sensitivity as for a Fock state.<br />

• Improved sensitivity in 1/N possible <strong>with</strong> non-linear beam splitters (n<br />

photons follow all path a or b)<br />

• Realizations <strong>with</strong> two photon states in the optical domain <strong>and</strong> ‘simulation’<br />

<strong>with</strong> ions in a trap<br />

Florence, Mai 2004 161


Homodyne field measurement<br />

• Another application of the beamsplitter. Mixes a large coherent input <strong>with</strong><br />

a <strong>quantum</strong> field. Large transmission T=cos²θ<br />

• First term= LO intensity. Can be substracted. Second term negligible if LO<br />

intense enough<br />

• Last term<br />

• Direct measurement of the <strong>quantum</strong> field<br />

Quadrature<br />

At the heart of tomographic field measurements<br />

Florence, Mai 2004 162


An insight into coherent field relaxation<br />

• A simple relaxation model in terms of beamsplitters. Mode a coupled to<br />

very many other modes b i . Coupling hamiltonian:<br />

• Action of H i during a small time interval : equivalent to coupling a <strong>with</strong><br />

modes b i by small reflection beamsplitters<br />

• Action of one of the couplings<br />

• Sum up independently all weak couplings<br />

• Mode a contains still a coherent state <strong>with</strong> a reduced amplitude.<br />

Reduction apparently quadratic in δτ. Deceptive.<br />

Florence, Mai 2004 163


An insight into coherent field relaxation<br />

• Large density of environment modes. Number of relevant ones for a time<br />

interval δτ of the order of 1/δτ<br />

• Rewrite as:<br />

• Decrease of a amplitude linear in δτ. Sum up time intervals, assuming<br />

that the environment modes remain in the same initial state (Born approx)<br />

• Recover coherent state relaxation. Note also that the environment modes<br />

contain at time t tiny coherent states (useful later for cat relaxation)<br />

• Obtained from mere energy conservation<br />

Florence, Mai 2004 164


II) The tools of CQED<br />

• 1) Quantum fields<br />

• 2) Field relaxation<br />

• 3) A simple <strong>quantum</strong> device: the beamsplitter<br />

• 4) Atom-field coupling<br />

• 5) Experimental tools<br />

Florence, Mai 2004 165


A two-level atom<br />

Level scheme<br />

|e〉<br />

ω eg<br />

|g〉<br />

Equivalent to a spin ½<br />

e =+ g =−<br />

Pauli matrices<br />

⎛1 0 ⎞ ⎛0 1⎞<br />

= ⎜ ⎟ σ<br />

⎝0 −1<br />

x<br />

= ⎜ ⎟<br />

⎠ ⎝1 0⎠<br />

1<br />

±<br />

x<br />

= ( + ± − )<br />

2<br />

σ z<br />

σ<br />

y<br />

⎛0<br />

−i⎞<br />

= ⎜ ⎟<br />

⎝i<br />

0 ⎠<br />

Florence, Mai 2004 166


Bloch sphere<br />

• Most general state + u . Correspondence between states <strong>and</strong> point on a<br />

unit radius sphere<br />

• Analogous to the Poincaré polarization sphere<br />

Florence, Mai 2004 167


A two-level atom<br />

• Raising <strong>and</strong> lowering operators<br />

{ σ σ }<br />

, 1<br />

− +<br />

=<br />

• Free hamiltonian<br />

H<br />

ωeg<br />

= σ<br />

z<br />

2<br />

• Dipole operator<br />

(<br />

*<br />

)<br />

a − a +<br />

D= d ε σ + ε σ<br />

Florence, Mai 2004 168


• Global hamiltonian<br />

Atom-cavity coupling<br />

• Four terms, two of which are anti-resonant: RWA<br />

Vacuum Rabi<br />

frequency<br />

• Jaynes <strong>and</strong> Cumming model (63)<br />

• Atom-cavity detuning<br />

• Uncoupled atom-cavity levels<br />

Florence, Mai 2004 169


Uncoupled atom-cavity levels<br />

• At low detunings, grouped in multiplicities<br />

• Couplings only inside the multiplicities<br />

• g,0 isolated. Impervious to atom-cavity<br />

coupling<br />

• Interaction representation<br />

– Energy origin at manifold center<br />

• Complete hamiltonian<br />

• In matrix form<br />

• Easy diagonalisation: dressed levels<br />

Florence, Mai 2004 170


The dressed levels<br />

• Eigenstates of the whole atom-field hamiltonian<br />

• In general complex expressions. Two simple cases<br />

– Resonance<br />

– Far off resonance<br />

Florence, Mai 2004 171


The resonant case<br />

• Atom-cavity at exact resonance<br />

|e,2><br />

|g,3><br />

Ω<br />

3<br />

|+,2><br />

|-,2><br />

• A doublet for the weak excitation<br />

from the ground state (the<br />

vacuum Rabi splitting<br />

• e <strong>and</strong> g are no longer<br />

eigenstates: a <strong>quantum</strong> Rabi<br />

oscillation between these levels<br />

|e,1><br />

|g,2><br />

|e,0><br />

|g,1><br />

|g,0><br />

Ω<br />

Ω<br />

2<br />

"vacuum Rabi<br />

splitting"<br />

|-,1><br />

|+,0><br />

|-,0><br />

Florence, Mai 2004 172


The <strong>quantum</strong> Rabi oscillation<br />

• An atom initially in e in a n-photon Fock state. Assumed at r=0 f=1<br />

• Atom initially in g<br />

• A Rabi oscillation between the two uncoupled levels.<br />

• Exists even when cavity empty (atom in e only)<br />

• Creates atom-cavity entanglement (much more on that later)<br />

Florence, Mai 2004 173


The vacuum Rabi splitting<br />

• Equivalent to the normal mode splitting for two coupled oscillators.<br />

Observed for an atom in an optical cavity <strong>and</strong> for excitons in a<br />

semiconducting cavity<br />

Kimble et al<br />

1992<br />

Weisbuch et al 92<br />

Florence, Mai 2004 174


Non resonant case<br />

• Position of dressed levels as a function of detuning<br />

Energy<br />

|+,n〉<br />

|e,n〉<br />

0<br />

hΩ<br />

|-,n〉<br />

|g,n+1〉<br />

-3 -2 -1 0 1 2 3 4<br />

∆ c<br />

/Ω<br />

Florence, Mai 2004 175


Large atom-field detuning case<br />

• Large atom-cavity detuning. Assumes also atom at rest at cavity centre<br />

Lamb shift + light shift<br />

Atomic ior effect<br />

Florence, Mai 2004 176


Action of an atom on a coherent field<br />

• Define an effective hamiltonian for shifts<br />

• Apply to<br />

• The atom (<strong>quantum</strong> system) controls the classical phase of the field<br />

• At the heart of Schrödinger cat states generation<br />

Florence, Mai 2004 177


Taking into account atomic motion<br />

• Up to now atom fixed. Real <strong>atoms</strong> cross gaussian mode<br />

• No simple expressions. Only resonant <strong>and</strong> far off resonant case<br />

– Resonant case<br />

– All expressions obtained at r=0 remain valid when replacing real time<br />

by the effective interaction time taking account mode geometry<br />

Florence, Mai 2004 178


Taking into account atomic motion<br />

– Non resonant case<br />

– Use effective hamiltonian, proportional to f²<br />

– The r=0 results also valid when using the effective interaction time<br />

– Note that resonant <strong>and</strong> non-resonant effective interaction times are<br />

not equal<br />

Florence, Mai 2004 179


Large field limit: classical field on a spin 1/2<br />

• Coupling <strong>with</strong> a very large coherent field α (not part of dynamics)<br />

• Interaction representation <strong>with</strong> respect to cavity frequency<br />

• Remove time dependence by going to rotating frame<br />

• In terms of Pauli matrices<br />

Florence, Mai 2004 180


Rabi rotation on the Bloch sphere<br />

• A geometrical interpretation<br />

– Any point on the Bloch<br />

sphere can be reached<br />

from + by interaction <strong>with</strong><br />

the proper field for the<br />

proper time.<br />

– Any component of the<br />

spin can be measured<br />

<strong>with</strong> a +/- detector <strong>with</strong> a<br />

prior rotation<br />

Florence, Mai 2004 181


• π/2 resonant pulse<br />

A few resonant pulses<br />

• π resonant pulse<br />

• 2π resonant pulse<br />

– Note sign change<br />

Florence, Mai 2004 182


The Ramsey interferometer<br />

• Two π/2 pulses <strong>with</strong> zero<br />

Phase <strong>and</strong> a depasing element<br />

Transient atomic level energy<br />

Shifts producing an atomic phase<br />

R 1<br />

Dep.<br />

R 2<br />

Evident analogy <strong>with</strong> a MZ<br />

Interference between two <strong>quantum</strong> paths<br />

Florence, Mai 2004 183


Another way of sweeping phase<br />

• Do not change atomic phase but change relative phase of pulses<br />

• Two independent sources<br />

• A same source, slightly offset from the atomic frequency (negligible offset<br />

for the interaction <strong>with</strong> a single pulse)<br />

• An essential method for high resolution spectroscopy. Long interrogation<br />

times <strong>with</strong>out long interaction <strong>with</strong> the source<br />

• At the heart of all atomic clocks<br />

Florence, Mai 2004 184


Ramsey fringes <strong>with</strong> cold <strong>atoms</strong><br />

• A cold <strong>atoms</strong> experiment for high stability clocks<br />

Florence, Mai 2004 185


A spin interferometer<br />

Two rotations of the spin around different axes through two timeseparated<br />

interactions <strong>with</strong> classical fields<br />

z<br />

z<br />

z<br />

x<br />

y<br />

R<br />

y<br />

y<br />

(π/ 2) R φ<br />

(π/ 2)<br />

x<br />

x<br />

y<br />

•Two Stern <strong>and</strong> Gerlach devices<br />

•Polarizer <strong>and</strong> analyzer<br />

•Final detection probability depends upon the relative phase of the pulses<br />

1.0<br />

0.8<br />

0.9<br />

g<br />

0.6<br />

0.6<br />

P g<br />

0.4<br />

0.3<br />

0.2<br />

0.0<br />

0 200 400 600 800<br />

0.0<br />

Fréquence relative (kHz)<br />

0 10 20 30 40 50 60<br />

Fréquence relative (kHz)<br />

Florence, Mai 2004 186


Rabi oscillation in a mesoscopic field<br />

• Intermediate regime of a few tens of photons. A first insight<br />

• A simple theoretical problem<br />

• A surprisingly complex behavior<br />

Florence, Mai 2004 187


Collapse <strong>and</strong> revival<br />

• Collapse: dispersion of field amplitudes due to dispersion of photon<br />

number<br />

• Revival: rephasing of amplitudes at a finite time such that oscillations<br />

corresponding to n <strong>and</strong> n+1 come back in phase<br />

• Revival is a genuinely <strong>quantum</strong> effect<br />

Florence, Mai 2004 188


Atomic relaxation<br />

• Atomic density matrices<br />

1 <br />

ρ = ⎡ 1 + n . σ ⎤<br />

2 ⎣ ⎦<br />

det ( ρ ) = (1/4)(1- n 2 ) ≥ 0<br />

<br />

n ≤ 1<br />

<br />

n = 1<br />

<br />

n < 1<br />

Pure case<br />

Statistical mixture<br />

• Geometrical representation: points inside the Bloch sphere<br />

• Ambiguity of representation<br />

<br />

n= λn + (1 −λ)<br />

n<br />

1 2<br />

→ ρ = λρ + (1 −λ)<br />

ρ<br />

1 2<br />

Florence, Mai 2004 189


Spontaneous emission relaxation<br />

• Emission from e to g (inside the two level system)<br />

• Stationary state at finite temperature<br />

Florence, Mai 2004 190


Spontaneous emission in a Monte Carlo process<br />

• Use the Monte Carlo approach. Atom in e, zero temperature<br />

• One jump operator (lowering)<br />

• Getting no jump decreases the probability for finding the atom in e<br />

• Continuous evolution as<br />

• Until a jump suddenly reduces wavepacket in g<br />

Florence, Mai 2004 191


II) The tools of CQED<br />

• 1) Quantum fields<br />

• 2) Field relaxation<br />

• 3) A simple <strong>quantum</strong> device: the beamsplitter<br />

• 4) Atom-field coupling<br />

• 5) Experimental tools<br />

Florence, Mai 2004 192


General scheme of the experiments<br />

Rev. Mod. Phys. 73, 565 (2001)<br />

Florence, Mai 2004 193


Circular Rydberg <strong>atoms</strong><br />

High principal <strong>quantum</strong> number<br />

Maximal orbital <strong>and</strong> magnetic <strong>quantum</strong><br />

numbers<br />

• Long lifetime<br />

• Microwave two-level transition<br />

• Huge dipole matrix element<br />

• Stark tuning<br />

• Field ionization detection<br />

– selective <strong>and</strong> sensitive<br />

51 (level e)<br />

51.1 GHz<br />

50 (level g)<br />

54.3 GHz<br />

• Velocity selection<br />

– Controlled interaction time<br />

– Well known sample position<br />

Atoms individually addressed<br />

(centimeter separation between <strong>atoms</strong>)<br />

Full control of individual transformations<br />

Complex preparation (53 photons ! )<br />

Stable in a weak directing electric field<br />

Florence, Mai 2004 194


Circular states wavefunction<br />

• Simple expression (maximal <strong>quantum</strong> numbers spherical harmonic)<br />

Florence, Mai 2004 195


A classical atom<br />

• All <strong>quantum</strong> numbers are large. Most properties can be calculated by<br />

classical arguments (correspondence principle)<br />

• Eg: stark polarizability <strong>and</strong> ionisation threshold (atomic units used)<br />

– Using<br />

– Weak field limit exp<strong>and</strong> first equation<br />

– In natural units, polarizability of 50 -2MHz/(V/cm)². -255kHz/(V/cm)²<br />

differential on the 50 to 51 transition<br />

Florence, Mai 2004 196


• Ionization threshold<br />

A classical atom<br />

– Eliminate radius in the system: closed equation for θ<br />

– First term has a maximum, 0.2, obtained for<br />

– Ionization threshold<br />

– 165 <strong>and</strong> 152 V/cm for 50 <strong>and</strong> 51. Good agreement <strong>with</strong> measured<br />

values<br />

Florence, Mai 2004 197


A classical atom<br />

• Spontaneous emission lifetime<br />

– Radiation reaction force<br />

– Angular momentum equation<br />

– Average on long times <strong>and</strong> note (integration by parts)<br />

– Circular to circular transition corresponds to one unit angular<br />

momentum<br />

– Exact agreement <strong>with</strong> <strong>quantum</strong> value<br />

Florence, Mai 2004 198


52 F m=2<br />

Circular state preparation<br />

n=52 in 2.5 V/ cm<br />

Circular<br />

states<br />

52<br />

π<br />

σ<br />

1.26 µm<br />

5D<br />

776 nm<br />

250 MHz<br />

•Three diode laser steps<br />

51<br />

•Stark switching to the lower Stark level m=2<br />

•Adiabatic 250 MHz transitions to the circular state<br />

•Final microwave transition in a high field: 'purification'<br />

5P<br />

σ<br />

780 nm<br />

5S<br />

Florence, Mai 2004 199


Working <strong>with</strong> single <strong>atoms</strong><br />

Method<br />

Pros <strong>and</strong> cons<br />

• Weak excitation of the atomic beam:<br />

Poisson statistics for the atom<br />

number in each sample<br />

• Finite detection efficiency: 40%<br />

No deterministic preparation of single<br />

atom samples<br />

Brute force approach:<br />

Prepare much less than one (0.1) atom<br />

on the average<br />

Extremely easy to achieve<br />

Long data taking times, growing<br />

exponentially <strong>with</strong> atomic samples<br />

count<br />

• 1 sample (1 atom): 10 minutes<br />

• 2 samples: Hours<br />

• 3 samples: Days<br />

• 4 samples: Weeks (not very practical)<br />

When an atom is detected, low<br />

probability for an undetected second<br />

one: single atom samples<br />

Florence, Mai 2004 200


Velocity selection<br />

Doppler selective optical pumping<br />

55°<br />

Atomic<br />

beam<br />

L 1<br />

L 2<br />

L 3<br />

85<br />

Rb<br />

Time of flight<br />

• Pulsed laser selection of F=3 (2 µs)<br />

• Pulsed Rydberg excitation (2 µs)<br />

• Improvement of velocity selection<br />

1.0<br />

410.6 +/- 1 m/s 432 +/- 1 m/s<br />

0.8<br />

δ<br />

δ<br />

F'=4<br />

120 MHz 5P 3/ 2<br />

F'=3<br />

63 MHz<br />

F'=2<br />

29 MHz<br />

F'=1<br />

Normalized atomic flux<br />

0.6<br />

0.4<br />

0.2<br />

L 1 L 2 L 3<br />

7000<br />

6000<br />

5000<br />

0.0<br />

390 400 410 420 430 440 450<br />

Velocity (m/s)<br />

5S<br />

F=3<br />

F=2<br />

Atoms flux<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

∆v=15 m/s<br />

0 200 400 600 800<br />

Atomic velocity (m/s)<br />

• Final width: 2 m/s.<br />

• Position of atomic sample known<br />

<strong>with</strong>in 1mm<br />

Florence, Mai 2004 201


Field ionization detection<br />

D e<br />

D g<br />

Electrostatic<br />

Ionization signals<br />

n=52<br />

0.6 K<br />

lenses<br />

n=51<br />

n=50<br />

4.2 K<br />

125 V/ cm 136 V/ cm 148 V/ cm<br />

Field<br />

77 K<br />

Electron<br />

Multipliers<br />

• Detection efficiency 40%<br />

• Error rate 4%<br />

• Dark counts: negligible<br />

Counting Electronics<br />

Florence, Mai 2004 202


Superconducting cavity<br />

Design<br />

Highly polished niobium Mirrors<br />

• Open Fabry Perot cavity <strong>with</strong> a<br />

"photon recirculating ring"<br />

• Compatible <strong>with</strong> a static electric field<br />

(circular state stability <strong>and</strong> Stark<br />

tuning)<br />

• Very sensitive to geometric quality of<br />

mirrors<br />

Cavity Damping time: 1 ms<br />

Field energy (db)<br />

29<br />

28<br />

27<br />

26<br />

25<br />

24<br />

-2 0 2 4 6 8 10<br />

Florence, Mai 2004 203<br />

time (ms)


Tuning system<br />

• 15 MHz range Sub Hz sensitivity<br />

Florence, Mai 2004 204


Two cavity modes<br />

• Two modes <strong>with</strong> the same geometry <strong>and</strong> orthogonal linear polarizations<br />

• Degenerate in an ideal cavity<br />

• Mirrors imperfections lift this degeneracy:<br />

– Two modes M a <strong>and</strong> M b <strong>with</strong> a frequency splitting 80-130 kHz<br />

– Atom can be tuned at resonance <strong>with</strong> either mode via Stark tuning<br />

Florence, Mai 2004 205


Determination of cavity Q<br />

Cavity width: 100 Hz<br />

Peak transmission –80 dB<br />

Millimeter-wave vector network analyzer<br />

(ABmm)<br />

•120 dB dynamical range<br />


Ring <strong>and</strong> coherent atomic state manipulations<br />

• Use classical microwave sources to<br />

manipulate atomic state before or<br />

after interaction <strong>with</strong> the mode<br />

S<br />

• Small access <strong>and</strong> exit holes in the<br />

cavity ring: stray fields spoil any<br />

atomic coherence<br />

• All coherent manipulations are to be<br />

performed inside the cavity-ring<br />

structure<br />

• Classical fields fed in a low-Q<br />

transverse st<strong>and</strong>ing wave structure<br />

Independent manipulation of two atomic<br />

samples feasible (exploit the nodes<br />

<strong>and</strong> antinodes)<br />

Tight constraints on the atomic timing<br />

No long distance <strong>quantum</strong> correlations<br />

(no teleportation experiment)<br />

Florence, Mai 2004 207


The 3 He- 4 He refrigerator<br />

N 2<br />

4He<br />

4<br />

He<br />

1.4 K<br />

3<br />

He<br />

0.6 K<br />

4.2 K<br />

77 K<br />

Florence, Mai 2004 208


Aim:<br />

Cavity cooling<br />

Get rid of a residual 1 photon thermal<br />

field <strong>and</strong> of photons left by previous<br />

experiments<br />

Timing<br />

6000<br />

5000<br />

Cooling <strong>atoms</strong><br />

prepared in g<br />

Method<br />

Send packets of 1-10 <strong>atoms</strong> in the lower<br />

state g.<br />

Counts (A.U.)<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Probe atom<br />

prepared in g<br />

1450 1460<br />

x10<br />

They efficiently absorb residual photons<br />

<strong>and</strong> cool the cavity mode<br />

1000 1200 1400 1600 1800<br />

Performances:<br />

Detection time (µs)<br />

Reduction of average thermal photon<br />

number down to 0.1<br />

Experiment performed in a time short<br />

compared to cavity relaxation time T r<br />

Florence, Mai 2004 209


From dream.. To reality<br />

Florence, Mai 2004 210


Structure of the lectures<br />

• I) Introduction<br />

• II) The tools of CQED<br />

• III) Experimental illustrations of fundamental <strong>quantum</strong> mechanics<br />

• IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• V) Schrödinger cats <strong>and</strong> decoherence<br />

• VI) Cavity QED <strong>with</strong> dielectric microspheres<br />

• VII) Perspectives<br />

Florence, Mai 2004 211


III) Experimental illustrations of fundamental<br />

<strong>quantum</strong> mechanics<br />

• 1) Cavity induced light shifts <strong>and</strong> Lamb shifts<br />

• 2) Micromaser<br />

• 3) Quantum non-demolition measurement<br />

• 4) measurement of the Wigner function<br />

• 5) non classical field states<br />

Florence, Mai 2004 212


III) Experimental illustrations of fundamental<br />

<strong>quantum</strong> mechanics<br />

• 1) Cavity induced light shifts <strong>and</strong> Lamb shifts<br />

• 2) Micromaser<br />

• 3) Quantum non-demolition measurement<br />

• 4) measurement of the Wigner function<br />

• 5) non classical field states<br />

Florence, Mai 2004 213


Cavity induced shifts<br />

• Use sensitivity of Ramsey techniques to evidence cavity induced shifts<br />

• Early experiments performed in a very low Q cavity<br />

Florence, Mai 2004 214


• ∆ c /2π=150 kHz<br />

Light shifts<br />

Field relaxation (2 µs) much<br />

faster than atomic transit time:<br />

sensitive only to average field<br />

intensity. Field quantization<br />

aspects are irrelevant.<br />

Florence, Mai 2004 215


Lamb shifts<br />

• Interaction <strong>with</strong> the ‘vacuum’<br />

Solid line corrected for residual thermal field (0.32 photons)<br />

A remarkable single mode Lamb shift effect<br />

Florence, Mai 2004 216


III) Experimental illustrations of fundamental<br />

<strong>quantum</strong> mechanics<br />

• 1) Cavity induced light shifts <strong>and</strong> Lamb shifts<br />

• 2) Micromaser<br />

• 3) Quantum non-demolition measurement<br />

• 4) measurement of the Wigner function<br />

• 5) non classical field states<br />

Florence, Mai 2004 217


Principle<br />

• Cumulative emissions in the cavity by Rabi oscillations create a ‘large’<br />

field.<br />

• Very long cavity damping time (closed <strong>cavities</strong>): field maintained <strong>with</strong><br />

much less than one atom on the average<br />

• A true <strong>quantum</strong> device<br />

• One- <strong>and</strong> two-photon micromasers realized<br />

• Garching <strong>and</strong> ENS<br />

• Recently: optical analogue microlasers (Kimble)<br />

Florence, Mai 2004 218


• A gain/loss analysis<br />

A semi-classical model<br />

• n photons state in the cavity . Probability for atomic emission<br />

• Photon number rate equation<br />

• A graphical solution<br />

Florence, Mai 2004 219


Graphical solution for steady state<br />

• First threshold gain>losses near origin<br />

• Multiple thresholds <strong>and</strong> hysteretic behavior<br />

Florence, Mai 2004 220


Quantum model<br />

• Equation for the photon number distribution (no phase information, no<br />

coherences)<br />

• Solution by detailed balance condition. Leads to recursion relation<br />

• A single operating point. Multistable behaviour washed out by <strong>quantum</strong><br />

fluctuations<br />

• Gives average photon number <strong>and</strong> photon fluctuations<br />

Florence, Mai 2004 221


Average photon number<br />

• Oscillations corresponding to multiple thresholds<br />

• Dips corresponding to the ‘trapping states’ conditions (gain cancels for<br />

some photon number)<br />

Florence, Mai 2004 222


Photon number variance<br />

• Strong sub-poissonian character, particularly near trapping states (ideally<br />

a Fock state is generated)<br />

• Large variance close to thresholds<br />

Florence, Mai 2004 223


III) Experimental illustrations of fundamental<br />

<strong>quantum</strong> mechanics<br />

• 1) Cavity induced light shifts <strong>and</strong> Lamb shifts<br />

• 2) Micromaser<br />

• 3) Quantum non-demolition measurement<br />

• 4) measurement of the Wigner function<br />

• 5) non classical field states<br />

Florence, Mai 2004 224


2π <strong>quantum</strong> Rabi pulse<br />

Initial state<br />

e,0 ⎯⎯→− e,0<br />

g,1 ⎯⎯→− g,1<br />

2π pulse<br />

Conditional dynamics<br />

e,0<br />

g,0 ⎯⎯→+ g,0<br />

Quantum phase gate<br />

P e<br />

(t)<br />

0.8<br />

51 (level e)<br />

0.6<br />

51.1 GHz<br />

50 (level g)<br />

0.4<br />

0.2<br />

Brune et al, PRL 76, 1800 (96)<br />

0.0<br />

time ( µ s)<br />

0 30 60 90<br />

Florence, Mai 2004 225


A single photon phase-shifts an atomic coherence<br />

Principle<br />

Preparation <strong>and</strong> test of an atomic<br />

coherence: Ramsey set-up<br />

e<br />

g<br />

π<br />

P g<br />

Timing<br />

Position<br />

(a)<br />

C<br />

e<br />

π<br />

π/2<br />

A 1<br />

g A 2<br />

2π<br />

R 1<br />

gi<br />

D<br />

π/2<br />

D<br />

R 2<br />

gi<br />

Time<br />

i<br />

R 1<br />

C R 2 D 0 ν−ν gi<br />

π phase shift of fringes when cavity<br />

contains one photon<br />

Signal<br />

0,9<br />

0,8<br />

0,7<br />

One photon<br />

Zero photon<br />

Preparation of |1>: source atom,<br />

prepared in e, π <strong>quantum</strong> Rabi<br />

pulse<br />

Probability<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0 10 20 30 40 50 60<br />

Frequency ν (kHz)<br />

Florence, Mai 2004 226


Absorption-free detection of a single photon<br />

Principle<br />

0,9<br />

One photon<br />

Zero photon<br />

• Photon detection<br />

• Photon is still there after the<br />

detection: QND measurement<br />

0,8<br />

0,7<br />

0,6<br />

Probability<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0 10 20 30 40 50 60<br />

Frequency ν (kHz)<br />

Atomic state correlated to photon<br />

number for a proper phase<br />

– i for 0<br />

– g for 1<br />

Nogues et al,Nature 400, 239 (99)<br />

Florence, Mai 2004 227


A brief reminder on QND measurements<br />

An ideal intensity measurement<br />

Braginsky 1970: ideal <strong>quantum</strong><br />

measurement.<br />

For light intensity : count the photon<br />

number <strong>with</strong>out changing it<br />

Ordinary intensity measurement<br />

Photon is<br />

destroyed<br />

Optical QND measurements:<br />

•Interaction of "signal" <strong>and</strong> "meter" beams<br />

in a Kerr non-linear medium<br />

•Interferometric detection of index change<br />

produced by "signal" intensity<br />

Meter<br />

Signal<br />

QND intensity measurement<br />

Phase reference<br />

Photon<br />

detected but<br />

still present<br />

A QND detection can be repeated<br />

In our experiment:<br />

•Signal: cavity field<br />

•Meter: atom<br />

Florence, Mai 2004 228


A repeated QND measurement<br />

Measure twice a single photon<br />

Conditional probabilities<br />

• Photon from a small thermal field (0.3<br />

photon on average)<br />

• First QND measurement<br />

• Second "absorptive" measurement<br />

0,50<br />

0,45<br />

0,40<br />

0,35<br />

I 1<br />

if<br />

1 photon<br />

G 1<br />

if<br />

1 photon<br />

E 2<br />

if G 1<br />

E 2<br />

if I 1<br />

E 2<br />

Timing<br />

Probability<br />

0,30<br />

0,25<br />

0,20<br />

Position<br />

C<br />

Relaxation 2π<br />

g<br />

π/2<br />

R1<br />

gi<br />

A 1<br />

π/2<br />

g<br />

D<br />

R 2<br />

gi<br />

A 2<br />

π<br />

Time<br />

D<br />

0,15<br />

0,10<br />

0 10 20 30 40 50 60<br />

Frequency (kHz)<br />

A clear indication of the QND nature of<br />

the measurement<br />

Florence, Mai 2004 229


Test of the QND measurement quality<br />

A three <strong>atoms</strong> experiment<br />

Conditional probabilities<br />

Probe<br />

Meter<br />

Source<br />

0.5<br />

0.4<br />

No meter<br />

Meter in i 2<br />

Source atom. Prepared in e<br />

π/2 spontaneous emission<br />

detected in e: zero photon<br />

detected in g: one photon<br />

Probability<br />

0.3<br />

0.2<br />

Meter in g 2<br />

0.1<br />

Meter atom: Ramsey fringes set at φ=0<br />

if zero photon: detected in i<br />

if one photon: detected in g<br />

0.0<br />

g 1<br />

g 3<br />

g 1<br />

e 3<br />

e 1<br />

g 3<br />

e 1<br />

e 3<br />

Probe atom: prepared in g, π pulse in one photon<br />

Absorptive probe of cavity field<br />

if zero photon: detected in g<br />

if one photon: detected in e<br />

• QND error rate 20%<br />

• Spurious absorption in the mode by<br />

the meter atom: 20 %<br />

Florence, Mai 2004 230


III) Experimental illustrations of fundamental<br />

<strong>quantum</strong> mechanics<br />

• 1) Cavity induced light shifts <strong>and</strong> Lamb shifts<br />

• 2) Micromaser<br />

• 3) Quantum non-demolition measurement<br />

• 4) measurement of the Wigner function<br />

• 5) non classical field states<br />

Florence, Mai 2004 231


How to measure W for the electromagnetic field <br />

Propagating fields : « Tomographic » methods<br />

Principle : - measure marginal<br />

distributions P(q θ<br />

) for different θ<br />

- inverse Radon transform<br />

allows reconstruction of W(q,p)<br />

( medical tomography)<br />

Refs : - Coherent <strong>and</strong> squeezed states : - Smithey et al., PRL 70, 1244 (1993)<br />

- Breitenbach et al., Nature 387, 471 (1997)<br />

- One-photon Fock state : Lvovsky et al., PRL 87, 050402 (2001)<br />

- α|0>+β|1> : Lvovsky et al., PRL 88, 250401-1 (2002)<br />

Florence, Mai 2004 232


RESULTATS EXPERIMENTAUX<br />

Smithey et et al., PRL 70,<br />

1244 (1993)<br />

Breitenbach et et al, al, Nature 387,<br />

471 (1997)<br />

Comprimé<br />

Vide<br />

Florence, Mai 2004 233


MESURE MESURE COMPLETE COMPLETE DE DE LA LA DISTRIBUTION DISTRIBUTION DE DE WIGNER WIGNER POUR POUR UN UN PHOTON<br />

PHOTON<br />

Lvovsky et et al, al, PRL 87, 050402 (2001)<br />

Florence, Mai 2004 234


Other methods<br />

• Use the link between W <strong>and</strong> parity operator<br />

^<br />

W(α) = 2Tr(D( −α)ρ D(α) ( −1)<br />

N<br />

)<br />

^<br />

ˆ<br />

• Displace the field <strong>and</strong> measure parity by determination of photon number<br />

probability<br />

– Direct counting (Banaszek et al for coherent states)<br />

– Quantum Rabi oscillations for an ion in a trap (Winel<strong>and</strong>)<br />

• A dem<strong>and</strong>ing method. Much more information than the mere average<br />

parity needed<br />

Florence, Mai 2004 235


Mesure de la fonction de Wigner pour un ion piégé<br />

• Etat de vibration d'un ion unique:<br />

Etat nombre<br />

n = 1<br />

1<br />

2<br />

( 0 + 1 )<br />

Matrice densité<br />

D. Liebfried et al, PRL 77, 4281 (1996), NIST, Boulder<br />

• Etat de vibration d'un atome neutre:<br />

- G.Drobny <strong>and</strong> V. Buzek, PRA 65 053410 (2002)<br />

D'aprés les données de: C. Salomon et I. Bouchoule<br />

Florence, Mai 2004 236


Our approach<br />

- Proposed by Lutterbach <strong>and</strong> Davidovich (Lutterbach et al.<br />

PRL 78 (1997) 2547)<br />

- Based on :<br />

ρ(-α)<br />

^<br />

W(α) = 2Tr(D( −α)ρD(α)(<br />

−1)<br />

D(-α)<br />

ρ<br />

^<br />

ρ(-α)<br />

ˆ<br />

( − 1) N n =<br />

« parity » operator<br />

Nˆ<br />

)<br />

+ n if n=2k<br />

W is the expectation value of the Parity operator<br />

the displaced state ρ(−α)<br />

−<br />

n<br />

if n=2k+1<br />

( −1)<br />

A) Apply D(-α) Inject –α in cavity mode OK<br />

B) How to measure ( −1)<br />

<br />

Nˆ<br />

Nˆ<br />

in<br />

Florence, Mai 2004 237


Dispersive regime :<br />

Dispersive interaction<br />

δ=<br />

ω<br />

at<br />

−ω<br />

cav<br />

No energy exchange<br />

>> Ω/2<br />

ω<br />

cav<br />

|e><br />

ω<br />

at<br />

|g><br />

δ<br />

But : light shift<br />

∆E<br />

∆E<br />

2<br />

e, n +<br />

= Ω<br />

(n 1)<br />

4δ<br />

2<br />

=−<br />

n<br />

4δ<br />

Ω<br />

g, n<br />

1 ( )<br />

2 e g<br />

Phase shift<br />

1 ( e e g )<br />

2<br />

+ i∆Φ( n)<br />

of Ramsey fringes<br />

on the e-g transition<br />

1<br />

P(e)<br />

+ ∆Φ(n)=Φ 0 n<br />

∆φ(n)<br />

Empty cavity |0><br />

Fock state |n><br />

0<br />

Florence, Mai 2004 238<br />

φ


For φ=φ* :<br />

If N even, detection in e<br />

If N odd, detection in g<br />

^<br />

Parity Measurement<br />

=∑ φ<br />

n<br />

P ( −1)<br />

P(n) = Pφ<br />

*(e)-P<br />

*(g)<br />

= C<br />

n<br />

Φ 0 =π<br />

1<br />

P(e)<br />

0<br />

φ∗<br />

To measure W(α) : 1) inject – α<br />

2) measure fringe contrast C<br />

3) W(α)= 2 C<br />

N even<br />

Vacuum |0><br />

N odd<br />

State |1><br />

State ρ<br />

C<br />

C=+1 for state |2n><br />

C=-1 for state |2n+1><br />

φ<br />

Florence, Mai 2004 239


Experimental Tools<br />

- Slow <strong>atoms</strong> (150m/s) for long interaction times<br />

- Ramsey interferometer :<br />

Contrast <strong>with</strong>out cavity :<br />

70%<br />

(see experimental poster by T.<br />

Meunier for more details)<br />

1<br />

0.5<br />

0<br />

- Injection of a known<br />

coherent field |α><br />

waveguide<br />

att cav<br />

dB<br />

switch<br />

ν cav =51.099GHz<br />

S cav<br />

Florence, Mai 2004 240


Testing the method: vacuum state Wigner function<br />

e-g detection<br />

∆φ<br />

π/2<br />

R2<br />

position<br />

Atomic<br />

frequency<br />

ν cav<br />

D(-α)<br />

π/2<br />

R1<br />

|g,0><br />

δ<br />

Dispersive interaction<br />

Cavity mode<br />

time<br />

•Use Stark effect to tune interferometer phase<br />

•No phase information in cavity field: injected field phase irrelevant<br />

•Finite intrinsic contrast of the Ramsey interferometer<br />

Florence, Mai 2004 241


Wigner function of the "vacuum"<br />

α=0<br />

0.6 0.83<br />

1<br />

P(e)<br />

0.4<br />

0.5<br />

P(e)<br />

0.2<br />

0.6<br />

0.4<br />

α=0.6<br />

(norm.)<br />

πW(α)<br />

2<br />

0<br />

0.12 0.05<br />

0 1 2<br />

N phot<br />

0.2<br />

0.6 α=1.25<br />

1<br />

P(e)<br />

0.4<br />

0.2<br />

-1 0 1 2 3<br />

φ/π<br />

0<br />

0 1<br />

α<br />

2<br />

Florence, Mai 2004 242


Single photon Wigner function measurement<br />

e-g detection<br />

∆φ<br />

π/2<br />

R2<br />

position<br />

Atomic<br />

frequency<br />

ν cav<br />

|e,0><br />

π<br />

D(-α)<br />

π/2<br />

R1<br />

|g,1><br />

δ<br />

Dispersive interaction<br />

Cavity mode<br />

time<br />

Preparation<br />

of cavity state<br />

Wigner function measurement scheme<br />

Florence, Mai 2004 243


Wigner function of a "one-photon" Fock state<br />

0,7<br />

0,6<br />

α=0<br />

1,0<br />

P(e)<br />

P(e)<br />

0,5<br />

0,4<br />

0,3<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0 1 2 3<br />

α=0.3<br />

Φ/π<br />

(norm.)<br />

πW(α)<br />

0,5<br />

0,0<br />

-0,5<br />

-1,0<br />

0,0 0,5 1,0 1,5 2,0<br />

α<br />

P(e)<br />

0,3<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0 1 2 3<br />

α=0.81<br />

0 1 2 3<br />

Φ/π<br />

Φ/π<br />

1<br />

0.5<br />

0<br />

0.71<br />

0.25<br />

0.04<br />

0 1 2<br />

Nphot<br />

Florence, Mai 2004 244


Towards other states<br />

- Cavity QED setup : direct measurement of the field<br />

2<br />

0<br />

-2<br />

2<br />

- Next improvements : - better isolation<br />

1<br />

- better detectors<br />

0<br />

More complex states : ex<br />

( 0 + 1<br />

)/<br />

2<br />

-1<br />

-2<br />

0<br />

-2<br />

2<br />

- In the future : « movie » of the decoherence of a Schrödinger cat<br />

2<br />

2<br />

1<br />

0<br />

…….<br />

1<br />

0<br />

-4<br />

-2<br />

0<br />

2<br />

4<br />

-2<br />

-1<br />

0<br />

1<br />

-1<br />

2 -2<br />

-4<br />

-2<br />

0<br />

2<br />

4<br />

-2<br />

-1<br />

0<br />

1<br />

-1<br />

2 -2<br />

Florence, Mai 2004 245


III) Experimental illustrations of fundamental<br />

<strong>quantum</strong> mechanics<br />

• 1) Cavity induced light shifts <strong>and</strong> Lamb shifts<br />

• 2) Micromaser<br />

• 3) Quantum non-demolition measurement<br />

• 4) measurement of the Wigner function<br />

• 5) non classical field states<br />

Florence, Mai 2004 246


Generation of a single photon state<br />

• Already used. π <strong>quantum</strong> Rabi pulse for an atom in e<br />

• Fidelity about 80%<br />

• Cumulative emissions lead to other Fock state but <strong>atoms</strong> are an<br />

expensive resource <strong>and</strong> fidelity not very high<br />

• Creation of multi-photon Fock states<br />

– Photon pump<br />

– Two photon emission in a Raman process<br />

Florence, Mai 2004 247


Photon pump<br />

• Successive π pulses in one cavity mode <strong>and</strong> recycling from g to e <strong>with</strong><br />

adiabatic rapid passages in a large coherent field stored in the other<br />

mode (Domokos et al EPJD 1,1)<br />

Florence, Mai 2004 248


Two-photon generation <strong>with</strong> a single atom<br />

• A complex raman process involving the two modes<br />

• Mode M a empty. Mode M b contains a field (thermal or coherent) Atommode<br />

M a detuning δ close to intermode detuning ∆<br />

• A third order resonant process<br />

PRL 88,143601<br />

• Coupling amplitude<br />

Florence, Mai 2004 249


Evidence of Raman process<br />

• Maser emission. Raman observed in ‘sideb<strong>and</strong>s’ for increasing fields in<br />

M b<br />

Florence, Mai 2004 250


Measuring the photon number<br />

• Use Ramsey fringes light shifts. Compare generated field <strong>with</strong> single<br />

photon field<br />

• Efficient <strong>and</strong> high fidelity generation of a two-photon field<br />

Florence, Mai 2004 251


Structure of the lectures<br />

• I) Introduction<br />

• II) The tools of CQED<br />

• III) Experimental illustrations of fundamental <strong>quantum</strong> mechanics<br />

• IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• V) Schrödinger cats <strong>and</strong> decoherence<br />

• VI) Cavity QED <strong>with</strong> dielectric microspheres<br />

• VII) Perspectives<br />

Florence, Mai 2004 252


IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• 1) A reminder on <strong>quantum</strong> computing<br />

• 2) Quantum entanglement knitting stitches<br />

• 3) Cavity assisted collisions<br />

Florence, Mai 2004 253


IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• 1) A reminder on <strong>quantum</strong> computing<br />

• 2) Quantum entanglement knitting stitches<br />

• 3) Cavity assisted collisions<br />

Florence, Mai 2004 254


Ordinateurs classiques et complexité<br />

Calcul=processus physique<br />

• Codage des éléments d’information<br />

(bits) sur des éléments physiques<br />

(courant, tension).<br />

• Processus physique conduisant au<br />

résultat<br />

Données<br />

n bits<br />

N=2 n valeurs<br />

Complexité<br />

• Calcul facile: temps et ressources<br />

polynomiales dans le nombre de bits<br />

(ex: produit de deux nombres)<br />

• Calcul difficile: temps et/ou<br />

ressources exponentielles dans le<br />

nombre de bits (ex: factorisation)<br />

Classes de complexité<br />

• P: Polynomial<br />

• NP: Non-polynomial mais solution<br />

vérifiable en temps polynomial<br />

• NP Complet: problème équivalent à<br />

tout autre NP-complet<br />

Résultats<br />

Une question non résolue<br />

Florence, Mai 2004 255<br />

P<br />

≠<br />

NP


Machine de Turing<br />

Principe de Church-Turing:<br />

Du point de vue de la complexité, tous les ordinateurs classiques sont<br />

équivalents entre eux et équivalents au plus simple: la machine de Turing<br />

...<br />

0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 ...<br />

Registre<br />

Automate<br />

1<br />

0 0 1 0<br />

état interne<br />

Un problème difficile sur une machine le reste sur tout autre.<br />

Seules possibilité pour attaquer les problèmes difficiles:<br />

• Patience (peu commercial)<br />

• Parallélisme (mais utilisation exponentielle de ressources ex: calcul<br />

distribué)<br />

• Changer les lois physiques du calcul: calcul quantique<br />

Florence, Mai 2004 256


Principe d'un ordinateur quantique<br />

Bits et qubits<br />

Les bits sont remplacés par des<br />

systèmes à deux niveaux :<br />

superpositions d'états<br />

Représentation des données<br />

Registre de n qubits:<br />

Base<br />

1<br />

2<br />

( 0 + 1 )<br />

espace des états de dim. 2 n<br />

0,0,0, …,0 = 0<br />

0,0,0, …,1 = 1<br />

1,1,1, …,1<br />

= 2 n −1<br />

Un vecteur code un nombre<br />

Lecture d'un registre<br />

Mesure d'une quantité sur chaque qubit<br />

ayant |0> et |1> pour vecteurs<br />

propres et 0 et 1 pour valeurs<br />

propres.<br />

Lecture indépendante des n qubits: un<br />

nombre entre 0 et 2 n -1<br />

(indice du vecteur correspondant).<br />

On peut représenter les nombres par<br />

des vecteurs d’état et lire les valeurs<br />

finales (au sens de la mesure<br />

quantique).<br />

Peut-on calculer <br />

Florence, Mai 2004 257


Calcul quantique<br />

Évolution quantique unitaire. Définie par l’évolution des vecteurs de base<br />

ε , ε ,…, ε ⎯⎯→ U ε , ε ,…, ε ε = 0,1<br />

1 2 n<br />

1 2<br />

Un ordinateur quantique est au moins équivalent à une machine de Turing<br />

classique: tout calcul classique est réalisable à condition de respecter l'unitarité<br />

n<br />

x<br />

⎯⎯→<br />

f ( x)<br />

est interdit si f n'est pas inversible<br />

Mais on peut toujours former U tel que, avec deux registres de n qubits :<br />

x, y ⎯⎯→ x, y⊕<br />

f( x)<br />

x,0 ⎯⎯→ x, f( x)<br />

Lecture du résultat: mesure du second registre<br />

Florence, Mai 2004 258


Parallélisme quantique massif<br />

On peut calculer une valeur de la fonction f<br />

x,0 ⎯⎯→ x, f( x)<br />

Mais on peut aussi, dans le même temps, calculer toutes les valeurs de f<br />

∑<br />

x<br />

∑<br />

x,0 ⎯⎯→ x, f( x)<br />

Calcul intrinsèquement massivement parallèle. Exponentiellement plus<br />

efficace qu'un calculateur classique.<br />

x<br />

Lecture du résultat<br />

Naïvement, on n'obtient qu'une valeur de f d'argument aléatoire.<br />

Pas évident de tirer parti de ce parallélisme.<br />

Peu d'algorithmes efficaces connus pour un ordinateur quantique<br />

Florence, Mai 2004 259


Une brève histoire de l'informatique quantique<br />

La préhistoire<br />

73 Bennett<br />

Calcul réversible classique<br />

80 Benioff<br />

Proposition de principe<br />

82 Feynman<br />

Quantum simulator<br />

Dimension exponentielle de l'espace<br />

85 Deutsch<br />

Machines de Turing quantique<br />

Bases conceptuelles<br />

92 Deutsch<br />

Premiers algorithmes ad-hoc<br />

Portes logiques quantiques<br />

L'âge d'or<br />

94 Shor<br />

95<br />

Algorithme de factorisation<br />

Utile et accélération exponentielle<br />

Propositions théoriques de portes<br />

95 Winel<strong>and</strong><br />

Première réalisation d'une porte<br />

97 Grover<br />

98-99<br />

00-01<br />

Algorithme de recherche<br />

Utile mais accélération faible<br />

Premiers algorithmes quantiques<br />

réalisés en RMN<br />

Premières manipulations d'états<br />

intriqués complexes<br />

Florence, Mai 2004 260


Portes logiques quantiques<br />

Théorème<br />

• Toute transformation unitaire de n<br />

qubits est décomposable en un<br />

produit de transformations unitaires<br />

élémentaires à un et deux qubits<br />

Exemples de portes<br />

Portes à un qubit.<br />

• Transformation la plus générale d’un<br />

système à deux niveaux:<br />

Traduction:<br />

• Tout calcul quantique est réalisable<br />

par application successive de<br />

« portes logiques quantiques »:<br />

machines portant sur un ou deux<br />

qubits<br />

Portes universelles<br />

• Un ensemble fini de portes qui<br />

permettent de réaliser par<br />

association tout réseau de calcul<br />

quantique<br />

iψ<br />

⎛ cosϕ<br />

e sinϕ<br />

⎞<br />

U ( ϕψ , ) = ⎜ −iψ<br />

⎟<br />

⎝−e<br />

sinϕ<br />

cosϕ<br />

⎠<br />

représentation graphique:<br />

• Cas particulier: porte de Hadamard<br />

Florence, Mai 2004 261<br />

U<br />

1 1<br />

H = ⎛ ⎞ H<br />

⎜ ⎟<br />

⎝1 −1⎠<br />

⎧ 1<br />

0 → 0 + 1<br />

⎪ 2<br />

⎨<br />

⎪ 1<br />

1 → 0 − 1<br />

⎪⎩ 2<br />

( )<br />

( )


Portes (suite 1)<br />

• Porte Non<br />

• Porte CNOT<br />

Ν<br />

0 1<br />

N = ⎛ ⎞<br />

⎜ ⎟<br />

⎝1 0⎠<br />

Portes à deux qubits<br />

• Porte de phase<br />

CNOT<br />

⎛1<br />

⎞<br />

⎜ ⎟<br />

1<br />

= ⎜ ⎟<br />

⎜ 0 1 ⎟<br />

⎜<br />

1 0⎟<br />

⎝ ⎠<br />

π<br />

Remarque<br />

⎛1<br />

⎞<br />

⎜<br />

⎟<br />

1<br />

π = ⎜<br />

⎟<br />

⎜ 1 0 ⎟<br />

⎜<br />

0 −1⎟<br />

⎝<br />

⎠<br />

=<br />

H<br />

π<br />

H<br />

Florence, Mai 2004 262


Portes (suite 2)<br />

Portes à n bits<br />

• Porte de Toffoli<br />

Calcul réversible classique<br />

Universalité<br />

Tout calcul quantique peut être réalisé<br />

avec:<br />

• Des portes à un qubit<br />

• Des portes CNOT<br />

Ex: un additionneur<br />

• Control U<br />

U<br />

– Faire U sur n-1 bits si le bit de<br />

contrôle est à un<br />

– Ne rien faire sinon<br />

Florence, Mai 2004 263


Une opération utile<br />

Préparation d’un registre de n bits dans un superposition de toutes les<br />

valeurs<br />

n<br />

2 −1<br />

1<br />

x ⎯⎯→ ∑ y<br />

n<br />

2 0<br />

Préparation de l’état |0> et application d’une Hadamard sur chaque qubit<br />

1<br />

0 ⎯⎯→ 0 + 1<br />

2<br />

( )<br />

pour chaque qubit<br />

n<br />

1 1<br />

0 ⎯⎯→ 0 + 1 = ∑<br />

n−1 2 −1<br />

∏(<br />

)<br />

n<br />

n<br />

2 0<br />

2<br />

0<br />

y<br />

pour le registre<br />

Florence, Mai 2004 264


Calcul de fonctions élémentaires<br />

Fonctions de {0,1} dans {0,1}<br />

Deux qubits<br />

Ligne rouge: |x>. Ne sera pas affecté. Ligne verte |y> devient |y+f(x)><br />

4 fonctions:<br />

f(x) = 0 ∀ x<br />

f(x)<br />

0<br />

0 Ν<br />

01<br />

f(x) = 1 ∀ x<br />

01<br />

0<br />

0<br />

Ν<br />

Ν<br />

Ν<br />

01<br />

f(x)<br />

01<br />

Fonctions « constantes » Fonctions « balancées »<br />

A un bit, il n’y a que des fonctions constantes ou balancées. Situations plus complexes<br />

pour les fonctions de n bits dans n bits.<br />

Florence, Mai 2004 265


Quelques fonctions de {0,1,2,3} sur {0,1}<br />

2 4 =16 fonctions possibles<br />

f(x)<br />

0 N<br />

01 23<br />

f(x)<br />

0 N N<br />

01 23<br />

Exemple de<br />

fonction<br />

constante<br />

(f=1. Deux<br />

telles fonctions)<br />

Exemple de<br />

Fonction<br />

balancée (autant<br />

de f(x) = 0 que de<br />

f(x) = 1)<br />

(six fonctions)<br />

0 N<br />

f(x)<br />

01 23<br />

Tous les autres cas se déduisent<br />

simplement de ceux-ci<br />

Fonction ni<br />

constante ni<br />

balancée<br />

(huit fonctions)<br />

Florence, Mai 2004 266


Les problèmes posés sous forme d’oracle<br />

Les problèmes logiques que nous allons considérer ici sont posés sous forme d ’<br />

«oracle». On suppose qu’ une machine programmée selon des règles inconnues<br />

(décrite comme une «boîte noire» ou oracle), calcule une fonction dont nous ne<br />

connaissons que certaines caractéristiques. Le problème consiste à déterminer une<br />

propriété inconnue de la fonction, sans «ouvrir» la boite. Nous pouvons interroger<br />

l ’oracle en entrant des données dans la boite et en manipulant sa sortie, sans l’ouvrir<br />

pour en analyser le contenu. Le problème sera «facile» si sa résolution dem<strong>and</strong>e un<br />

nombre total d’opérations croissant de façon polynomiale avec le nombre de bits,<br />

«difficile» s’il croit de façon exponentielle avec ce nombre. Nous allons montrer que le<br />

passage du calcul classique au calcul quantique transforme certains oracles classiques<br />

difficiles en oracles quantiques faciles. Dans d’ autres cas, le problème quantique reste<br />

difficile, mais moins que le problème classique (croissance toujours exponentielle du<br />

nombre d ’opérations, mais avec un exposant plus petit que classiquement ).<br />

0,1,1,1…..1, 0 0,0,1,0…..1, 0<br />

f(x) <br />

Choix libre de la<br />

préparation des<br />

bits d ’entrée<br />

« Lecture » du<br />

programme<br />

interdite<br />

Choix libre des<br />

opérations sur les<br />

bits de sortie<br />

Florence, Mai 2004 267


L’oracle de Deutsch-Josza<br />

f(x) constante ou<br />

balancée <br />

f(x) est une fonction booléenne de [ 0, 2 n -1] dans [ 0, 1]. On sait<br />

qu’elle est soit constante, soit balancée. Est-elle l’un ou l ’autre <br />

Classiquement, il faut « interroger » l’oracle 2 n− 1 +1 fois pour répondre à la question à coup sûr<br />

(il faut introduire 2 n− 1 +1 valeurs différentes de x et calculer f(x) à chaque fois) → Croissance<br />

exponentielle avec n du nombre d ’opérations et problème classique « difficile »<br />

L’oracle de Grover f(x) est une fonction booléenne de [ 0, 2 n -1] dans [ 0, 1] qui n’est non nulle<br />

f (x) = δ (x-x 0<br />

)<br />

que pour x = x 0<br />

. Trouver x 0<br />

.<br />

x 0<br />

<br />

Equivaut à la recherche «inversée» d’un abonné dans un annuaire à partir de son<br />

numéro connu a. Les x sont les abonnés, f(x) vaut 1 si a est le numéro de x, 0 sinon.<br />

Classiquement, il faut calculer f(x ) («consulter» l ’annuaire) N = 2 n − 1 fois pour trouver à coup<br />

sûr. Problème classique difficile.<br />

L’oracle de Simon<br />

« Période » de<br />

f(x) <br />

Exemples d’oracles classiquement difficiles<br />

f(x) est une fonction de [0, 2 n -1] dans [0, 2 n -1] telle que f (x’) = f (x) ssi x<br />

= x ⊕ s où s est une suite inconnue à n termes de « 0 » et « 1 » et ⊕<br />

représente l ’addition « bit à bit » (s : «période» de f ). Déterminer s<br />

Classiquement, il faut calculer f (x ) pour des valeurs aléatoires de x jusqu ’à trouver deux x et<br />

x’ tels que f (x) = f (x’). Alors x ⊕ s = x’ et x ⊕ x’ = x ⊕ x ⊕ s = s (car x ⊕ x ={ 0} ). Il faut<br />

2 n - 1 + 1 opérations pour trouver la réponse à coup sûr → Problème classique « difficile ».<br />

Florence, Mai 2004 268


Exemple élémentaire<br />

Algorithme de Deutsch-Josza à un qubit.<br />

Principe du calcul<br />

Déterminer si f de {0,1} dans {0,1} est<br />

constante ou balancée.<br />

Une autre formulation du problème:<br />

comment déterminer qu’une pièce a<br />

bien un côté pile et un côté face<br />

• Classiquement: regarder les deux<br />

côtés.<br />

• Quantiquement: regarder en une fois<br />

une superposition quantique des<br />

deux côtés.<br />

Deux qubits pour calculer f<br />

|0><br />

|1><br />

H<br />

H<br />

1<br />

1<br />

2<br />

2<br />

( 0 + 1 )<br />

( 0 + 1 ) cste 0<br />

( 0 − 1 )<br />

( 0 − 1 )<br />

2<br />

f<br />

Un seul calcul de f pour décider de sa<br />

nature.<br />

1<br />

1<br />

2<br />

2<br />

( 0 − 1 ) bal 1<br />

1<br />

H<br />

Florence, Mai 2004 269


Fonction constante : 0<br />

1<br />

2<br />

( 0 + 1 )( 0 − 1 )<br />

Deux cas parmi quatre<br />

f 1<br />

⎯⎯→ ⎡ 0<br />

2 ⎣<br />

+ 1<br />

= 1 ⎡ 0 1 2 ⎣<br />

+<br />

⎦<br />

=<br />

2<br />

0 1<br />

H 1<br />

⎯⎯→<br />

( 0<br />

2 0 − 1 )<br />

( 0 ⊕ f (0) − 1 ⊕ f (0) ) ( 0 ⊕ f(1) − 1 ⊕ f(1)<br />

)<br />

( 0 − 1 ) ( 0 − 1 ) ⎤ ( + )( 0 − 1 )<br />

|0><br />

|1><br />

⎤<br />

⎦<br />

H<br />

H<br />

1<br />

1<br />

2<br />

2<br />

( 0 + 1 )<br />

( 0 − 1 )<br />

f<br />

H<br />

Fonction balancée: identité<br />

1<br />

2<br />

( 0 + 1 )( 0 − 1 )<br />

f 1<br />

⎯⎯→ ⎡ 0<br />

2 ⎣<br />

+ 1<br />

= 1 ⎡ 0 1 2 ⎣<br />

+<br />

⎦<br />

=<br />

2<br />

0 1<br />

H 1<br />

⎯⎯→<br />

( 0<br />

2 1 − 1 )<br />

( 0 ⊕ f (0) − 1 ⊕ f (0) ) ( 0 ⊕ f(1) − 1 ⊕ f(1)<br />

)<br />

( 0 − 1 ) ( 1 − 0 ) ⎤ ( − )( 0 − 1 )<br />

⎤<br />

⎦<br />

Florence, Mai 2004 270


Généralisation : Deutsch-Josza pour n qubits<br />

(1/2 n/2 ) Σ x<br />

| x ><br />

(1/2 n/2 ) Σ x<br />

(− 1) f(x) | x ><br />

| {0} > A<br />

H 1 .H 2 ….H n<br />

N H<br />

f(x) constante ou<br />

balancée <br />

| 0> B<br />

(1/2 1/2 ) [| 0 > − | 1 >]<br />

(1/2 1/2 ) [| 0 > − | 1 >]<br />

Le registre d’entrée A (n qubits) est préparé (par application de la transformation de Hadamard<br />

H sur chaque qubit) dans la superposition symétrique des 2 n états | x > possibles.<br />

Le registre de sortie B (1 qubit) est inversé par N, puis préparé par H dans (1/2 1/2 ) [| 0 > − | 1 >] .<br />

Action de l ’oracle: | x > | 0 > → | x > | f (x ) > et | x > | 1 > → | x > | 1 ⊕ f (x ) ><br />

Si f (x ) = 0: | x > [| 0 > − | 1 > ] → | x > [| 0 > − | 1 > ]<br />

} ( − 1) f(x) | x > [| 0 > − | 1 > ]<br />

Si f (x ) = 1: | x > [| 0 > − | 1 > ] →−| x > [| 0 > − | 1 > ]<br />

Et par superposition:<br />

(1/2 ( n+1)/2 ) Σ x<br />

| x > [| 0 > − | 1 > ] → (1/2 (n+1)/2 ) (Σ x<br />

(− 1) f(x) | x > ) [| 0 > − | 1 > ]<br />

Les registres restent non intriqués après l’oracle. Déphasage des amplitudes<br />

dans le registre A en (− 1) f(x) .<br />

Florence, Mai 2004 271


Deux possibilités<br />

Si f(x ) est constante: f (x ) = 0 ∀ x ou f (x ) =1 ∀ x →<br />

(1/2 n/2 ) Σ x<br />

(− 1) f(x) | x > = ± (1/2 n/2 ) Σ x<br />

| x > → registre A inchangé (au signe près)<br />

Si f(x) est balancée: autant de f (x ) = 0 que de f(x ) = 1 →<br />

Autant d ’amplitudes +1 que d ’amplitudes −1 dans la superposition finale du registre A<br />

→ Σ x<br />

(− 1) f(x) | x > orthogonal à Σ x<br />

| x ><br />

Résoudre l ’oracle revient à distinguer deux états orthogonaux de l’état final du registre A:<br />

On applique à nouveau H à tous les qubits. Comme H 2 =1, on retrouve l’état initial |{0} > si<br />

f(x ) est constante, un état orthogonal si f(x) est balancée → au moins un des qubits doit<br />

alors être 1. On le vérifie en mesurant les qubits finals de A.<br />

| 0, 0, 0, ... > ou<br />

mesure<br />

H 1 .H 2 ….H n<br />

H 1 .H 2 ….H état orthogonal<br />

n<br />

f(x)<br />

à | 0, 0, 0, ... ><br />

des qubits<br />

N<br />

H<br />

La réponse nécessite au plus 3n+2 opérations à un qubit (2n + 1 opérations H, une<br />

opération de bascule (N) et au plus mesure de n qubits (on peut arrêter dès qu’on<br />

trouve un 1) → problème quantiquement «facile».<br />

Florence, Mai 2004 272


Remarques<br />

1. Où est l’intrication<br />

Les qubits de A ne sont pas intriqués à B qui reste inchangé. De l’intrication est en général<br />

cependant créée entre les qubits de A:<br />

Exemple. Cas d ’une fonction balancée agissant sur un registre A de trois qubits:<br />

Σ x<br />

(− 1) f(x) | x >= | 000 > − | 001 > + | 010 > − | 011 > + | 100 > − | 101 > − | 110 > + | 111 ><br />

= | 0 > 1 [| 00 > − | 01 > + | 10 > − | 11 >] 23 + | 1> 1 [| 00 > − | 01 > − | 10 > + | 11 >] 23<br />

= | 0 > 1 | Ψ > 23 + | 1 > 1 | Φ > 23 avec 23 < Φ | Ψ > 23 = 0<br />

Cette décomposition de montre que le qubit 1 et l ’ensemble des qubits 2 et 3<br />

sont maximalement intriqués.<br />

2. Cet algorithme est-il vraiment avantageux par rapport à la procédure classique<br />

L’ avantage de l’ algorithme quantique n’existe que si on cherche une réponse certaine.<br />

Si on s’ autorise une probabilité finie ε d’ erreur, aussi petite soit-elle, l’algorithme<br />

classique (calcul successif de f (x) pour des valeurs de x tirées au hasard) donne un<br />

résultat acceptable au bout de k ≅ − log 2<br />

(ε ) opérations (nombre indépendant de n). Le<br />

problème classique devient donc «facile» dès qu ’on accepte un taux fini d ’erreur. Ceci<br />

diminue considérablement l ’intérêt de l ’algorithme quantique puisqu’ il faut être sûr<br />

de pouvoir l ’effectuer sans aucune décohérence pour qu ’il soit avantageux par rapport<br />

à la version classique.<br />

Florence, Mai 2004 273


n qubits<br />

L’algorithme de Simon<br />

(1/√2)[ | x > + | x ⊕ s >]<br />

| {0} > A<br />

H 1 .H 2 ….H n<br />

x<br />

| {0} > B<br />

n qubits<br />

« Période » de<br />

f(x) <br />

} Σ | x> | f(x)><br />

Mesure de B:<br />

résultat f (x)<br />

H 1 .H 2 ….H n<br />

On réalise la suite d’opérations schématisée ci-dessus: calcul parallèle de toutes les valeurs<br />

de la fonction suivie d’une mesure du registre B projetant A dans une superposition de<br />

deux états qui diffèrent bit à bit de la quantité inconnue s. On applique alors à nouveau les<br />

transformations de Hadamard aux n qubits de A: elles font évoluer chaque qubit suivant la<br />

loi: | 0 > → (1/√2) [ | 0 > + | 1> ] et | 1 > → (1/√2) [ | 0 > − | 1> ]. Un état |{ x }> (produit<br />

de n états | x i<br />

> avec x i<br />

= 0 ou 1) devient une superposition de produits d’états | y i<br />

> (avec y i<br />

= 0 ou 1). Les coefficients de cette superposition valent + 1 ou −1suivant la parité de<br />

la somme Σ i<br />

x i<br />

y i<br />

:<br />

|{ x }> = | x 1<br />

, x 2<br />

, x 3<br />

,…..x n<br />

> → = (1/2 (n+1)/2 ) Σ { y }<br />

(−1) { Σ i x i y i } | y 1<br />

, y 2<br />

, y 3<br />

,…..y n<br />

><br />

L’état final de A est donc:<br />

(1/2 (n+1)/2 )Σ {y} [ (−1) { Σ i x i y i } + (−1) { Σ i ( x i ⊕ s i ) y i } ] | y 1<br />

, y 2<br />

, y 3<br />

,…..y n<br />

><br />

= (1/2 (n+1)/2 ) Σ {y} (−1) { Σ i x i y i } [ 1 + (−1) { Σ i s i y i } ] | y 1<br />

, y 2<br />

, y 3<br />

,…..y n<br />

><br />

Une mesure répétée ~ n fois de A va alors nous permettre de déterminer s<br />

Florence, Mai 2004 274


Détermination de la période inconnue<br />

| Ψ ( final) > A<br />

= (1/2 (n+1)/2 ) Σ {y} (−1) { Σ i x i y i } [ 1 + (−1) { Σ i s i y i } ] | y 1<br />

, y 2<br />

, y 3<br />

,…..y n<br />

><br />

Amplitude non nulle ssi<br />

Σ i<br />

s i<br />

y i<br />

= 0 (modulo 2)<br />

Une mesure des qubits individuels donne une suite y 1a<br />

, y 2a<br />

, y 3a<br />

,…..y na<br />

de valeurs 0 et 1 qui<br />

satisfait la condition:<br />

Σ i<br />

s i<br />

y ia<br />

= 0 (modulo 2).<br />

On recommence n fois l ’opération et on obtient ainsi, en général, n relations<br />

indépendantes (si par hasard deux mesures donnent le même vecteur, on recommence<br />

une fois de plus):<br />

Σ i<br />

s i<br />

y ia<br />

= 0<br />

Σ i<br />

s i<br />

y ib<br />

= 0<br />

. . . . . . . .<br />

Σ i<br />

s i<br />

y in<br />

= 0<br />

La résolution de ce système d ’équations donne s. Le processus requiert ≅ 4n 2 opérations. Le<br />

problème est donc quantiquement facile. De plus, il tolère des erreurs puisqu’on peut toujours<br />

vérifier le résultat en comparant f ( x ) et f (x ⊕ s) une fois s obtenu.<br />

Florence, Mai 2004 275


Rôle de l’intrication et de la mesure<br />

Dans l’ algorithme de Simon, l’ intrication et la mesure projective jouent un rôle plus<br />

essentiel que dans ceux de Deutsch et Grover. L’oracle intrique les registres A et B, puis la<br />

mesure de B projette A dans une superposition de deux états seulement. Après mélange par<br />

la « lame séparatrice », la signature du signal d ’interférence final nous renseigne sur la<br />

séparation de ces deux états, donc sur la période cherchée. Quoique mathématiquement<br />

plus compliqué, l’algorithme de Shor, basé sur la recherche de la période d ’une fonction,<br />

ressemble beaucoup dans son principe à celui de Simon.<br />

Remarque: il n’ est même pas besoin de «lire» la mesure du registre B. Il suffit d’ avoir intriqué<br />

B à son appareil de mesure , ce qui réduit A à un mélange statistique de superpositions | x > + |<br />

x ⊕ s >. Leur recombinaison finale par H 1<br />

.H 2<br />

…H n<br />

ne conduit, quel que soit x, à une<br />

interférence constructive que pour les états | y 1<br />

, y 2<br />

, y 3<br />

,…..y n<br />

> satisfaisant les équations<br />

linéaires de la page précédente (on peut réduire le nombre d’opérations à 3n 2 ).<br />

Florence, Mai 2004 276


Factorisation<br />

Un problème classique difficile<br />

Meilleur algorithme connu (Number Field Sieve) sur n bits en<br />

1<br />

1.9n 3<br />

e<br />

Factorisation de RSA 155: 8000 MIPS-années soit 2.5 10 17 instructions !<br />

109417386415705274218097073220403576120037329454492059909138421314763499842889347847179<br />

97257891267332497625752899781833797076537244027146743531593354333897=102639592829741<br />

105772054196573991675900716567808038066803341933521790711307779*10660348838016845482<br />

0927220360012878679207958575989291522270608237193062808643<br />

Problème difficile dont l'inverse est facile (multiplication)<br />

Idéal pour la cryptographie (codage et décodage faciles, casser le code très<br />

difficile)<br />

Un algorithme rapide de factorisation aurait des conséquences énormes sur<br />

les algorithmes de cryptage (et sur l'économie)<br />

1994: Shor propose un algorithme de factorisation rapide sur un ordinateur<br />

quantique<br />

Florence, Mai 2004 277


Algorithme de Shor<br />

Algorithme de factorisation<br />

exponentiellement plus efficace<br />

que la version classique<br />

but : factoriser N>>1<br />

Ordre d'un entier<br />

x


Exemple élémentaire<br />

Factoriser 15<br />

Ordre de x<br />

On choisit x=7<br />

R=4<br />

On calcule 7 a [15]<br />

a<br />

7 a [15]<br />

Le gcd de 4+1 et 15 est un facteur de 15<br />

Le gcd de 4-1 et 15 est un facteur de 15<br />

1<br />

2<br />

7<br />

4<br />

15=5x3<br />

3<br />

13<br />

4<br />

1<br />

Florence, Mai 2004 279


Algorithme quantique (1)<br />

Principe<br />

Calculer beaucoup de valeurs de f<br />

en utilisant le parallélisme et<br />

extraire la période (~ N)<br />

Deux registres de m qubits.<br />

q=2 m choisi tel que<br />

2N 2 < q < 4N 2<br />

État initial<br />

0,0<br />

Superposition de tous les nombres<br />

q−1<br />

1<br />

0,0 ⎯⎯→ ϕ = ∑ a,0<br />

q a=<br />

0<br />

Pour chaque qubit:<br />

1<br />

0 ⎯⎯→ ( 0 + 1 )<br />

2<br />

Exponentiation modulaire<br />

q−1<br />

1<br />

a<br />

ϕ ⎯⎯→ ∑ ax , N<br />

q<br />

Possible de façon efficace<br />

Utilise le parallélisme<br />

Mesure du second registre<br />

Obtention d'une valeur aléatoire y<br />

Projection du premier registre sur les<br />

antécédents de y<br />

Florence, Mai 2004 280<br />

k+jr<br />

a=<br />

0<br />

[ ]<br />

k aléatoire, j entier<br />

Le premier registre contient une<br />

superposition d'états répartis<br />

périodiquement avec la période r<br />

1<br />

A<br />

∑<br />

j<br />

k<br />

+<br />

jr


Amplitude<br />

Algorithme quantique (2)<br />

Répartition des amplitudes<br />

Après la transformation de Fourier<br />

k k+r k+2r k+jr Vecteur<br />

La mesure du premier registre en<br />

l'état ne donne aucune<br />

information ("offset" k aléatoire)<br />

Extraire la période:<br />

réaliser une transformation de<br />

Fourier discrète<br />

Possible de façon efficace (en un<br />

temps polynomial) Amélioration<br />

exponentielle/FFT classique<br />

q/ r 2q/ r<br />

Mesure du registre: une valeur de la<br />

forme<br />

p q/r<br />

p entier arbitraire<br />

Par un calcul classique efficace,<br />

extraction, avec une probabilité<br />

finie, de r et factorisation de N<br />

Énormes conséquences pratiques si<br />

on peut réaliser cet algorithme<br />

Florence, Mai 2004 281


Quelques caractéristiques importantes<br />

Utilise le parallélisme massif<br />

calcul simultané de toutes les<br />

exponentiations modulaires<br />

ϕ ⎯⎯→<br />

Probabiliste<br />

1<br />

• Probabilité finie d'obtenir le<br />

résultat<br />

• Ne décroît pas exponentiellement<br />

avec le nombre de bits<br />

• Résultat facile à vérifier<br />

q<br />

q−1<br />

∑<br />

a=<br />

0<br />

ax ,<br />

a<br />

[ N]<br />

Utilise des effets authentiquement<br />

quantiques<br />

État<br />

1<br />

q<br />

État intriqué<br />

q−1<br />

∑<br />

a=<br />

0<br />

ax ,<br />

[ N]<br />

analogue à la paire EPR<br />

1<br />

( , , )<br />

2 + − − − +<br />

Calcul: manipulation d'intrication<br />

Mesure du second registre:<br />

projection du premier<br />

Rien de comparable avec un<br />

ordinateur analogique classique<br />

(même avec superpositions)<br />

a<br />

Florence, Mai 2004 282


Simulation quantique<br />

Un autre domaine pour le calcul<br />

quantique<br />

Simuler la dynamique ou les états<br />

propres d’un système quantique<br />

Ex: trouver l’état fondamental d’un<br />

système de spins en interaction sur<br />

un réseau<br />

Intérêts<br />

• Dès 30 qubits, traiter des problèmes<br />

inaccessibles aux calculs classiques.<br />

• Par rapport au système donné par la<br />

nature, on peut faire varier la force et<br />

la nature des interactions.<br />

Classiquement difficile: la taille de<br />

l’espace de Hilbert croît<br />

exponentiellement avec la taille du<br />

système<br />

Feynman 1985: utiliser un système<br />

quantique pour en simuler un autre.<br />

Problèmes:<br />

• Peu de systèmes facilement<br />

simulables.<br />

• Problème de la décohérence<br />

Florence, Mai 2004 283


IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• 1) A reminder on <strong>quantum</strong> computing<br />

• 2) Quantum entanglement knitting stitches<br />

• 3) Cavity assisted collisions<br />

Florence, Mai 2004 284


Quantum Rabi oscillations<br />

Initial atom-cavity state<br />

1<br />

Ψ (0) = e,0 = + ,0 + −,0<br />

2<br />

( )<br />

State at time t:<br />

Ω t Ω t<br />

Ψ = +<br />

2 2<br />

0 0<br />

() t cos e,0 sin g,1<br />

1+ cosΩ<br />

Probability for being in e :<br />

0t<br />

Pe<br />

() t =<br />

2<br />

•Oscillatory spontaneous<br />

emission<br />

•An atomic transition saturated by<br />

a single photon<br />

•Non-linear optics at the single<br />

photon level.<br />

P e<br />

(t)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

time ( µ s)<br />

0 30 60 90<br />

Florence, Mai 2004 285


Quantum Rabi oscillations: state transformations<br />

Initial state<br />

e,0<br />

1<br />

e,0 e⎯⎯→−<br />

,0 e,0 ⎯⎯→ eg,0<br />

,1 2π ( epulse<br />

,0 + g,1<br />

)<br />

2<br />

g,1 ( ⎯⎯→− ce e + cg π/2 spontaneous g,1) 0 ⎯⎯→ g<br />

Conditional ( ce 1 + c<br />

emission dynamics<br />

g<br />

0 )<br />

pulse<br />

π spontaneous emission pulse<br />

g,0 ⎯⎯→+ Entanglement g,0<br />

Quantum<br />

creation<br />

Atom/cavity state copy phase gate<br />

Atom-cavity EPR pair<br />

P e<br />

(t)<br />

0.8<br />

51 (level e)<br />

0.6<br />

51.1 GHz<br />

50 (level g)<br />

0.4<br />

0.2<br />

0.0<br />

Brune et al, PRL 76, 1800 (96)<br />

time ( µ s)<br />

0 30 60 90<br />

Florence, Mai 2004 286


Three "stitches" to "knit" <strong>quantum</strong> entanglement<br />

Combine elementary transformations to create complex entangled states<br />

• State copy <strong>with</strong> a π pulse<br />

– Quantum memory : PRL 79, 769 (97)<br />

• Creation of entanglement <strong>with</strong> a π/2 pulse<br />

– EPR atomic pairs : PRL 79, 1 (97)<br />

• Quantum phase gate based on a 2π pulse<br />

– Quantum gate : PRL 83, 5166 (99)<br />

– Absorption-free detection of a single photon: Nature 400, 239 (99)<br />

• Entanglement of three systems (six operations on four qubits)<br />

– GHZ Triplets : Science 288, 2024 (00)<br />

• Entanglement of two radiation field modes<br />

– Phys. Rev. A 64, 050301 (2001)<br />

• Direct entanglement of two <strong>atoms</strong> in a cavity-assisted collision<br />

– Phys. Rev. Lett. 87, 037902 (2001)<br />

Florence, Mai 2004 287


Quantum memory<br />

• Use the π <strong>quantum</strong> Rabi pulse to transfer a qubit from an atom to the<br />

cavity <strong>and</strong> back<br />

• Timing<br />

• An useful space-time diagram for the timing of complex experiments<br />

Florence, Mai 2004 288


• Final signal<br />

Coherent information transfer<br />

• Ramsey fringes <strong>with</strong> the two pulses on different <strong>atoms</strong> <strong>and</strong> transient<br />

storage of <strong>quantum</strong> information in the cavity field<br />

Florence, Mai 2004 289


Quantum memory lifetime<br />

• Contrast of the fringes as a function of time<br />

0.6<br />

0.4<br />

Fringes amplitude<br />

0.2<br />

0.0<br />

0 1 2 3<br />

T/T<br />

cav<br />

• Coherence lifetime is twice cavity damping time (equal superposition of 0<br />

<strong>and</strong> 1)<br />

Florence, Mai 2004 290


Preparation <strong>and</strong> detection of a single photon state<br />

• First atom in e: preparation of a single photon Fock state<br />

• Other atom read out: measurement of a Fock state lifetime<br />

1.0<br />

Π<br />

fe<br />

First atom sent in e<br />

Second atom sent in g<br />

0.8<br />

Delay in C: T<br />

7000 coincidences per point<br />

0.6<br />

0.4<br />

0.2<br />

Two data sets for two modes<br />

T cav<br />

=84 µs<br />

T cav<br />

=112 µs<br />

Conditional probability<br />

second in e<br />

when first in g<br />

Maximum value 75%<br />

well understood <strong>with</strong><br />

known experimental<br />

imperfections<br />

0.0<br />

0 1 2 3 4 5<br />

T/T<br />

cav<br />

Florence, Mai 2004 291


Creation of an EPR atom pair<br />

A simple entanglement manipulation experiment<br />

• Initial state<br />

g<br />

e<br />

eg , ,0<br />

π/2 pulse:<br />

•Entanglement creation<br />

1<br />

( ,0 + ,1 )<br />

2 e g g<br />

•State copy<br />

•Final state<br />

1<br />

( )<br />

1<br />

eg , − ge , in spin terms: ( ↑↓ , −↓↑ , )<br />

2 2<br />

1<br />

= →← , −←→ ,<br />

2<br />

( )<br />

Hagley et al, PRL 79, 1 (97)<br />

Florence, Mai 2004 292


Testing entanglement<br />

Two complementary experiments<br />

Spin singlet state is rotation-invariant:<br />

• Spin anticorrelations along any<br />

detection axis<br />

– Check atomic energy<br />

anticorrelations (detection along<br />

0z)<br />

• "longitudinal experiment"<br />

Longitudinal experiment<br />

Direct detection of atomic energies<br />

Timing<br />

Position<br />

D D<br />

C<br />

e A 1 g A 2<br />

Expect. Obs<br />

e,e<br />

0 0.10<br />

Time<br />

– Check that superposition is<br />

coherent by detecting spins in a<br />

non-compatible basis (axes in the<br />

horizontal plane of Bloch sphere)<br />

• "transverse experiment"<br />

63 % of pairs present the expected<br />

correlation.<br />

Imperfections well accounted for by<br />

cavity relaxation (T r<br />

=112µs) <strong>and</strong> π<br />

pulse imperfections<br />

Florence, Mai 2004 293<br />

e,g<br />

g,e<br />

g,g<br />

0.5<br />

0.5<br />

0<br />

0.42<br />

0.27<br />

0.21


Transverse experiment<br />

Principle<br />

• Measure atom 1 along x axis<br />

• Measure atom 2 along φ axis<br />

– (apply Ramsey pulses <strong>with</strong><br />

adjustable phase φ on two <strong>atoms</strong>)<br />

z<br />

z<br />

Position<br />

Timing<br />

C<br />

R 1<br />

eg<br />

D<br />

π/2 π/2<br />

D<br />

R 2<br />

eg<br />

y<br />

y<br />

e<br />

A 1 g A 2<br />

Time<br />

x<br />

x<br />

φ<br />

"Bell signal"<br />

0.3<br />

• Measure<br />

σ σ<br />

• Expect +1 for φ=π, -1 for φ=0<br />

x<br />

ϕ<br />

Bell signal<br />

0.2<br />

0.1<br />

0.0<br />

-0.1<br />

Ramsey fringes <strong>with</strong> two pulses on two<br />

different <strong>atoms</strong> !<br />

-2 0 2 4<br />

Florence, Mai 2004 294<br />

-0.2<br />

-0.3<br />

φ/π


Fidelity<br />

Fidelity estimate F = Tr( ρ ΨEPR<br />

ΨEPR<br />

)<br />

Assuming that imperfections do not create unwanted coherences:<br />

P + V⊥<br />

F = <br />

2<br />

• P : population in the "expected" channels in longitudinal experiment<br />

»0.71<br />

• V ⊥ : visibility of the Bell signal in the transverse experiment<br />

»0.25<br />

Hence F=48%<br />

Violation of Bell inequalities Requires a Bell contrast signal >0.71<br />

Florence, Mai 2004 295


Principle:<br />

First atom<br />

Initial state<br />

π/2 pulse in M a<br />

π pulse in M b<br />

Second atom:<br />

probes field states<br />

Entangling two modes of the radiation field<br />

• Final transfer rate modulated versus<br />

the delay at the beat note between<br />

modes<br />

∆<br />

0<br />

−δ<br />

A s<br />

π/2<br />

π<br />

e,0,0<br />

D<br />

Single photon beats<br />

1.0<br />

P e<br />

(T)<br />

0.5<br />

( ,0,0 ,1,0 )<br />

2 e + g<br />

0.0<br />

( 0,1 1,0 )<br />

2 g + 1.0<br />

1<br />

1<br />

A p<br />

π<br />

(b)<br />

π/2<br />

M a<br />

M b<br />

D<br />

0.5<br />

0.0<br />

1.0<br />

0.5<br />

0.0<br />

48 50 52 54 56 58<br />

200 202 204 206 208<br />

400 402 404 406 408<br />

0.0<br />

0 π/2Ω 3π/2Ω T Τ+π/Ω t<br />

698 700 702 704 706<br />

T(µs)<br />

Florence, Mai 2004 296<br />

1.0<br />

0.5<br />

(a)<br />

(b)<br />

(c)<br />

(d)


A <strong>quantum</strong> phase gate<br />

Principle<br />

2π <strong>quantum</strong> Rabi pulse:<br />

conditional dynamics<br />

e<br />

g<br />

π<br />

D<br />

C<br />

i<br />

"Truth table"<br />

49 (level i )<br />

51.1 GHz<br />

cavi ty<br />

50 (level g)<br />

54.3 GHz<br />

Ramsey source<br />

• Cavity qubit: states |0> <strong>and</strong> |1><br />

• Atomic qubit: states |i> <strong>and</strong> |g><br />

i,0 ⎯⎯→ i,0<br />

i,1 ⎯⎯→ i,1<br />

g,0 ⎯⎯→ g,0<br />

iφ<br />

g,1 ⎯⎯→− g,1 = e g,1<br />

51 (level e)<br />

Tests<br />

Two complementary experiments<br />

• A single photon shifts the phase<br />

of an atomic coherence<br />

1 1<br />

0 0<br />

2 2<br />

1 1<br />

1 1<br />

2 2<br />

( i + g ) ⎯⎯→ ( i + g )<br />

( i + g ) ⎯⎯→ ( i − g )<br />

• A single atom phase shifts the<br />

cavity field<br />

( 0<br />

0 +<br />

1<br />

1 ) ⎯⎯→ ( 0<br />

0 +<br />

1<br />

1 )<br />

( 0<br />

0 +<br />

1<br />

1 ) ⎯⎯→ ( 0<br />

0 −<br />

1<br />

1 )<br />

i c c i c c<br />

g c c g c c<br />

Rauschenbeutel et al., PRL 83, 5166 (99)<br />

Quantum phase gate<br />

Florence, Mai 2004 297


A single photon phase-shifts an atomic coherence<br />

Principle<br />

Preparation <strong>and</strong> test of an atomic<br />

coherence: Ramsey set-up<br />

e<br />

g<br />

π<br />

P g<br />

Timing<br />

Position<br />

(a)<br />

C<br />

e<br />

π<br />

π/2<br />

A 1<br />

g A 2<br />

2π<br />

R 1<br />

gi<br />

D<br />

π/2<br />

D<br />

R 2<br />

gi<br />

Time<br />

i<br />

R 1<br />

C R 2 D 0 ν−ν gi<br />

π phase shift of fringes when cavity<br />

contains one photon<br />

Signal<br />

0,9<br />

0,8<br />

0,7<br />

One photon<br />

Zero photon<br />

Preparation of |1>: source atom,<br />

prepared in e, π <strong>quantum</strong> Rabi<br />

pulse<br />

Probability<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0 10 20 30 40 50 60<br />

Frequency ν (kHz)<br />

Florence, Mai 2004 298


A single atom phase-shifts the field<br />

Principle<br />

|0> <strong>and</strong> |1> superposition:<br />

small coherent field<br />

α ≈ c 0 + c 1<br />

0 1<br />

Amplitude read-out:<br />

atom in g. π Rabi pulse<br />

Minimum transfer:<br />

minimum amplitude<br />

Atom in i<br />

c 0 + c 1 ≈ α<br />

0 1<br />

in g<br />

c 0 − c 1 ≈−α<br />

0 1<br />

Timing<br />

Homodyne detection<br />

i<br />

α + αe φ<br />

i<br />

− α + αe φ<br />

Zero amplitude for<br />

φ = π φ = 0<br />

Position<br />

C<br />

(b)<br />

α<br />

g<br />

A 2<br />

2π<br />

π/2<br />

R1<br />

gi<br />

D<br />

αe ιθ<br />

g<br />

A 3<br />

π<br />

Time<br />

D<br />

Florence, Mai 2004 299


Coherent gate operation<br />

Atom in i<br />

0.4<br />

Probe transfer<br />

0.3<br />

Atom in g<br />

0.2<br />

0.4<br />

-2 -1 0 1 2<br />

φ/π<br />

A fully coherent<br />

<strong>quantum</strong> gate<br />

Probe transfer<br />

0.3<br />

0.2<br />

-2 -1 0 1 2<br />

φ/π<br />

Florence, Mai 2004 300


Tuning the <strong>quantum</strong> gate phase<br />

Role of atom-cavity detuning<br />

Phase of gate:<br />

360<br />

• For δ=0 : resonant interaction. π gate<br />

• Large δ: dispersive regime. Transient<br />

modification of atom <strong>and</strong> cavity<br />

frequencies: gate <strong>with</strong> a small angle<br />

• Intermediate δ range:<br />

– Intermediate values of φ<br />

– Absorption remains small (


“Quantum program”: generation of a GHZ state<br />

A 2<br />

A 1<br />

π/2 2π pulse<br />

Atom-cavity Cavity-Atom entanglement<br />

Control-phase creation<br />

gate<br />

Florence, Mai 2004 302


• prepared state:<br />

The "GHZ" state"<br />

1<br />

⎡<br />

1, 0<br />

1,<br />

1<br />

2 ⎣<br />

e g i − g<br />

( ) ( )<br />

2 2 2 2<br />

⎤<br />

⎦<br />

• In term of qubits:<br />

1<br />

2<br />

( 0,0,0 + 1,1,1 )<br />

• In term of spin 1/2:<br />

1<br />

2<br />

( + , + , + + − , − − )<br />

1 2 c 1 2,<br />

c<br />

• " GHZ triplet "<br />

(Greenberger Horne Zeilinger)<br />

Florence, Mai 2004 303


Entanglement tests<br />

Assessing preparation fidelity<br />

Two complementary experiments:<br />

• Correlations in a "longitudinal" basis<br />

– State populations<br />

– Measurement of diagonal terms *<br />

ρ triplet<br />

+ ++ ..................... −−−<br />

⎡* . . . . . . * ⎤<br />

⎢<br />

. * . . . . . .<br />

⎥<br />

⎢<br />

⎥<br />

⎢ . . * . . . . . ⎥<br />

⎢<br />

⎥<br />

. . . * . . . .<br />

= ⎢<br />

⎥<br />

⎢ . . . . * . . . ⎥<br />

⎢<br />

⎥<br />

⎢<br />

. . . . . * . .<br />

⎥<br />

⎢ . . . . . . * . ⎥<br />

⎢⎣<br />

* . . . . . . * ⎥⎦<br />

• Correlations in a "transverse" basis<br />

– Measurement of correlated to state of atom 2<br />

– Measures one off-diagonal term *<br />

Rauschenbeutel et al Science 288, 2024 (00)<br />

Florence, Mai 2004 304


Measurement of σ z1 . σ z2 . σ z3 : longitudinal expt<br />

• Step 1: transfer of the field state to a third atom performing a π absorption pulse in C:<br />

1<br />

⎡ e ( ) ( )<br />

1, 0 g2 + i2 + g1,<br />

1 g2<br />

− i ⎤<br />

2<br />

⊗ g3<br />

2 ⎣<br />

⎦<br />

1<br />

⇒ ⎡ e ( ) ( )<br />

1<br />

g + i g3 + g1<br />

g − i e ⎤<br />

3<br />

⊗<br />

2 ⎣<br />

⎦<br />

1<br />

( +<br />

)<br />

1, +<br />

2, +<br />

3<br />

+ −1,<br />

−2,<br />

−3<br />

2<br />

2 2 2 2<br />

0<br />

• step 2: detection of each atom for measuring σ z1 . σ z2 . σ z3<br />

- <strong>atoms</strong> 1 et 3 : direct measurement of energy<br />

- atome 2: measurement of energy after applucation of an external π/2 pulse:<br />

π/2<br />

( )<br />

( − )<br />

⎧<br />

⎪1 2 g2 + i2 → i2<br />

⎨<br />

⎪⎩<br />

1 2 g i → g<br />

⇒ 1<br />

2 e i g + g g e<br />

( 1, 2, 3 1, 2,<br />

3 )<br />

2 2<br />

Florence, Mai 2004 305


Position (cm)<br />

Full set of operations for measurement of σ z1 . σ z2 . σ z3<br />

0<br />

π/2<br />

D<br />

D<br />

D<br />

10<br />

8<br />

6<br />

Atom # 1<br />

Atom # 2<br />

π/2 2π π<br />

π/2<br />

4<br />

2<br />

Atom # 3<br />

θ<br />

π/2<br />

D<br />

• Rabi oscillation in C<br />

π/2<br />

•Detection<br />

•Classical π/2 pulse<br />

Time<br />

State before detection:<br />

⇒ 1<br />

2 e i g + g g e<br />

( 1, 2, 3 1, 2,<br />

3 )<br />

Florence, Mai 2004 306


Measurement results:<br />

• measurement of σ z1<br />

. σ z2<br />

. σ z3<br />

P long<br />

=P eig<br />

+ P gge<br />

= 0.58 (0.02)<br />

0.4<br />

0.3<br />

0.2<br />

|- 1 ,- 2 ,- 3 〉<br />

|+ 1<br />

,+ 2 ,+ 3 〉<br />

0.1<br />

0<br />

Pgig<br />

Pgie<br />

Pggg<br />

Pgge<br />

Peig<br />

Peie<br />

Pegg<br />

Pege<br />

Rauschenbeutel et al., Science 288, 2024 (2000)<br />

Florence, Mai 2004 307


Transverse experiment<br />

Position<br />

Timing<br />

• R 1<br />

<strong>and</strong> R 3<br />

test the A 1<br />

-A 3<br />

EPR<br />

"transverse" correlations<br />

• Measure the A 1<br />

-A 3<br />

"Bell" signal as a<br />

function of the state of A 2<br />

Tests<br />

A 1<br />

R 1<br />

(II)<br />

Ψ triplet<br />

A 2<br />

A 3<br />

C<br />

π/2<br />

D<br />

π<br />

D<br />

R 3<br />

(II)<br />

π/2<br />

D<br />

Time<br />

1<br />

ψ<br />

triplet<br />

= ⎡ i2 ( e1,0 + g1,1 ) + g2 ( e1,0 − g1,1<br />

) ⎤<br />

2 ⎣<br />

⎦<br />

Bell signal<br />

Results<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-6 -4 -2 0 2<br />

Detection phase φ<br />

Florence, Mai 2004 308


Fidelity of preparation of the GHZ state<br />

• measurement of σ z1<br />

. σ z2<br />

. σ z3<br />

P long<br />

=P eig<br />

+ P gge<br />

= 0.58 (0.02)<br />

• measurement of σ x1<br />

. σ x2<br />

. σ x3<br />

A= 〈σ x1<br />

. σ x2<br />

. σ x3<br />

〉 = -0.28 (0.03)<br />

• fidelity:<br />

F ψ ρ ψ<br />

= =<br />

triplet<br />

F > 0.3 garanties non-separability<br />

triplet<br />

0.54 (0.03)<br />

see also: Sacket et al. Science 288, 2024 (2000)<br />

preparation of a 4 ions GHZ state in one step<br />

Florence, Mai 2004 309


A complex experimental sequence<br />

A timing nightmare<br />

Features<br />

Experiment II<br />

Stark Voltage (V)<br />

-4 -3 -2 -1 0 1 2<br />

R1 gi<br />

R2 R2<br />

gi ei<br />

A3: 100 µs<br />

100<br />

A2: 25 µs<br />

100<br />

A small "<strong>quantum</strong> program": 6<br />

operations on 4 individual qubits (two<br />

<strong>atoms</strong>, the cavity <strong>and</strong> an extra atom<br />

used to read-out the cavity state).<br />

Time (µs)<br />

0<br />

-100<br />

A1: 0 µs<br />

1.757 V<br />

0.62 V<br />

0<br />

-100<br />

In principle, could be extended to<br />

generate a more complex entangled<br />

state<br />

-3 -2 -1 0 1 2 3 4 5 6<br />

Position (cm)<br />

Florence, Mai 2004 310


IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• 1) A reminder on <strong>quantum</strong> computing<br />

• 2) Quantum entanglement knitting stitches<br />

• 3) Cavity assisted collisions<br />

Florence, Mai 2004 311


Towards more complex sequences<br />

Present limitations <strong>and</strong> possible<br />

solutions<br />

• Single qubit gate fidelity<br />

– Improve field homogeneity<br />

• R<strong>and</strong>om atom preparation: long data<br />

acquisition times<br />

– Deterministic atom pistol <strong>with</strong><br />

cold atom techniques<br />

• Cavity losses<br />

– New cavity design<br />

• Higher Q's<br />

• No ring<br />

• Encouraging preliminary<br />

results<br />

– "Remove" the cavity <br />

Entanglement <strong>with</strong>out cavity<br />

Van der Waals resonant collision in free<br />

space:<br />

Resonant energy exchange between two<br />

Rydberg <strong>atoms</strong>.<br />

Full entanglement for b=10µm. Efficient<br />

<strong>quantum</strong> gate (Lukin, Zoller)<br />

b<br />

van der<br />

Waals<br />

eg , ⎯⎯→ cos θ eg , + sin θ ge ,<br />

2<br />

2<br />

θ α c ⎛an<br />

⎞ 0<br />

= ⎜ ⎟<br />

v⎝<br />

b ⎠<br />

Requires excellent control of atomic<br />

position.<br />

Florence, Mai 2004 312


Cavity-assisted van der Waals collision<br />

Two <strong>atoms</strong> interact in a non-resonant cavity<br />

2<br />

⎛ω<br />

⎞c<br />

an<br />

0<br />

Mixing angle: = ⎜ ⎟ ⎜ ⎟ ω transition freq., δ atom-cavity detuning<br />

⎝ ⎠v⎝ bc<br />

⎠<br />

θ α δ<br />

⎛ ⎞<br />

Effective impact parameter b c ~cavity size (mm)<br />

Considerable enhancement factor ω/δ (up to 10 6 )<br />

2<br />

Resonant coupling between |e 1<br />

,g 2<br />

,0> <strong>and</strong><br />

|g 1<br />

,e 2<br />

,0> involving a virtual photon<br />

exchange <strong>with</strong> the cavity (state |g 1<br />

,g 2<br />

,1>)<br />

|g 1<br />

,g 2<br />

;1><br />

δ<br />

e 1<br />

,g 2<br />

;0> |g 1<br />

,e 2<br />

;0><br />

Actual cavity has two modes (orthogonal polarizations) separation 130 kHz:<br />

– Enhancement factor η=ω(1/δ 1 +1/δ 2 )<br />

Zheng <strong>and</strong> Guo, Phys. Rev. Lett. 85, 2392 (2000); Osnaghi et al. Phys. Rev. Lett. 87, 037902 (2001)<br />

Florence, Mai 2004 313


Advantage of non-resonant method of entanglement:<br />

Sensitivity to cavity damping<br />

Ω =<br />

R<br />

Ω<br />

2<br />

0<br />

2δ<br />

• effect of cavity damping:<br />

projection on |g,g,0><br />

Full loss of entanglement<br />

• probability of error:<br />

eg , ,0<br />

Ω<br />

R ge , ,0<br />

gg , ,1<br />

P<br />

col<br />

err<br />

⎛Ω<br />

⎞<br />

≈⎜<br />

⎟<br />

⎝δ<br />

⎠<br />

2<br />

• Resonant case:<br />

P<br />

res<br />

err<br />

≈Γ<br />

Γ<br />

cav<br />

cav<br />

. T<br />

int<br />

. T<br />

res<br />

int<br />

Ω . = π 2<br />

T R int<br />

res<br />

Ω . T = π 2<br />

int<br />

δ Γ cav<br />

• error rate reduced as:<br />

P<br />

P<br />

col<br />

err<br />

res<br />

err<br />

≈<br />

Ω<br />

δ<br />

gg , ,0<br />

efficient <strong>with</strong> slower <strong>atoms</strong><br />

Florence, Mai 2004 314


Advantage of non-resonant method of entanglement:<br />

Sensitivity to blackbody radiation<br />

• coupling in the presence of N photons:<br />

egN , ,<br />

Ω N + 1<br />

eeN− , , 1<br />

Ω R<br />

ggN+ , , 1<br />

Ω<br />

N<br />

g, eN ,<br />

Due to destructive interference<br />

between two probability amplitudes,<br />

the effective coupling is to first<br />

order independent of N:<br />

2<br />

( )<br />

2 2<br />

Ω<br />

0. N + 1 Ω0.<br />

N Ω0<br />

ΩR<br />

≈ − =<br />

2δ 2δ 2δ<br />

The method works even in the presence of blackbody radiation<br />

Similar to "hot" gate for ions:<br />

Moelmer et al PRL 82 1835 (2000)<br />

Florence, Mai 2004 315


Experimental realization<br />

•Both <strong>atoms</strong> simultaneously present in the empty cavity<br />

mode<br />

•Minimum distance: about 1 mm (atomic beam diameter)<br />

•Ramsey pulses to detect atomic spins along a tunable<br />

direction<br />

Florence, Mai 2004 316


Tests of entanglement<br />

Population transfer<br />

1.0<br />

0.8<br />

"longitudinal entanglement"<br />

P(e 1<br />

,g 2<br />

)<br />

P(g 1<br />

,e 2<br />

)<br />

Test of "transverse" entanglement<br />

0.8<br />

<br />

Probability<br />

0.6<br />

0.4<br />

0.2<br />

0.4<br />

0.0<br />

-0.4<br />

-0.8<br />

0.0<br />

0 1 2 3 4<br />

η(x10 -6 )<br />

Up to 2π Rabi rotation<br />

Good agreement <strong>with</strong> simple model up<br />

to π/2 (solid lines)<br />

Qualitative agreement <strong>with</strong> numerical<br />

integration for larger mixing angles<br />

Features:<br />

-1 0 1 2 3<br />

• Insensitive to cavity damping<br />

• Insensitive to cavity residual thermal<br />

field<br />

• Easily transformed in a CNOT gate<br />

Very promising for <strong>quantum</strong> information<br />

processing <strong>with</strong> moderate Q <strong>cavities</strong><br />

Florence, Mai 2004 317<br />

φ/π


Application of controlled collision<br />

• A simple proposed implementation of the two qubit Grover search<br />

algorithm<br />

Florence, Mai 2004 318


Next step: solve the simplest <strong>quantum</strong> algorithms<br />

PROBLEM: Finding a known item in an unsorted list of size N<br />

Classical Solution: Check all the items until the one we look for is found!<br />

Number of trials: Order of N/2<br />

Complete list<br />

( )<br />

x<br />

1,...,x N<br />

x o<br />

( )<br />

δ x − x o<br />

Equivalent to an oracle corresponding to a function in a blackbox which<br />

gives the answer yes or no (0 or 1) to the question: « is it the marked item »<br />

x3<br />

0<br />

x 102 δ( x− x o<br />

) 0<br />

x o<br />

1<br />

Florence, Mai 2004 319


QUANTUM SEARCH:<br />

O ( N ) queries !!<br />

L.K.Grover, Phys. Rev. Lett. 79, 325 (1997)<br />

0 1<br />

n qubits: <strong>and</strong><br />

n<br />

( N = 2 states)<br />

•1st<br />

step: put all the qubits in a superposition<br />

1<br />

2<br />

( 0 + 1 )<br />

Hadamard gate,<br />

performed via a classical<br />

p/2 microwave pulse<br />

Ψ<br />

=<br />

1<br />

N<br />

( 0 + 1 ) × ( 0 + 1 ) × ... × ( 0 + 1 ) = ∑<br />

1<br />

N<br />

N<br />

i<br />

i<br />

Superposition of all possible states<br />

Florence, Mai 2004 320


We are looking for a particular state<br />

x o =10100<br />

...0<br />

• 2nd step: Inverse the amplitude of the searched item.<br />

O<br />

o<br />

= I − 2<br />

x<br />

x<br />

o<br />

x<br />

o<br />

This step corresponds to the action of<br />

the « oracle » <strong>and</strong> is the only one where<br />

information about the searched item is used.<br />

« - » sign = answer « yes ». « + » sign = answer « no »<br />

• 3rd step: Symmetrisation about the average:<br />

U s<br />

= 2 Ψ Ψ − I = H ( 2 0 0 − I )H<br />

( H = H H ... )<br />

φ<br />

1<br />

2<br />

H n<br />

= ∑ i<br />

ai i<br />

a<br />

I 0<br />

=<br />

1<br />

N<br />

Florence, Mai 2004 321<br />

∑<br />

i<br />

a<br />

i<br />

( a )<br />

U φ = 2 Ψ Ψ φ − φ = ∑ 2a −<br />

s<br />

This step does not use<br />

Information about the searched<br />

item<br />

i<br />

i<br />

i


Repeating this sequence leads to the marked<br />

item.<br />

An example: : N=16 ( 4 qubits ).)<br />

The first operation reverses the amplitude of<br />

the marked item, lowering the average.<br />

Then, the reversal about the average<br />

increases the probability amplitude of<br />

finding the marked item.<br />

After iterating the same procedure 3 times<br />

we find<br />

the marked item <strong>with</strong> a 96% probability.<br />

Case n=2 qubits ( N = 4 items ) Only one iteration !!<br />

Florence, Mai 2004 322


• CAVITY QED: (N=4)<br />

= H = SI QPG HI QPG P<br />

Q HI0<br />

HO xo<br />

Oracle<br />

qubits: two electronic levels of a three level atom<br />

Hadamard gates: Classical microwave<br />

pulses combining two<br />

electronic levels.<br />

.<br />

cavity<br />

|e><br />

|g><br />

H<br />

⎧<br />

⎪<br />

0<br />

: ⎨<br />

⎪ 1<br />

⎩<br />

→<br />

→<br />

1<br />

2<br />

1<br />

2<br />

( 0 + 1 )<br />

( 0 − 1 )<br />

|i><br />

Florence, Mai 2004 323


Quantum phase gate:<br />

(dispersive interaction)<br />

I QPG<br />

00<br />

⎛1<br />

⎜<br />

⎜0<br />

= ⎜0<br />

⎜<br />

⎝0<br />

01<br />

0<br />

1<br />

0<br />

0<br />

10<br />

0<br />

0<br />

1<br />

0<br />

11<br />

0 ⎞<br />

⎟<br />

0 ⎟<br />

0 ⎟<br />

⎟<br />

−1<br />

⎠<br />

e<br />

Two <strong>atoms</strong> interact dispersively <strong>with</strong> the cavity field (detuning d >> W )<br />

δ<br />

cavity<br />

|e 1 〉|g 2 〉|0〉 |g 1 〉|e 2 〉|0〉<br />

δ<br />

Ω<br />

|g 1 〉|g 2 〉|1〉<br />

Ω<br />

g<br />

H<br />

2<br />

Ω ⎡<br />

= ⎢ ∑<br />

4δ<br />

⎣ j = 1,<br />

Cavity field shift Two atom collision<br />

e<br />

e<br />

+<br />

e<br />

eff<br />

j j 1 2 1 2 1 2 1 2<br />

2<br />

S.-B. Zheng <strong>and</strong> G.-C. Guo, Phys. Rev. Lett. 85, 2392 (2000)<br />

S. Osnaghi et al., Phys. Rev. Lett. 85, 2392 (2000)<br />

Florence, Mai 2004 324<br />

g<br />

g<br />

e<br />

+<br />

g<br />

e<br />

e<br />

g<br />

⎤<br />

⎥<br />


e<br />

e<br />

g<br />

t<br />

=<br />

e<br />

iλt<br />

[ cos ( λt<br />

) e g − i sin ( λt<br />

) g e ]<br />

cavity<br />

g<br />

i<br />

Qubit encoding:<br />

0 → g<br />

1st atom: : 2nd atom:<br />

1 → e<br />

Action of effective Hamiltonian for a time<br />

0<br />

1<br />

→<br />

→<br />

i<br />

g<br />

t<br />

=<br />

π<br />

λ<br />

e<br />

g<br />

g<br />

i<br />

t<br />

g<br />

i<br />

t<br />

=<br />

t<br />

e<br />

iλt<br />

= g<br />

= g<br />

e<br />

i<br />

g<br />

i<br />

0<br />

0<br />

1<br />

1<br />

0<br />

1<br />

0<br />

1<br />

= g<br />

= g<br />

= e1<br />

= e<br />

1<br />

1<br />

1<br />

i<br />

i<br />

g<br />

2<br />

g<br />

2<br />

2<br />

2<br />

→<br />

→ g<br />

→ e<br />

→ − e<br />

g<br />

1<br />

1<br />

1<br />

1<br />

i<br />

i<br />

2<br />

g<br />

2<br />

g<br />

2<br />

2<br />

I QPG<br />

00<br />

⎛1<br />

⎜<br />

⎜0<br />

= ⎜0<br />

⎜<br />

⎝0<br />

01<br />

0<br />

1<br />

0<br />

0<br />

10<br />

0<br />

0<br />

1<br />

0<br />

11<br />

0 ⎞<br />

⎟<br />

0 ⎟<br />

0 ⎟<br />

⎟<br />

−1<br />

⎠<br />

Florence, Mai 2004 325


Sequence of operations:<br />

Q =<br />

SI<br />

QPG<br />

HI<br />

S <strong>and</strong> P: Performed by microwave pulses<br />

QPG<br />

P<br />

P contains the<br />

information about<br />

the marked item.<br />

It plays the role of<br />

the oracle.<br />

S 1 S 2<br />

P = P1 ( θ1)<br />

P2<br />

( θ2)<br />

θ = 0<br />

⎧<br />

⎪<br />

0 →<br />

S : ⎨<br />

⎪ 1 →<br />

⎩<br />

π<br />

S = i<br />

⎧<br />

( − 0 − 1 )<br />

0 ( )<br />

2<br />

i<br />

2<br />

( 0 − 1 )<br />

⎪<br />

Pi<br />

( θi) : ⎨<br />

⎪ 1<br />

⎩<br />

or determines the marked item<br />

→<br />

→<br />

1<br />

2<br />

1<br />

2<br />

e<br />

−iθ<br />

/ 2<br />

i<br />

0<br />

+ e<br />

iθ<br />

/ 2<br />

1<br />

−iθi<br />

/ 2 iθi<br />

/ 2<br />

( e 0 − e 1 )<br />

θ<br />

i<br />

state<br />

( 0 ,0 ) 1 1<br />

( 0 , π ) 1 0<br />

( π ,0 ) 0 1<br />

( π , π ) 0 0<br />

Florence, Mai 2004 326


• The search algorithm:<br />

Q<br />

=<br />

SI<br />

QPG<br />

HI<br />

QPG<br />

P<br />

P QPG H QPG S detection<br />

Action of the oracle:<br />

Application of P determines<br />

the output<br />

Access <strong>atoms</strong> independently:<br />

Stark effect<br />

Florence, Mai 2004 327


Simulations made considering the<br />

experiment as the ideal one: the only<br />

source of imperfections, responsible for<br />

the non perfect fidelity, is the effective<br />

Hamiltonian.<br />

We consider here imperfection in the<br />

pulse duration. When they are of the<br />

order of 5 %, the fidelity decreases to<br />

82%.<br />

Simulations:<br />

Probability<br />

Probability<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

96%<br />

eg ei gg gi<br />

5% pulse error<br />

δ = 4Ω<br />

(a)<br />

(b)<br />

0,0<br />

eg<br />

ei<br />

gg<br />

gi<br />

Evolution of the fidelity <strong>with</strong> pulse<br />

imperfections.<br />

Fidelity<br />

0,9<br />

0,8<br />

0,7<br />

(c)<br />

0,6<br />

0,00 0,02 0,04 0,06 0,08 0,10<br />

Pulse Imperfections<br />

Florence, Mai 2004 328


Structure of the lectures<br />

• I) Introduction<br />

• II) The tools of CQED<br />

• III) Experimental illustrations of fundamental <strong>quantum</strong> mechanics<br />

• IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• V) Schrödinger cats <strong>and</strong> decoherence<br />

• VI) Cavity QED <strong>with</strong> dielectric microspheres<br />

• VII) Perspectives<br />

Florence, Mai 2004 329


V) Schrödinger cats <strong>and</strong> decoherence<br />

• 1) A direct study of a meter’s decoherence process in a <strong>quantum</strong><br />

measurement<br />

• 2) Breeding Schrödinger lions <strong>with</strong> resonant interaction<br />

• 3) Other applications of field homodyne detection<br />

Florence, Mai 2004 330


V) Schrödinger cats <strong>and</strong> decoherence<br />

• 1) A direct study of a meter’s decoherence process in a <strong>quantum</strong><br />

measurement<br />

• 2) Breeding Schrödinger lions <strong>with</strong> resonant interaction<br />

• 3) Other applications of field homodyne detection<br />

Florence, Mai 2004 331


Quantum/classical boundary <strong>and</strong> decoherence<br />

No macroscopic superpositions at our<br />

scale<br />

Decoherence<br />

The "Schrödinger cat"<br />

1<br />

2<br />

( )<br />

+ ⇔<br />

Environment<br />

A macroscopic system is strongly<br />

coupled to a complex environment<br />

In all models, a few states only are<br />

stable ("preferred basis").<br />

No entangled states neither.<br />

We only observe a very small fraction of<br />

all possible <strong>quantum</strong> states<br />

WHY <br />

All <strong>quantum</strong> superpositions of these<br />

states evolve very rapidly into<br />

statistical mixtures.<br />

Decoherence<br />

Florence, Mai 2004 332


Main features of decoherence<br />

Very fast process<br />

An essential process<br />

superposition lifetime<br />

=<br />

relaxation time<br />

separation betweenstates<br />

• Rules <strong>quantum</strong> superpositions out of<br />

the classical world.<br />

Depends upon the initial <strong>quantum</strong> state<br />

(distance between states or<br />

"macroscopicity" parameter)<br />

• Essential to underst<strong>and</strong> <strong>quantum</strong><br />

measurement process (no<br />

superpositions of meter's states)<br />

Not a trivial relaxation mechanism<br />

(but explained by st<strong>and</strong>ard relaxation<br />

theory for simple models)<br />

-<br />

0<br />

∆x<br />

+<br />

Strong link <strong>with</strong> complementarity <strong>and</strong><br />

entanglement: environment acquires<br />

a which path information <strong>and</strong> gets<br />

entangled <strong>with</strong> the system<br />

• Main obstacle for a large scale use of<br />

<strong>quantum</strong> weirdness (<strong>quantum</strong><br />

computing)<br />

Florence, Mai 2004 333


Another experiment on complementarity<br />

e<br />

Cavity as an external detector in the<br />

Ramsey interferometer<br />

Cavity contains initially a coherent field<br />

Non-resonant atom-field interaction:<br />

e<br />

g<br />

R 1<br />

R 2<br />

α<br />

C<br />

Atom modifies the cavity field phase<br />

Phase shift α 1/δ<br />

S<br />

(index of refraction effect)<br />

⎯⎯→<br />

⎯⎯→<br />

e<br />

g<br />

(δ:atom-cavity detuning)<br />

1<br />

g<br />

D<br />

φ<br />

"Which path" information:<br />

• Small phase shift (large δ)<br />

(smaller than <strong>quantum</strong> phase noise)<br />

– field phase almost unchanged<br />

– No which path information<br />

– St<strong>and</strong>ard Ramsey fringes<br />

• Large phase shift (small δ)<br />

(larger than <strong>quantum</strong> phase noise)<br />

– Cavity fields associated to the<br />

two paths distinguishable<br />

– Unambiguous which path<br />

information<br />

– No Ramsey fringes<br />

Florence, Mai 2004 334


1.0<br />

0.5<br />

0.0<br />

Fringes <strong>and</strong> field state<br />

Complementarity<br />

712 kHz<br />

Vacuum<br />

State transformations<br />

R1<br />

C<br />

1<br />

e → e + g<br />

2<br />

Before R1<br />

( )<br />

R2<br />

1<br />

iϕ<br />

e → ( e + e g )<br />

2<br />

1<br />

g → − e e + g<br />

2<br />

( − iϕ<br />

)<br />

e, α →e e, αe g, α → g,<br />

αe<br />

iΦ iΦ −iΦ<br />

e,<br />

α<br />

Ramsey Fringe Signal<br />

1.0<br />

0.5<br />

0.0<br />

712 kHz,<br />

9.5 phot ons<br />

347 kHz<br />

Before C<br />

After C<br />

After R2<br />

1<br />

2<br />

1<br />

( )<br />

2 e + g α<br />

i i i<br />

( e Φ e, αe Φ + g,<br />

αe<br />

− Φ<br />

)<br />

1<br />

2<br />

Detection probabilities<br />

( ϕ )<br />

{ α − α }<br />

ee e e e<br />

iΦ iΦ − i +Φ −iΦ<br />

ϕ<br />

{ α<br />

α }<br />

1<br />

+ g e e + e e<br />

2<br />

i( ϕ+Φ) iΦ − i( +Φ)<br />

−iΦ<br />

104 kHz<br />

0 2 4 6 8 10<br />

ν (kHz) PRL 77, 4887 (96)<br />

1<br />

Pge<br />

,<br />

= ⎡ 1 ± Re e αe αe<br />

2 ⎣<br />

− i( ϕ +Φ ) i Φ − i Φ<br />

Ramsey fringes signal multiplied by<br />

Florence, Mai 2004 335<br />

αe<br />

iΦ<br />

⎤<br />

⎦<br />

αe<br />

−Φ i


Signal analysis<br />

Fringe signal multiplied by<br />

αe<br />

iΦ<br />

αe<br />

−Φ i<br />

Fringes contrast <strong>and</strong> phase<br />

• Modulus<br />

e<br />

2 2<br />

=<br />

e<br />

−2nsin Φ −D<br />

/2<br />

60<br />

n=9.5 (0.1)<br />

6<br />

– Contrast reduction<br />

• Phase<br />

2n<br />

sin<br />

Φ<br />

– Phase shift corresponding to<br />

cavity light shifts<br />

Phase leads to a precise (<strong>and</strong> QND)<br />

measurement of the average photon<br />

number<br />

D<br />

Fringe Cont r ast (%)<br />

40<br />

20<br />

0<br />

0.0 0.2 0.4 0.6 0.8<br />

φ (radians)<br />

• Excellent agreement <strong>with</strong> theoretical<br />

predictions.<br />

• Not a trivial fringes washing out effect<br />

Calibration of the cavity field<br />

9.5 (0.1) photons<br />

0.0 0.2 0.4 0 2<br />

φ (radians)<br />

4<br />

Fringe Shift (rd)<br />

Florence, Mai 2004 336


A laboratory version of the Schrödinger cat<br />

Field state after atomic detection<br />

1<br />

2<br />

( + )<br />

A coherent superposition of two<br />

'classical' states.<br />

Very similar to the Schrödinger cat<br />

An atom to probe field coherence<br />

Quantum interferences involving the<br />

cavity state<br />

First atom<br />

Φ<br />

−Φ<br />

D<br />

Second atom<br />

Decoherence will transform this<br />

superposition into a statistical mixture<br />

Slow relaxation: possible to study the<br />

decoherence dynamics<br />

Decoherence caught in the act<br />

Two indistinguishable <strong>quantum</strong> paths to<br />

the same final state:<br />

Quantum interferences<br />

2Φ<br />

−2Φ<br />

Florence, Mai 2004 337


Atomic correlations<br />

A correlation signal<br />

η =Πee<br />

,<br />

−Πge<br />

,<br />

P<br />

ee ,<br />

= −<br />

ge ,<br />

ee , eg , g, e gg ,<br />

• Independent of Ramsey<br />

interferometer phase φ (when Φ is<br />

neither 0 nor π/2)<br />

P<br />

P + P P + P<br />

Principle of the experiment<br />

• Send a first atom to prepare the cat<br />

• Wait for a delay τ<br />

• Send a second probe atom<br />

• Measure η versus τ<br />

Raw correlation signals<br />

• 0.5 for a <strong>quantum</strong> superposition<br />

0.3<br />

τ=40 µs<br />

η =<br />

1 Re<br />

2<br />

αα<br />

• 0 for a statistical mixture<br />

• 0 for an empty cavity<br />

correlation signal<br />

0.2<br />

0.1<br />

0.0<br />

-0.1<br />

0 2 4 6 8 10 12<br />

ν (kHz)<br />

15000 coincidences<br />

Florence, Mai 2004 338


A decoherence study<br />

Atomic correlation signal<br />

Decoherence versus size of the cat<br />

Two-Atom Correlation Signal<br />

0.0 0.1 0.2<br />

n=3.3 δ/2π =70 <strong>and</strong> 170 kHz<br />

0 1 2<br />

t/T<br />

r<br />

0 1 2 PRL 77, 4887 (1996)<br />

τ/T<br />

r<br />

Florence, Mai 2004 339<br />

correlation signal<br />

correlation signal<br />

δ/2π =70 kHz<br />

20<br />

16<br />

n=5.5<br />

12<br />

8<br />

4<br />

0<br />

0 1 2<br />

20<br />

t/T<br />

r<br />

16<br />

12<br />

n=3.3<br />

8<br />

4<br />

0


Decoherence <strong>and</strong> complementarity<br />

A simple theoretical approach<br />

Without relaxation:<br />

η =<br />

1 Re<br />

2<br />

Simple relaxation model: a bath of<br />

harmonic oscillators i.e. cavity modes<br />

C<br />

αα<br />

Linear couplings: amplitude β i<br />

(t) in mode<br />

i is proportional to the amplitude α(t)<br />

in the cavity mode<br />

A cat in the cavity: tiny cats in the<br />

environment<br />

C i<br />

Complete wavefunction at τ<br />

∏<br />

ατ ( ) e β( τ) e + ατ ( ) e β( τ)<br />

e<br />

i Φ i Φ −Φ i −Φ i<br />

i<br />

i<br />

i<br />

i<br />

Interfering states after the second atom<br />

(does not affect the environment)<br />

∏<br />

Final correlation<br />

Energy conservation<br />

∏<br />

iΦ<br />

ατ ( ) β( τ) e + ατ ( ) β( τ)<br />

e<br />

i<br />

i<br />

1 Re ( )<br />

iΦ<br />

η = ∏ βi<br />

τ e βi<br />

( τ ) e<br />

2<br />

i<br />

∏<br />

1 ⎛<br />

= Re exp βi<br />

( τ ) 1<br />

2<br />

⎜−∑<br />

−<br />

⎝ i<br />

∑<br />

i<br />

i<br />

−iΦ<br />

iΦ<br />

( e )<br />

2 2<br />

i<br />

⎞<br />

⎟<br />

⎠<br />

(<br />

− T<br />

e τ<br />

)<br />

2 /<br />

r<br />

β ( τ) = n 1−<br />

i<br />

PRL, 79, 1964 (1997)<br />

−Φ i<br />

Florence, Mai 2004 340


Theoretical decoherence signal<br />

Atomic correlation versus τ<br />

1<br />

2<br />

−2n[ 1−exp( −τ<br />

/ T r )] sin Φ<br />

η = e cos n[ 1−exp( −τ<br />

/ T )]<br />

r<br />

sin 2Φ<br />

2<br />

At short times<br />

T<br />

D<br />

Tr<br />

=<br />

n<br />

Excellent agreement <strong>with</strong> the<br />

experimental data<br />

A very simple description of<br />

decoherence in terms of<br />

complementarity.<br />

The environment 'measures' the<br />

field phase <strong>and</strong> gets a "which<br />

path" information<br />

Two-Atom Correlation Signal<br />

{ }<br />

0 1 2<br />

τ/T<br />

r<br />

Florence, Mai 2004 341<br />

0.0 0.1 0.2<br />

n=3.3 δ/2π =70 <strong>and</strong> 170 kHz


Decoherence features<br />

• Faster than cavity relaxation<br />

• Faster when distance between states increases<br />

• Decoherence time scale depends upon a "macroscopicity" parameter<br />

Not a trivial relaxation mechanism even if described by st<strong>and</strong>ard relaxation<br />

theory<br />

Essential for <strong>quantum</strong> measurement<br />

meters are not in superposition states<br />

Difficulty for applications of QM<br />

the more complex the entangled state, the faster the decoherence<br />

Towards decoherence "metrology" …. With much larger Schrödinger cats<br />

Florence, Mai 2004 342


V) Schrödinger cats <strong>and</strong> decoherence<br />

• 1) A direct study of a meter’s decoherence process in a <strong>quantum</strong><br />

measurement<br />

• 2) Breeding Schrödinger lions <strong>with</strong> resonant interaction<br />

• 3) Other applications of field homodyne detection<br />

Florence, Mai 2004 343


Rabi oscillation in a classical field<br />

Ωr<br />

Oscillation in a large coherent field H<br />

I<br />

= σ<br />

Y<br />

Ω<br />

r<br />

=Ω0<br />

n ∝ E<br />

2<br />

1 −Ω i clt/2 iΩclt/2<br />

| Ψ ( t) >= ⎡ (| | ) (| | )<br />

2 ⎣<br />

e e>+ i g > + e e>− i g > ⎤<br />

⎦<br />

⊗ α<br />

Atomic eigenstates<br />

In terms of Bloch sphere<br />

1<br />

± = ⎡ Z<br />

Y ⎣<br />

2<br />

e ± i g ⎤⎦<br />

In-phase <strong>and</strong> π-out-of-phase<br />

<strong>with</strong> respect to field<br />

Quantum beat between<br />

eigenstates:<br />

• Sinusoidal Rabi oscillation<br />

between e <strong>and</strong> g<br />

X<br />

Y<br />

Florence, Mai 2004 344


Rabi oscillation in a mesoscopic field<br />

A much more interesting situation<br />

⎛ Ω n+ 1t Ω n+<br />

1t<br />

Ψ = ∑<br />

+ +<br />

⎝<br />

1+ cosΩ 0<br />

n+<br />

1t<br />

2<br />

Pe()<br />

t = ∑ pn pn = cn<br />

2<br />

0 0<br />

() t cn<br />

⎜<br />

cos e, n sin g, n 1<br />

n<br />

2 2<br />

n<br />

⎞<br />

⎟<br />

⎠<br />

|e,n><br />

|+,n><br />

Ω+<br />

0<br />

n 1<br />

|-,n><br />

|g,n+1><br />

A complex Rabi oscillation signal<br />

1<br />

P e<br />

(t)<br />

0.8<br />

• Collapse:<br />

– Dispersion of Rabi frequencies<br />

• Revivals:<br />

– Finite number of frequencies<br />

– Direct consequence of field<br />

quantization<br />

0.6<br />

0.4<br />

0.2<br />

Ω 0 t/2π<br />

50 100 150 200<br />

Florence, Mai 2004 345


An insightful quasi-exact solution<br />

• Get more physical insight on the collapse-revival phenomenon<br />

• Get information on the field evolution<br />

• Rewrite the exact atom-field wavefunction<br />

Florence, Mai 2004 (Gea Banacloche PRL 65, 3385, Buzek et al PRA 45, 8190) 346


An insightful quasi-exact solution<br />

• Factor the two terms in an atom <strong>and</strong> field parts. Redefinition of running<br />

index n<br />

• Large coherent field<br />

• Product of atom <strong>and</strong> field states<br />

Florence, Mai 2004 347


An insightful quasi-exact solution<br />

• Exp<strong>and</strong> the sqrt(n) term<br />

• Neglect for the time being the second order phase spreading terms<br />

• Same treatment for Ψ 2<br />

Florence, Mai 2004 348


An insightful quasi-exact solution<br />

+ + − −<br />

Ψ () t = ⎡ Ψa() t Ψ<br />

c() t + Ψa() t Ψc()<br />

t<br />

2 ⎣<br />

1<br />

1<br />

2<br />

Ω<br />

Ψ = ∓<br />

±Ω i 0 nt/2<br />

i<br />

Ψ ± a<br />

= e ⎣e ± Φ e ∓ i g ⎦<br />

⎡<br />

n<br />

– Atomic states slowly ( times slower than Rabi oscillation) rotating in<br />

the equatorial plane of the Bloch sphere<br />

c<br />

e αe<br />

± i 0 nt/4<br />

± iΦ<br />

– A slowly rotating field state in the Fresnel plane<br />

⎤<br />

Φ=<br />

Ω<br />

0<br />

t<br />

4 n<br />

⎤<br />

⎦<br />

• Graphical representation of the joint atom-field evolution in a plane<br />

• t=0:<br />

– both field states coincide <strong>with</strong> original coherent state<br />

– Atomic states are the classical eigenstates<br />

Florence, Mai 2004 349


Atom-field states evolution<br />

+<br />

Ψ<br />

c<br />

1 + +<br />

− −<br />

Ψ ( t) = ⎡ Ψa () t Ψc () t + Ψa () t Ψc<br />

( t)<br />

2 ⎣<br />

−<br />

Ψ<br />

c<br />

⎤<br />

⎦<br />

+<br />

Ψ<br />

a<br />

−<br />

Ψ<br />

a<br />

+ −<br />

•At most times: Ψ Ψ = 0 an atom-field entangled state<br />

c<br />

c<br />

•In spite of large photon number: considerable reaction of the atom on the field<br />

Florence, Mai 2004 350


‘Automatic’ preparation of a Schrödinger cat<br />

• At time<br />

• Atom-field disentanglement<br />

• The fastest <strong>and</strong> most efficient way to prepare large Schrödinger cat states<br />

Florence, Mai 2004 351


Quantum Rabi signal<br />

• Retrieve the <strong>quantum</strong> Rabi signal<br />

• The Rabi oscillation signal has an amplitude modulated by the scalar<br />

products of the cavity field components: another manifestation of<br />

complementarity<br />

Florence, Mai 2004 352


Link <strong>with</strong> Rabi oscillation<br />

+<br />

Rabi oscillation: <strong>quantum</strong> interference between Ψ <strong>and</strong><br />

+ −<br />

• Contrast vanishes when Ψ Ψ = 0 :<br />

c<br />

1 + +<br />

− −<br />

Ψ ( t) = ⎡ Ψa () t Ψc () t + Ψa () t Ψc<br />

( t)<br />

2 ⎣<br />

– A direct link between Rabi collapse <strong>and</strong> complementarity<br />

c<br />

a<br />

−<br />

Ψ<br />

a<br />

⎤<br />

⎦<br />

1<br />

P e<br />

(t)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Ω 0<br />

t/2π<br />

•Fast preparation Atom-field Field of decorrelation:<br />

large state Schrödinger merge again: cat states<br />

Quantum Rabi oscillation<br />

•Another Unconditional illustration preparation<br />

<strong>and</strong> Quantum progressive of complementarity<br />

revival collapse of<br />

of the field<br />

•A surprising In a insight « phase Rabi in oscillation Schrödinger the simple Rabi cat state oscillation » phenomenon<br />

10 20 30 40 50<br />

Florence, Mai 2004 353


An expression at short times (collapse)<br />

• A time of the order of the vacuum Rabi oscillation period<br />

• Classical Rabi oscillations <strong>with</strong> a gaussian envelope. Collapse time<br />

• Revival time (half a complete rotation in phase space)<br />

• Why only a finite number of revivals <br />

Florence, Mai 2004 354


Field states phase spreading<br />

• One order more in the expansion:<br />

Ψ =∑<br />

c<br />

e<br />

+ i nΩ<br />

c<br />

n<br />

n<br />

2<br />

0 t / 4 n −Ω i 0 ( n − n) t/<br />

16<br />

– Phase rotation + Phase spreading of field states<br />

– Contrast of revivals decreases <strong>and</strong> width increases<br />

– Complete overlap of revivals after a few turns in phase space<br />

• Snapshots of field Q function for 15 photons<br />

e<br />

n<br />

3/2<br />

n<br />

Im(β)<br />

6<br />

4<br />

2<br />

(a)<br />

6<br />

4<br />

2<br />

(b)<br />

6<br />

4<br />

2<br />

(c)<br />

0<br />

0<br />

0<br />

-2<br />

-2<br />

-2<br />

-4<br />

-4<br />

-4<br />

-6<br />

-6<br />

-6<br />

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6<br />

Re(β) Re(β) Re(β)<br />

Florence, Mai 2004 355


Field phase spreading<br />

• At long times: take into account higher order terms in phases<br />

• Average of a goes to zero: complete phase information loss. Occurs for<br />

• To be compared <strong>with</strong> revival time<br />

• About revivals observable<br />

Florence, Mai 2004 356


Direct observation of field phase evolution<br />

• Rabi oscillation in mesoscopic field<br />

– High atom-field coupling<br />

– Low atom <strong>and</strong> field relaxation<br />

• Cavity QED tools <strong>with</strong> circular Rydberg <strong>atoms</strong> <strong>and</strong><br />

superconducting <strong>cavities</strong><br />

• A method to probe field phase distribution:<br />

– Homodyne field measurement<br />

Florence, Mai 2004 357


Field phase distribution measurement<br />

Homodyning a coherent field<br />

S<br />

•Inject a coherent field |α><br />

•Add a coherent amplitude –αe iφ<br />

•Resulting field (<strong>with</strong>in global phase) |α(1-e iφ )><br />

•Zero final amplitude for φ=0<br />

•Probe final field amplitude <strong>with</strong> atom in g<br />

•P g<br />

=1 for a zero amplitude<br />

•P g<br />

=1/2 for a large amplitude<br />

•More generally: P g<br />

(φ) reveals field phase distribution<br />

•In technical terms, P g<br />

(φ)=Q distribution<br />

Florence, Mai 2004 358


Experimental coherent field phase distribution<br />

Transfert<br />

0,85 120 photons<br />

75 photons<br />

0,80<br />

45 photons<br />

20 photons<br />

0,75<br />

0,70<br />

0,65<br />

0,60<br />

0,55<br />

Largeur (°)<br />

34<br />

32<br />

30<br />

28<br />

26<br />

24<br />

22<br />

20<br />

0,50<br />

18<br />

0,45<br />

0,40<br />

-80 -60 -40 -20 0 20 40 60 80<br />

Phase<br />

16<br />

14<br />

0,08 0,10 0,12 0,14 0,16 0,18 0,20 0,22 0,24 0,26 0,28<br />

1/sqrt(n)<br />

Florence, Mai 2004 359


Phase splitting in <strong>quantum</strong> Rabi oscillation<br />

• Timing<br />

S<br />

•Inject a coherent field<br />

•Send a first atom: Rabi oscillation <strong>and</strong> phase shift<br />

•Inject a phase tunable coherent amplitude<br />

•Send an atom in g: final amplitude read out<br />

Florence, Mai 2004 360


Phase splitting in <strong>quantum</strong> Rabi oscillation<br />

Experimental phase distributions<br />

0,80<br />

0,75<br />

29 injected photons<br />

Reference: no Rabi atom<br />

Rabi atom at 335m/s T i<br />

=32 µs<br />

Rabi atom at 200m/s T i<br />

=53 µs<br />

0,70<br />

0,65<br />

0,60<br />

0,55<br />

0,50<br />

0,45<br />

-200 -150 -100 -50 0 50 100 150<br />

Phase(°)<br />

Florence, Mai 2004 361


Phase splitting in <strong>quantum</strong> Rabi oscillation<br />

Summary of results<br />

335 m/s 200 m/s<br />

40<br />

40<br />

S g<br />

(φ)<br />

30<br />

35<br />

30<br />

35<br />

0,7<br />

0,6<br />

0,5<br />

25<br />

20<br />

-150 0 150<br />

φ (degrees)<br />

0 150 15 20<br />

φ (degrees)<br />

25<br />

n<br />

Auffèves et al. PRL 91, 230405 (2003)<br />

Florence, Mai 2004 362


Phase (degrees)<br />

Phase splitting in <strong>quantum</strong> Rabi oscillation<br />

Observed phase versus theoretical phase<br />

60<br />

40<br />

20<br />

4<br />

2<br />

0<br />

β y<br />

0<br />

-20<br />

-40<br />

-2<br />

-4<br />

0 2 4 6 8<br />

β x<br />

-60<br />

15 20 25 30 35 40 45 50 55 60<br />

Φ + (degrees)<br />

Large Shrödinger cat states (up to 40 photons separation)<br />

Florence, Mai 2004 363


Selective preparation of<br />

+<br />

Ψ<br />

a<br />

Use a Stark shift pulse on the e/g transition (equivalent to a Z rotation) to<br />

+ 1<br />

prepare from +<br />

Ψ<br />

a<br />

( )<br />

Z<br />

2 e g<br />

X<br />

Rabi Fast Stark rotation pulse: for a p/2 π/2 rotation pulse:<br />

around Z axis.<br />

1 +<br />

Preparation of Ψ ( )<br />

2 e + g<br />

a<br />

Y<br />

From this time on, slow evolution only<br />

N.B. Starting from g prepares<br />

−<br />

Ψ<br />

a<br />

Florence, Mai 2004 364


Stopped Rabi oscillation<br />

1,0<br />

Rabi<br />

Z rotation<br />

0,8<br />

0,6<br />

Slow<br />

evolution<br />

Transfert<br />

0,4<br />

Evolution<br />

resumes<br />

0,2<br />

Z rotation<br />

0,0<br />

-45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45<br />

Killer (µs)<br />

Florence, Mai 2004 365


A single, slowly rotating phase component<br />

S g (φ)<br />

0,65<br />

0,60<br />

0,55<br />

0,50<br />

0,45<br />

−<br />

Ψ<br />

a<br />

+<br />

Ψ<br />

a<br />

-150 -100 -50 0 50 100 150 200<br />

φ (degrees)<br />

Florence, Mai 2004 366


Test of coherence: induced <strong>quantum</strong> revivals<br />

Initial Rabi rotation,<br />

Stark pulse (duration short<br />

compared to phase Collapse rotation).<br />

Reverse phase rotation<br />

Equivalent And to slow a Z rotation phase rotation by π<br />

Recombine field components <strong>and</strong><br />

resume Rabi oscillation<br />

Morigi et al PRA 65, 040102<br />

Florence, Mai 2004 367


Induced <strong>quantum</strong> revivals<br />

1,0<br />

Π Pulse<br />

Transfert<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

22 µs<br />

0,0<br />

-20 -10 0 10 20 30 40 50 60<br />

Interaction time<br />

1,0<br />

1,0<br />

0,8<br />

0,8<br />

Tranfer<br />

0,6<br />

0,4<br />

0,2<br />

18.5 µs<br />

Transfer<br />

0,6<br />

0,4<br />

0,2<br />

23.5 µs<br />

0,0<br />

-20 -10 0 10 20 30 40 50 60<br />

Interaction time<br />

0,0<br />

-20 -10 0 10 20 30 40 50 60<br />

Interaction time<br />

Florence, Mai 2004 368


Induced <strong>quantum</strong> revivals<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

Transfert<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

22 µs<br />

0,0<br />

0 5 10 15 20 25 30 35 40 45 50 55 60 65<br />

Temps effectif<br />

Transfert<br />

0,80<br />

0,75<br />

0,70<br />

0,65<br />

0,60<br />

0,55<br />

0,50<br />

transfert<br />

0,80<br />

0,75<br />

0,70<br />

0,65<br />

0,60<br />

0,55<br />

0,50<br />

0,45<br />

0,45<br />

-100 -80 -60 -40 -20 0 20 40 60 80 100<br />

0,40<br />

phase(°) -100 -80 -60 -40 -20 0 20 40 60 80<br />

phase(°)<br />

Florence, Mai 2004 369


V) Schrödinger cats <strong>and</strong> decoherence<br />

• 1) A direct study of a meter’s decoherence process in a <strong>quantum</strong><br />

measurement<br />

• 2) Breeding Schrödinger lions <strong>with</strong> resonant interaction<br />

• 3) Other applications of field homodyne detection<br />

Florence, Mai 2004 370


Phase shift <strong>with</strong> dispersive atom-field interaction<br />

• Non resonant atom: no energy exchange but cavity mode frequency shift<br />

(atomic index of refraction effect).<br />

– Phase shift of the cavity field (slower than in the resonant case)<br />

0,70<br />

0,65<br />

0,60<br />

Atom in g<br />

0,70<br />

No atom<br />

1 atom in g<br />

Atom in g<br />

0,55<br />

2 <strong>atoms</strong> in g<br />

0,50<br />

0,65<br />

0,45<br />

-150 -100 -50 0 50 100 150<br />

0,75<br />

0,70<br />

0,60<br />

No atom<br />

0,65<br />

0,60<br />

0,55<br />

No atom<br />

0,55<br />

0,50<br />

0,45<br />

-150 -100 -50 0 50 100 150<br />

0,70<br />

0,50<br />

0,65<br />

Atom in e<br />

0,60<br />

0,55<br />

Atom in e<br />

0,45<br />

0,50<br />

0,45<br />

-200 -150 -100 -50 0 50 100 150<br />

-150 -100 -50 0 50 100 150<br />

Phase (°)<br />

Opposite values for e <strong>and</strong> g<br />

Proportional to atom number<br />

Florence, Mai 2004 371


Absolute measurement of atomic detection efficiency<br />

• Histogram of field phase reveals exact atom count<br />

• Comparison <strong>with</strong> detected atom counts provides field ionization detectors<br />

efficiency in a precise <strong>and</strong> absolute way<br />

– 0.4 <strong>atoms</strong> samples:<br />

70 % detection efficiency<br />

(close to the expected<br />

optimum of 80 %)<br />

Florence, Mai 2004 372


Towards a 100% efficiency atomic detection<br />

• Inject a very large coherent field in the cavity<br />

• Send an atomic sample<br />

– Different phase shifts for e, g or no atom<br />

Im(α)<br />

φ<br />

−φ<br />

e<br />

g<br />

Re(α)<br />

• Inject homodyning amplitude<br />

– Zero amplitude for e.<br />

• Larger for no atom.<br />

• Still larger for g<br />

g<br />

e<br />

• Read final field amplitude by sending a large number of <strong>atoms</strong> in g<br />

– Final number of <strong>atoms</strong> in e proportional to photon number<br />

Florence, Mai 2004 373


Preliminary experimental results<br />

0,18<br />

Probability<br />

0,16<br />

0,14<br />

0,12<br />

0,10<br />

0,08<br />

Atom 1 prepared in g<br />

no atom<br />

1 atom in g<br />

Atom1 prepared in e<br />

no atom<br />

1 atom in e<br />

Experimental conditions:<br />

• 75 photons initially<br />

• v=200 m/s<br />

• d=50 kHz<br />

• 70 absorber <strong>atoms</strong><br />

0,06<br />

0,04<br />

0,02<br />

0,00<br />

0 10 20 30 40<br />

• detection efficiency: 87%<br />

• error probability: 0 atom detected as 1: 10% (main present limitation)<br />

– e in g: 1.6%<br />

– g in e: 3%<br />

Total number of excited <strong>atoms</strong><br />

• 100% detection efficiency <strong>with</strong>in reach <strong>with</strong> slower <strong>atoms</strong>: v=150 m/s<br />

….experiment in progress.<br />

Florence, Mai 2004 374


Structure of the lectures<br />

• I) Introduction<br />

• II) The tools of CQED<br />

• III) Experimental illustrations of fundamental <strong>quantum</strong> mechanics<br />

• IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• V) Schrödinger cats <strong>and</strong> decoherence<br />

• VI) Cavity QED <strong>with</strong> dielectric microspheres<br />

• VII) Perspectives<br />

Florence, Mai 2004 375


CQED <strong>with</strong> silica microspheres<br />

High Q whispering gallery modes in a silica microsphere<br />

(a ~ 25-100µm)<br />

a<br />

Mode Volume : V mode<br />

~ 300 µm 3<br />

Field per photon : E ~ few kV/m<br />

(for the most confined mode)<br />

Very low losses : Γ cav<br />

/2π ~ 300 kHz<br />

Absorption limited Q = ω / Γ cav<br />

> 10 9<br />

t cav = 1µs<br />

.....Coupled to Dipole emitters<br />

N SiO 2 = 1.45<br />

Ions (Nd 3+ ; Er 3+ ) ⇒⇒⇒ cf. Poster Session<br />

Atom Chips ⇒⇒⇒ cf. Romain Long (Session V)<br />

Excitons confined in <strong>quantum</strong> dots d ~ 15 e.a 0<br />

‘Atom like system’ Γ hom<br />

/2π ~200 MHz<br />

@ 10K<br />

Florence, Mai 2004 376


Historical reference<br />

St Paul's Cathedral<br />

(Lord Rayleigh,1870)<br />

Wall<br />

Sound waves<br />

Florence, Mai 2004 377


Whispering Gallery Modes<br />

Light guided by total internal reflection<br />

at grazing incidence <strong>and</strong> resonance<br />

condition<br />

ν<br />

TE/<br />

TM<br />

n,,<br />

m<br />

-|m|=0<br />

-|m|=1<br />

θ<br />

a<br />

n=2<br />

n=1<br />

TE/TM polarization<br />

n : number of anti-nodes<br />

l : angular momentum<br />

m : azimuthal number<br />

(degenerate for a perfect sphere)<br />

Coupling zone<br />

(Evanescent wave)<br />

Florence, Mai 2004 378


Production of microspheres<br />

Preparation of the fiber:<br />

Pulling a fiber from a<br />

rod of pure silica<br />

SiO 2<br />

Production of the sphere:<br />

Melting the tip of the fiber<br />

using a 10W CO 2<br />

Laser<br />

120 µm<br />

⇒<br />

Surface Tension<br />

Spherical Shape<br />

Florence, Mai 2004 379


Excitation of WGM’s<br />

Light coupled into the sphere<br />

by frustrated total internal reflection<br />

N p = 1.75<br />

I Out<br />

ν<br />

• Incident angle<br />

θ i < θ c ≡ Arcsin(N S /N P )<br />

Tunable LD<br />

@ 780nm<br />

θ i<br />

N P<br />

• Losses due to coupling back to the prism can be<br />

adjusted through the Gap g<br />

Linewidth (MHz)<br />

300<br />

200<br />

100<br />

0<br />

0<br />

100 200 300 400<br />

Gap Shere-Prism g (nm)<br />

Florence, Mai 2004 380<br />

25%<br />

20<br />

15<br />

10<br />

5<br />

0<br />

g<br />

Coupling Rate<br />

N S<br />

N s = 1.45


The core of the experiment<br />

Florence, Mai 2004 381


Tuning Devices : Tweezers<br />

Preformed sphere is glued<br />

into stretching device<br />

Soldering of the fiber onto<br />

glass arms <strong>and</strong> then<br />

production of the sphere<br />

Florence, Mai 2004 382


Tuning WGM´s<br />

TE<br />

TM<br />

• FSR = 810 GHz (80 µm)<br />

• ν TM - ν TE = 580 GHz<br />

slope TM ≈ 1.6 slope TE<br />

• ν l, m – ν l, m-1 = 375 GHz<br />

ellipticity ~ 50 %<br />

Florence, Mai 2004 383


Maximum Tuning<br />

Tuning TM = 405 GHz = 0.5 × FSR<br />

Tuning TE = 260 GHz = 0.3 × FSR<br />

Fracture of the fiber<br />

Florence, Mai 2004 384


Reversibility <strong>and</strong> Stability<br />

Tuning is reversible : No plastic deformation observed<br />

At fixed voltage : Frequency fluctuations come<br />

from temperature fluctuations<br />

Florence, Mai 2004 385


Identifying WGM’s<br />

GM Spectrum<br />

Free Spectral Range ∆l = 1 ∆ν = c/2πNa ~ 500 GHz<br />

Radial order : ∆n = 1 ∆ν ≈ 20 FSR<br />

Polarization TE-TM ∆ν ≈ 0.7 FSR<br />

Ellipticity (e ~ 1%) ∆m = 1 ∆ν = e FSR ~ 5 GHz<br />

r p<br />

> r e<br />

Prolate Sphere<br />

e > 0<br />

r p<br />

r e<br />

• Step 1 : Pick |m|= mode<br />

• Step 2: Assign radial number<br />

1.0<br />

shift<br />

⇒ n = 1<br />

width ≤ 1% 8<br />

0.8<br />

Reflection<br />

0.6<br />

0.4<br />

|m|=<br />

|m|=-1<br />

|m|=-2<br />

|m|=-3<br />

g<br />

0.2<br />

0.0<br />

25 20<br />

15 10<br />

Frequency (GHz)<br />

5 0<br />

2 4<br />

Frequency (GHz)<br />

Florence, Mai 2004 386<br />

0<br />

6


Which experiments <br />

• Non linearity <strong>with</strong> low thresholds<br />

– Eg. Kerr bistability using silica non-linearity<br />

• Lasers <strong>with</strong> doped silica spheres<br />

– Extremely low thresholds<br />

– Efficient frequency conversion Er laser<br />

– Towards a thresholdless laser<br />

• Towards cavity QED <strong>with</strong> silica microspheres. Two routes<br />

– Atoms in the sphere’s evanescent field<br />

– Quantum dots permanently coupled to the sphere<br />

Florence, Mai 2004 387


Atom chips <strong>and</strong> microspheres<br />

• Use <strong>atoms</strong> trapped in a mesoscopic conductor cavity field <strong>and</strong> conveyed<br />

to the sphere mode<br />

• Work performed in T. Hänsch <strong>and</strong> J. Reichel group in Munich<br />

Florence, Mai 2004 388


Atom-Chip : Conveyor-Belt<br />

Florence, Mai 2004 389


Lateral Confinement<br />

• Simple Scheme<br />

• Side-wires Configuration<br />

Single wire field<br />

+<br />

External bias field<br />

= 2D Confinement<br />

Single wire field<br />

+<br />

Field from the side-wires<br />

= 2D Confinement<br />

Florence, Mai 2004 390


Longitudinal Confinement<br />

• Multiple Crossing Conductors • Modulation of the Current<br />

Atoms trapped between<br />

two local maxima<br />

of the longitudinal field<br />

Modulation of the Current<br />

<br />

Shift the potential minimum<br />

Transport the <strong>atoms</strong><br />

Florence, Mai 2004 391


The “LDC” Chip<br />

New conveyor<br />

First 2 layers Generation Conveyor :<br />

“6 Strokes 1 layer Engine”<br />

“2 Strokes Engine”<br />

Transport direction<br />

Florence, Mai 2004 392


Long Distance Transport<br />

23,5 cm in 2.9 s<br />

Average Speed = 8 cm/s<br />

Maximum Speed = 10 cm/s<br />

Florence, Mai 2004 393


Atom Touch<br />

Detection of a “single” microsphere<br />

Florence, Mai 2004 394


Quantum dots <strong>and</strong> microspheres<br />

• An artificial atom directly coupled to the sphere’s mode<br />

Florence, Mai 2004 395


Self Assembled Q-Dots<br />

(J.M. Gérard)<br />

Self Assembled isl<strong>and</strong>s of InAs embedded in GaAs<br />

4 nm<br />

Q-Dots<br />

3D Confinement leads to an atom like system<br />

20nm<br />

Mesa 4×4 µm<br />

HF selective attack<br />

250nm<br />

GaAs<br />

InAs<br />

GaAs<br />

Detected Power (fW)<br />

800<br />

600<br />

400<br />

200<br />

0<br />

950 1000 1050 1100<br />

Wavelength (nm)<br />

(MBE)<br />

Q-Dots Photoluminescence @ 300K<br />

Pump Power<br />

@850nm<br />

900<br />

7.2mW<br />

4 mW<br />

3 mW<br />

2 mW<br />

1 mW<br />

1150<br />

1200<br />

Florence, Mai 2004 396


Effects of Sample on WGM’s<br />

Gap g2<br />

Sphere-Sample<br />

GaAs<br />

GaAs<br />

Gap g1<br />

Sphere-Prism<br />

Ns<br />

Sphere<br />

Prism<br />

Line Broadening<br />

Resonance Shift<br />

i<br />

Np 4.0<br />

3.5<br />

3.0<br />

Prism SF 11<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

Frequency (GHz)<br />

0<br />

Coupling rate<br />

Shift<br />

linewidth<br />

100 200 300 400 500<br />

GAP g2 SPHERE - GaAs (nm)<br />

16%<br />

14%<br />

12%<br />

10%<br />

8%<br />

6%<br />

4%<br />

2%<br />

0%<br />

Florence, Mai 2004 397


Effects of Mesa (4×4 µm) on WGM’s<br />

Frequency (MHz)<br />

Frequency (MHz)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0<br />

0<br />

2<br />

5 10<br />

Position Y (µm)<br />

4 6<br />

Position Z (µm)<br />

15<br />

8<br />

Florence, Mai 2004 398<br />

6%<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

6%<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Line Broadening<br />

Resonance Shift<br />

Coupling rate<br />

|m|= WGM<br />

Mesa<br />

Y<br />

Z


Q-Dots Laser<br />

Experimental Set Up<br />

Emission<br />

1000 – 1100 nm<br />

LD Probe @ 1080 nm<br />

Transmission @<br />

780nm<br />

I Out<br />

ν<br />

PD<br />

PD<br />

Prism SF11<br />

LD @ 780 nm<br />

Pump<br />

Linewidth ~ 700MHz<br />

Coupling rate ~10%<br />

Gap g 2 Sphere-Sample<br />

Sphere<br />

Gap g 1 Sphere-Prism<br />

Mesa<br />

Q-Dots<br />

PZT controlled<br />

X-Y-Z motion<br />

Florence, Mai 2004 399


Q-Dots Laser at Room temperature<br />

30<br />

Detected Power (pW)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

TE<br />

TM<br />

0<br />

0.0 0.1 0.2 0.3 0.4 0.5<br />

Absorbed Pump Power (mW)<br />

Power at threshold ~ 200 µW<br />

0.6<br />

Active Q-dots ~ 10 4<br />

Florence, Mai 2004 400


Structure of the lectures<br />

• I) Introduction<br />

• II) The tools of CQED<br />

• III) Experimental illustrations of fundamental <strong>quantum</strong> mechanics<br />

• IV) Quantum information <strong>with</strong> <strong>atoms</strong> <strong>and</strong> <strong>cavities</strong><br />

• V) Schrödinger cats <strong>and</strong> decoherence<br />

• VI) Cavity QED <strong>with</strong> dielectric microspheres<br />

• VII) Perspectives<br />

Florence, Mai 2004 401


Two main directions<br />

• A two-cavity experiments for non-locality, decoherence <strong>and</strong> <strong>quantum</strong><br />

information<br />

• A Rydberg atom chip experiment for deterministic preparation <strong>and</strong><br />

manipulation of cold trapped Rydberg <strong>atoms</strong><br />

Florence, Mai 2004 402


Two main directions<br />

• A two-cavity experiments for non-locality, decoherence <strong>and</strong> <strong>quantum</strong><br />

information<br />

• A Rydberg atom chip experiment for deterministic preparation <strong>and</strong><br />

manipulation of cold trapped Rydberg <strong>atoms</strong><br />

Florence, Mai 2004 403


A two-cavity experiment<br />

• Rydberg <strong>atoms</strong> <strong>and</strong> superconducting <strong>cavities</strong>:<br />

– Towards a two-cavity experiment<br />

• Creation of non-local mesoscopic Schrödinger cat states<br />

– Non-locality <strong>and</strong> decoherence (real time monitoring of W<br />

function)<br />

• Complex <strong>quantum</strong> information manipulations<br />

– Quantum feedback<br />

– Simple algorithms<br />

– Three-qubit <strong>quantum</strong> error correction code<br />

Florence, Mai 2004 404


C<br />

Teleportation of an atomic state<br />

R 2<br />

P b<br />

beam 3<br />

R R<br />

P 3<br />

a<br />

1<br />

C 1<br />

C 2<br />

1'<br />

1<br />

2<br />

D a<br />

beam 2<br />

D b<br />

A<br />

3'<br />

3<br />

0<br />

beam 1<br />

Davidovich et al,<br />

PHYS REV A 50 R895 (1994)<br />

B<br />

EPR pair<br />

D c<br />

• This scheme works for massive particles<br />

• Detection of the 4 Bell states <strong>and</strong> application of the<br />

"correction" to the target is possible using a C-Not gate<br />

(beam 2 <strong>and</strong> 3)<br />

• The scheme can be compacted to 1 cavity <strong>and</strong> 1 atomic beam<br />

Florence, Mai 2004 405


Implementation of 3 qubit error correction<br />

0<br />

0<br />

0<br />

R<br />

encoding<br />

S<br />

R R ’<br />

R<br />

R’<br />

R<br />

R’<br />

Error<br />

R’<br />

decoding<br />

S<br />

σ z2<br />

σ z3<br />

Détection<br />

Correction Correction<br />

error detection<br />

α 0 + β 1<br />

Détection<br />

Ramsey π/2 pulses<br />

Error<br />

encoding <strong>and</strong> decoding: preparation of a GHz triplet<br />

all the tools exist!<br />

Florence, Mai 2004 406


Quantum feedback<br />

• Preserve a Schrödinger cat by giving him “<strong>quantum</strong> food”<br />

• Use a <strong>atoms</strong> <strong>and</strong> QND arrangement to detect cat parity jum<br />

• A cat jump prepares a single photon in a second cavity. Used to excite a<br />

feedback atom which gives back the photon to the cat<br />

• A parity preservation scheme which makes the cat coherence live much<br />

longer than the natural decoherence time<br />

• Fortunato et al PRA 60, 1687<br />

Florence, Mai 2004 407


Feedback loop<br />

• C quasi resonant <strong>with</strong> e/g <strong>and</strong> C’ <strong>with</strong> g/i<br />

• Probe (QND) atom exits in g when parity jump<br />

• Feedback atom<br />

– Promoted to e when in g by a microwave pulse in R 2<br />

– Undergoes an adiabatic passage in C to restore the lost photon<br />

Florence, Mai 2004 408


Feedback efficiency<br />

Florence, Mai 2004 409


Towards feedback<br />

• Needs a deterministic source of <strong>atoms</strong><br />

• A simpler version <strong>with</strong> two modes of the same cavity <strong>and</strong> no deterministic<br />

atom source<br />

– Zippili et al PRA 67 052101<br />

• Realistic preservation of cats <strong>with</strong> about one photon<br />

• Very good preservation of single photon Fock state<br />

Florence, Mai 2004 410


New non-locality explorations<br />

• Use a single atom to entangle two mesoscopic fields in the cavity<br />

– A non-local Schrödinger cat or a mesoscopic EPR pair<br />

– Easily prepared via dispersive atom-cavity interaction<br />

Florence, Mai 2004 411


Mesoscopic Bell inequalities<br />

• A Bell inequality form adapted to this situation<br />

• Here, Π is the parity operator average. Dichotomic variable for which the<br />

Bell inequalities argument can be used (transforms the continuous<br />

variable problem in a spin-like problem)<br />

• Maximum violation for parity entangled states:<br />

Florence, Mai 2004 412


Bell inequalities violation<br />

• Optimum Bell signal versus γ<br />

• A compromise between violation amplitude <strong>and</strong> decoherence: γ²=2<br />

Florence, Mai 2004 413


Probing the Wigner function<br />

• A second atom to read out both <strong>cavities</strong> (same scheme as for single<br />

mode Wigner function)<br />

Florence, Mai 2004 414


A difficult but feasible experiment<br />

• Bell signal versus time T c =30 <strong>and</strong> 300 ms<br />

Florence, Mai 2004 415


Two main directions<br />

• A two-cavity experiments for non-locality, decoherence <strong>and</strong> <strong>quantum</strong><br />

information<br />

• A Rydberg atom chip experiment for deterministic preparation <strong>and</strong><br />

manipulation of cold trapped Rydberg <strong>atoms</strong><br />

Florence, Mai 2004 416


What we want<br />

• Long State Lifetime (> 30 ms in free space)<br />

• Control of External Degrees of Freedom<br />

• Single Rydberg Atom Excitation on Dem<strong>and</strong><br />

• Integrated Atom-Chip<br />

• Coherence preserving scheme<br />

Florence, Mai 2004 417


Inhibition of Spontaneous Emission<br />

Principle<br />

F 0<br />

No available<br />

Emitted<br />

zmode<br />

Perfect, infinite<br />

photon must<br />

→ xemissionmirrors<br />

be σ polarized<br />

inhibited<br />

d < λ/2<br />

τ → ∞<br />

Limiting Factors<br />

F<br />

τ >> τ 0<br />

• Imperfect <strong>and</strong> finite<br />

mirrors<br />

• Angle between F 0 <strong>and</strong> z<br />

• Residual Thermal Field<br />

Hulet, Hilfer, Kleppner, PRL,<br />

55, 20, 2137 : Factor 20<br />

1986: Jhe, Anderson, Hinds,<br />

Meschede, Moi, Haroche,<br />

PRL, 58, 666: Factor 13<br />

Florence, Mai 2004 418


Rydberg Atom Trapping<br />

C<strong>and</strong>idate Techniques<br />

• Magnetic Trap – Zeeman Effect<br />

• Electric Trap – Stark Effect<br />

Better suited to<br />

Inhibition of<br />

Spontaneous<br />

Emission scheme<br />

• Ponderomotive Trap – Electron Micro-motion<br />

Required Laser Dutta, Intensity Guest, Feldbaum, (200 Wcm Walz-Flannigan, -2 ) incompatible Raithel <strong>with</strong><br />

PRL, 85, 26, 5551<br />

Cryogenic Environment<br />

Florence, Mai 2004 419


Electric Dipole Trap<br />

Quadratic Stark Effect ~ 2.2 MHz/(V/cm) 2<br />

E ~ - α |F| 2<br />

High Field Seeker<br />

Energy E<br />

Electric Field |F|<br />

n = 51<br />

n = 50<br />

Maxwell<br />

Maximum of |F|<br />

Dynamic (Paul-like) Trap<br />

Florence, Mai 2004 420


Trap Geometry<br />

U V(t) U V(t) U V(t)<br />

+ - + - + -<br />

1mm F 0 = 30 V/cm<br />

(< λ/2) 1mm<br />

z<br />

x<br />

U = 1.5 V<br />

V(t) = 0.5 V . Cos(ω V t)<br />

ω V = 20,000 s -1<br />

-U V(t) -U V(t) -U V(t)<br />

+ - + - + -<br />

Florence, Mai 2004 421


Trapping Simulation<br />

Atomic Trajectories<br />

•T load = 300 µK<br />

• ∆x load = 5 µm<br />

• ω V = 20,000 s -1<br />

• Trapping volume ~ (100µm) 3<br />

z (mm)<br />

80<br />

40<br />

0<br />

-40<br />

Macro-motion<br />

-80<br />

-80 -40 0 40 80<br />

Micromotion<br />

x (mm)<br />

Trapping Efficiency<br />

• ω V < ω c → atom escapes<br />

along anti-trapping axis<br />

• ω V >> ω c → field variations<br />

average to zero: no trapping<br />

1,0<br />

0.5<br />

ω c<br />

0<br />

ω V (s -1 )<br />

0 10000 20000<br />

Florence, Mai 2004 422


Electric Field Tilt<br />

F 0 (x,y,z)<br />

F loc<br />

z<br />

F loc<br />

F loc<br />

ϑ(t)<br />

F loc<br />

Trapping Region<br />

Results<br />

ϑ < 10 -2 τ→10 4 τ 0<br />

• Not limiting factor<br />

• τ ~ 1s envisageable<br />

Florence, Mai 2004 423


Micro-Trap<br />

U – V(t)<br />

U + V(t)<br />

U – V(t)<br />

U + V(t)<br />

U – V(t)<br />

1mm<br />

z 100µm<br />

U = 1.5 V<br />

100µmTrapping x Region<br />

F<br />

V = 0.5 V . Cos(ωt)<br />

0 = 30 V/cm<br />

ω = 150 000 s -1<br />

-U + V(t)<br />

• Greater Confinement<br />

• Surface Interactions<br />

• Integration<br />

• Extension to Conveyor Belt, Guide…<br />

Florence, Mai 2004 424


A Tighter Trap<br />

Same field variations + Spatial scale / 10 → Confinement x 10<br />

Atomic Trajectories Trapping Efficiency<br />

•T load = 300 µK<br />

• ∆x load = 5 µm<br />

• ω V = 150 000 s -1<br />

• Trapping volume ~ (10µm) 3<br />

• z symmetry broken<br />

1,0<br />

• ω c x 10<br />

• Trapping less perfect…<br />

• …but still very good<br />

z (µm)<br />

5<br />

0<br />

-5<br />

-10<br />

x (µm)<br />

-10 -5 0 5 10<br />

ω (s -1 )<br />

0 10000 20000<br />

Florence, Mai 2004 425<br />

0.5<br />

0<br />

ω c


Rydberg Atom Source<br />

Dipole Blockade Lukin et al, PRL 87, 037901<br />

∆x ~ 1µm<br />

~ 1GHz<br />

ω<br />

| N-2:g ; 2: ><br />

| N-1:g ; 1: ><br />

ω<br />

Rydberg Excitation Laser<br />

ω<br />

| N :g ; 0: ><br />

One <strong>and</strong> Only One Circular Rydberg Atom Excited<br />

Florence, Mai 2004 426


Ground-State Atoms Trapping<br />

Requirements:<br />

• Highly Confining (Dipole (∆x < 10µm) Blockade)<br />

• Close to Surfaces (Surface-Trap (Micro-Trap, Dipole- Distance<br />

Surface R trap < 100µm) Interactions)<br />

• Compatible <strong>with</strong> Cryogenics<br />

(Dissipation (Rydberg Stability) < 1mW)<br />

• Integrable (On-Chip Wires <strong>and</strong> Electrodes)<br />

Hänsel et al, Nature 413, 498<br />

B bias I ~ 1A SiO 2 or Sapphire substrate<br />

Superconducting Niobium Wires<br />

100x1 µm 2 wide<br />

Florence, Mai 2004 427


Filling the Magnetic Trap<br />

Cryogenic vacuum → no background pressure → external<br />

source<br />

2D MOT – High Flux Atomic Jet<br />

300K<br />

1K<br />

Cryostat<br />

Magnetic Trapping Region<br />

Jet Extracted from<br />

Atom Cloud<br />

2D MOT<br />

mm<br />

6<br />

4<br />

2<br />

0 2 4<br />

mm<br />

Characteristics of our jet<br />

•Flux = 10 7 s -1<br />

• Divergence = 10 mRad<br />

Florence, Mai 2004 428


Coherence preservation scheme<br />

• Use a microwave dressing to equalize e <strong>and</strong> g Stark polarizabilities<br />

Florence, Mai 2004 429


Coherence preservation scheme<br />

• Residual phase drift almost linear <strong>with</strong> time<br />

• Can be corrected by an echo technique<br />

Florence, Mai 2004 430


Very long coherence times<br />

Coherence preserved for seconds or minutes!!!<br />

Florence, Mai 2004 431


An extremely promising scheme for<br />

• Spontaneous emission inhibition studies<br />

• Atom-surface <strong>and</strong> atom-atom dipole-dipole interaction studies<br />

• Cavity QED <strong>with</strong> transmission line resonators<br />

• Quantum information processing<br />

• Coupling of Rydberg <strong>atoms</strong> to mesoscopic circuits<br />

Florence, Mai 2004 432


The team<br />

PhD<br />

• Frédérick .Bernardot<br />

• Paulo Nussenzweig<br />

• Abdelhamid Maali<br />

• Jochen Dreyer<br />

• Xavier Maître<br />

• Gilles Nogues<br />

• Arno Rauschenbeutel<br />

• Patrice Bertet<br />

• Stefano Osnaghi<br />

• Alexia Auffeves<br />

• Paolo Maioli<br />

• Tristan Meunier<br />

• Sébastien Gleyzes<br />

• Philippe Hyafil *<br />

• Jack Mozley *<br />

Post doc<br />

• Ferdin<strong>and</strong> Schmidt-Kaler<br />

• Edward Hagley<br />

• Christof Wunderlich<br />

• Perola Milman<br />

Colaboration<br />

• Luiz Davidovich<br />

• Nicim Zagury<br />

• Wojtek Gawlik<br />

Permanent<br />

• Gilles Nogues *<br />

• Michel Brune<br />

• Jean-Michel Raimond<br />

• Serge Haroche<br />

*: atom chip team<br />

Florence, Mai 2004 433


References (1)<br />

• Strong coupling regime in CQED experiments:<br />

– F. Bernardot, P. Nussenzveig, M. Brune, J.M. Raimond <strong>and</strong> S. Haroche. "Vacuum Rabi Splitting<br />

Observed on a Microscopic atomic sample in a Microwave cavity". Europhys. lett. 17, 33-38<br />

(1992).<br />

– P. Nussenzveig, F. Bernardot, M. Brune, J. Hare, J.M. Raimond, S. Haroche <strong>and</strong> W. Gawlik.<br />

"Preparation of high principal <strong>quantum</strong> number "circular" states of rubidium". Phys. Rev. A48,<br />

3991 (1993).<br />

– M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond <strong>and</strong> S. Haroche:<br />

"Quantum Rabi oscillation: a direct test of field quantization in a cavity". Phys. Rev. Lett. 76,<br />

1800 (1996).<br />

Florence, Mai 2004 434


References (2)<br />

• QND measurement in microwave CQED experiments:<br />

– M. Brune, S. Haroche, V. Lefevre-Seguin, J.M. Raimond <strong>and</strong> N. Zagury: "Quantum nondemolition<br />

measurement of small photon numbers by Rydberg-atom phase sensitive detection",<br />

Phys. Rev. Lett. 65, 976 (1990).<br />

– M.Brune, S. Haroche, J.M. Raimond,L. Davidovich <strong>and</strong> N. Zagury. "Manipulation of photons in<br />

a cavity by dispersive atom-field coupling: QND measurement <strong>and</strong> generation of "Schrödinger<br />

cat"states". Phys Rev A45, 5193, (1992).<br />

– S. Haroche, M. Brune <strong>and</strong> J.M. Raimond. "Manipulation of optical fields by atomic<br />

interferometry: <strong>quantum</strong> variations on a theme by Young".Appl. Phys. B, 54, 355, (1992).<br />

– S. Haroche, M. Brune <strong>and</strong> J.M. Raimond. "Measuring photon numbers in a cavity by atomic<br />

interferometry: optimizing the convergence procedure". Journal de Physique II 2, 659<br />

Florence, Mai 2004 435


References (3)<br />

• Gates: QPG or C-Not, algorithm:<br />

– M. Brune et al., Phys. Rev. Lett, 72, 3339(1994).<br />

– Q.A. Turchette et al., Phys. Rev. Lett. 75, 4710 (1995).<br />

– C. Monroe et al., Phys. Rev. Lett. 75, 4714 (1995).<br />

– A. Reuschenbeutel et al. submitted PRL. G. Nogues et al. Nature 400, 239 (1999).<br />

– S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J.M. Raimond <strong>and</strong> S. Haroche, Phys.<br />

Rev. Lett. 87, 037902 (2001)<br />

– F. Yamaguchi, P. Milman, M. Brune, J-M. Raimond, S. Haroche: "Quantum search <strong>with</strong> twoatom<br />

collisions in cavity QED", PRA 66, 010302 (2002).<br />

• Q. memory:<br />

– X. Maître et al., Phys. Rev. Lett. 79, 769 (1997).<br />

– Atom EPR pairs:<br />

– CQED: E. Hagley et al., Phys. Rev. Lett. 79, 1 (1997).<br />

– Ions: Q.A. Turchette et al., Phys. Rev. Lett. 81, 3631 (1998).<br />

• Teleportation:<br />

– L. Davidovich, N. Zagury, M. Brune, J.M. Raimond <strong>and</strong> S. Haroche. "Teleportation of an<br />

atomic state between two <strong>cavities</strong> using non-local microwave fields". Phys Rev A50, R895<br />

(1994).<br />

Florence, Mai 2004 436


References (4)<br />

• Reviews on CQED<br />

Florence, Mai 2004 437


References (5)<br />

• A few useful textbooks<br />

Florence, Mai 2004 438


• THANK YOU …..<br />

Florence, Mai 2004 439

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!