29.01.2015 Views

Wireless LANs - Communication Systems Group

Wireless LANs - Communication Systems Group

Wireless LANs - Communication Systems Group

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Wireless</strong> <strong>LANs</strong><br />

q Characteristics<br />

q IEEE 802.11<br />

q PHY<br />

q MAC<br />

q Roaming<br />

q .11a, b, g, h, i …<br />

Textbooks: Jochen Schiller, Mobile <strong>Communication</strong>s / Mobilkommunikation, published<br />

by Pearson, available in English and German<br />

http://www.inf.fu-berlin.de/inst/ag-tech/resources/mobile_communications.htm<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 1<br />

Characteristics of wireless <strong>LANs</strong><br />

Advantages<br />

q very flexible within the reception area<br />

q Ad-hoc networks without previous planning possible<br />

q (almost) no wiring difficulties (e.g. historic buildings, firewalls)<br />

q more robust against disasters like, e.g., earthquakes, fire - or users pulling<br />

a plug...<br />

Disadvantages<br />

q typically very low bandwidth compared to wired networks<br />

(1-10 Mbit/s)<br />

q many proprietary solutions, especially for higher bit-rates, standards take<br />

their time (e.g. IEEE 802.11)<br />

q products have to follow many national restrictions if working wireless, it<br />

takes a very long time to establish global solutions like, e.g., IMT-2000<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 2


Design goals for wireless <strong>LANs</strong><br />

q global, seamless operation<br />

q low power for battery use<br />

q no special permissions or licenses needed to use the LAN<br />

q robust transmission technology<br />

q simplified spontaneous cooperation at meetings<br />

q easy to use for everyone, simple management<br />

q protection of investment in wired networks<br />

q security (no one should be able to read my data), privacy (no one should<br />

be able to collect user profiles), safety (low radiation)<br />

q transparency concerning applications and higher layer protocols, but also<br />

location awareness if necessary<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 3<br />

Comparison: infrared vs. radio transmission<br />

Infrared<br />

q<br />

Advantages<br />

q<br />

q<br />

q<br />

uses IR diodes, diffuse light,<br />

multiple reflections (walls,<br />

furniture etc.)<br />

simple, cheap, available in<br />

many mobile devices<br />

no licenses needed<br />

simple shielding possible<br />

Disadvantages<br />

q<br />

q<br />

q<br />

Example<br />

q<br />

interference by sunlight, heat<br />

sources etc.<br />

many things shield or absorb IR<br />

light<br />

low bandwidth<br />

IrDA (Infrared Data Association)<br />

interface available everywhere<br />

Radio<br />

q<br />

Advantages<br />

q<br />

q<br />

typically using the license free<br />

ISM band at 2.4 GHz<br />

experience from wireless WAN<br />

and mobile phones can be used<br />

coverage of larger areas<br />

possible (radio can penetrate<br />

walls, furniture etc.)<br />

Disadvantages<br />

q<br />

q<br />

Example<br />

q<br />

very limited license free<br />

frequency bands<br />

shielding more difficult,<br />

interference with other electrical<br />

devices<br />

WaveLAN, HIPERLAN,<br />

Bluetooth<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 4


Comparison: infrastructure vs. ad-hoc networks<br />

infrastructure<br />

network<br />

AP<br />

AP<br />

wired network<br />

AP: Access Point<br />

AP<br />

ad-hoc network<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 5<br />

802.11 - Architecture of an infrastructure network<br />

ESS<br />

802.11 LAN<br />

BSS 1<br />

Access<br />

Point<br />

BSS 2<br />

Distribution System<br />

Access<br />

Point<br />

802.11 LAN<br />

802.x LAN<br />

Portal<br />

Station (STA)<br />

q<br />

terminal with access mechanisms<br />

to the wireless medium and radio<br />

contact to the access point<br />

Basic Service Set (BSS)<br />

q<br />

group of stations using the same<br />

radio frequency<br />

Access Point<br />

q<br />

Portal<br />

q<br />

station integrated into the wireless<br />

LAN and the distribution system<br />

bridge to other (wired) networks<br />

Distribution System<br />

q<br />

interconnection network to form<br />

one logical network (EES:<br />

Extended Service Set) based<br />

on several BSS<br />

STA 1<br />

STA 2 STA 3<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 6


802.11 - Architecture of an ad-hoc network<br />

802.11 LAN<br />

IBSS 1<br />

STA 2<br />

STA 3<br />

Direct communication within a limited<br />

range<br />

q<br />

q<br />

Station (STA):<br />

terminal with access mechanisms to<br />

the wireless medium<br />

Independent Basic Service Set<br />

(IBSS):<br />

group of stations using the same<br />

radio frequency<br />

STA 1<br />

STA 4<br />

STA 5<br />

IBSS 2<br />

802.11 LAN<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 7<br />

IEEE standard 802.11<br />

mobile terminal<br />

fixed<br />

terminal<br />

infrastructure<br />

network<br />

application<br />

TCP<br />

IP<br />

LLC<br />

access point<br />

LLC<br />

application<br />

TCP<br />

IP<br />

LLC<br />

802.11 MAC<br />

802.11 MAC<br />

802.3 MAC<br />

802.3 MAC<br />

802.11 PHY<br />

802.11 PHY<br />

802.3 PHY<br />

802.3 PHY<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 8


802.11 - Layers and functions<br />

MAC<br />

q<br />

access mechanisms, fragmentation,<br />

encryption<br />

MAC Management<br />

q<br />

synchronization, roaming, MIB,<br />

power management<br />

PLCP Physical Layer Convergence Protocol<br />

q<br />

clear channel assessment signal<br />

(carrier sense)<br />

PMD Physical Medium Dependent<br />

q<br />

modulation, coding<br />

PHY Management<br />

q<br />

channel selection, MIB<br />

Station Management<br />

q<br />

coordination of all management<br />

functions<br />

PHY DLC<br />

LLC<br />

MAC<br />

PLCP<br />

PMD<br />

MAC Management<br />

PHY Management<br />

Station Management<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 9<br />

802.11 - Physical layer<br />

3 versions: 2 radio (typ. 2.4 GHz), 1 IR<br />

q data rates 1 or 2 Mbit/s<br />

FHSS (Frequency Hopping Spread Spectrum)<br />

q spreading, despreading, signal strength, typ. 1 Mbit/s<br />

q min. 2.5 frequency hops/s (USA), two-level Gaussian FSK modulation<br />

DSSS (Direct Sequence Spread Spectrum)<br />

Infrared<br />

q DBPSK modulation for 1 Mbit/s (Differential Binary Phase Shift Keying),<br />

DQPSK for 2 Mbit/s (Differential Quadrature PSK)<br />

q preamble and header of a frame is always transmitted with 1 Mbit/s, rest<br />

of transmission 1 or 2 Mbit/s<br />

q chipping sequence: +1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1 (Barker code)<br />

q max. radiated power 1 W (USA), 100 mW (EU), min. 1mW<br />

q 850-950 nm, diffuse light, typ. 10 m range<br />

q carrier detection, energy detection, synchonization<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 10


A short digression: Basics of spread spectrum<br />

communication<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 11<br />

Effects of spreading and interference<br />

dP/df<br />

dP/df<br />

i)<br />

f<br />

ii)<br />

f<br />

user signal<br />

broadband interference<br />

narrowband interference<br />

sender<br />

dP/df<br />

dP/df<br />

dP/df<br />

iii)<br />

iv)<br />

v)<br />

f<br />

receiver<br />

f<br />

f<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 12


Spreading and frequency selective fading<br />

channel<br />

quality<br />

1<br />

narrow band<br />

signal<br />

2<br />

3<br />

4<br />

guard space<br />

5 6<br />

frequency<br />

narrowband channels<br />

channel<br />

quality<br />

2<br />

2<br />

2<br />

2<br />

2<br />

1<br />

spread spectrum channels<br />

spread<br />

spectrum<br />

frequency<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 13<br />

DSSS (Direct Sequence Spread Spectrum) I<br />

XOR of the signal with pseudo-random number (chipping sequence)<br />

q many chips per bit (e.g., 128) result in higher bandwidth of the signal<br />

Advantages<br />

q reduces frequency selective<br />

fading<br />

q in cellular networks<br />

• base stations can use the<br />

same frequency range<br />

• several base stations can<br />

detect and recover the signal<br />

• soft handover<br />

Disadvantages<br />

q precise power control necessary<br />

t b<br />

t c<br />

0 1<br />

0 1 1 0 1 0 1 0 1 1 0 1 0 1<br />

0 1 1 0 1 0 1 1 0 0 1 0 1 0<br />

t b : bit period<br />

t c : chip period<br />

user data<br />

XOR<br />

chipping<br />

sequence<br />

=<br />

resulting<br />

signal<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 14


DSSS (Direct Sequence Spread Spectrum) II<br />

user data<br />

X<br />

spread<br />

spectrum<br />

signal<br />

modulator<br />

transmit<br />

signal<br />

chipping<br />

sequence<br />

radio<br />

carrier<br />

transmitter<br />

correlator<br />

received<br />

signal<br />

demodulator<br />

lowpass<br />

filtered<br />

signal<br />

X<br />

products<br />

integrator<br />

sampled<br />

sums<br />

decision<br />

data<br />

radio<br />

carrier<br />

chipping<br />

sequence<br />

receiver<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 15<br />

FHSS (Frequency Hopping Spread Spectrum) I<br />

Discrete changes of carrier frequency<br />

q sequence of frequency changes determined via pseudo random number<br />

sequence<br />

Two versions<br />

q Fast Hopping:<br />

several frequencies per user bit<br />

q Slow Hopping:<br />

several user bits per frequency<br />

Advantages<br />

q frequency selective fading and interference limited to short period<br />

q simple implementation<br />

q uses only small portion of spectrum at any time<br />

Disadvantages<br />

q not as robust as DSSS<br />

q simpler to detect<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 16


FHSS (Frequency Hopping Spread Spectrum) II<br />

0 1<br />

t b<br />

0 1 1 t<br />

user data<br />

f<br />

f 3<br />

f 2<br />

f 1<br />

t d<br />

slow<br />

hopping<br />

(3 bits/hop)<br />

f<br />

t<br />

t d<br />

t b : bit period t d : dwell time<br />

f 3<br />

f 2<br />

f 1<br />

fast<br />

hopping<br />

(3 hops/bit)<br />

t<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 17<br />

FHSS (Frequency Hopping Spread Spectrum) III<br />

user data<br />

modulator<br />

narrowband<br />

signal<br />

modulator<br />

spread<br />

transmit<br />

signal<br />

transmitter<br />

frequency<br />

synthesizer<br />

hopping<br />

sequence<br />

received<br />

signal<br />

demodulator<br />

narrowband<br />

signal<br />

demodulator<br />

data<br />

hopping<br />

sequence<br />

frequency<br />

synthesizer<br />

receiver<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 18


End of digression<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 19<br />

DSSS PHY packet format<br />

Synchronization<br />

q synch., gain setting, energy detection, frequency offset compensation<br />

SFD (Start Frame Delimiter)<br />

q 1111001110100000<br />

Signal<br />

q data rate of the payload (0A: 1 Mbit/s DBPSK; 14: 2 Mbit/s DQPSK)<br />

Service<br />

Length<br />

q future use, 00: 802.11 compliant<br />

q length of the payload<br />

HEC (Header Error Check)<br />

q protection of signal, service and length, x 16 +x 12 +x 5 +1<br />

128 16 8 8 16 16 variable bits<br />

synchronization SFD signal service length HEC payload<br />

PLCP preamble<br />

PLCP header<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 20


802.11 - MAC layer I - DFWMAC<br />

Traffic services<br />

q Asynchronous Data Service (mandatory)<br />

• exchange of data packets based on “best-effort”<br />

• support of broadcast and multicast<br />

q Time-Bounded Service (optional)<br />

• implemented using PCF (Point Coordination Function)<br />

Access methods<br />

q DFWMAC-DCF CSMA/CA (mandatory)<br />

• collision avoidance via randomized „back-off“ mechanism<br />

• minimum distance between consecutive packets<br />

• ACK packet for acknowledgements (not for broadcasts)<br />

q DFWMAC-DCF w/ RTS/CTS (optional)<br />

• Distributed Foundation <strong>Wireless</strong> MAC<br />

• avoids hidden terminal problem<br />

q DFWMAC- PCF (optional)<br />

• access point polls terminals according to a list<br />

Distributed<br />

Foundation<br />

<strong>Wireless</strong> Medium<br />

Access Control<br />

Distributed<br />

Coordination<br />

Function<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 21<br />

802.11 - MAC layer II<br />

Priorities<br />

q defined through different inter frame spaces<br />

q no guaranteed, hard priorities<br />

q SIFS (Short Inter Frame Spacing)<br />

• highest priority, for ACK, CTS, polling response<br />

q PIFS (PCF Inter Frame Spacing)<br />

• medium priority, for time-bounded service using PCF<br />

q DIFS (DCF, Distributed Coordination Function Inter Frame Spacing)<br />

• lowest priority, for asynchronous data service<br />

DIFS<br />

DIFS<br />

medium busy<br />

PIFS<br />

SIFS<br />

contention<br />

next frame<br />

direct access if<br />

medium is free ≥ DIFS<br />

t<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 22


802.11 - CSMA/CA access method I<br />

DIFS<br />

DIFS<br />

contention window<br />

(randomized back-off<br />

mechanism)<br />

medium busy<br />

direct access if<br />

medium is free ≥ DIFS<br />

slot time<br />

next frame<br />

t<br />

q station ready to send starts sensing the medium (Carrier Sense<br />

based on CCA, Clear Channel Assessment)<br />

q if the medium is free for the duration of an Inter-Frame Space (IFS),<br />

the station can start sending (IFS depends on service type)<br />

q if the medium is busy, the station has to wait for a free IFS, then the<br />

station must additionally wait a random back-off time (collision<br />

avoidance, multiple of slot-time)<br />

q if another station occupies the medium during the back-off time of<br />

the station, the back-off timer stops (fairness)<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 23<br />

802.11 - competing stations<br />

DIFS<br />

DIFS<br />

bo e<br />

bo r<br />

DIFS<br />

bo e bo r<br />

DIFS<br />

bo e<br />

busy<br />

station 1<br />

bo e<br />

busy<br />

station 2<br />

busy<br />

station 3<br />

bo e<br />

busy<br />

bo e<br />

bo r<br />

station 4<br />

bo e<br />

bo r<br />

bo e<br />

busy<br />

bo e<br />

bo r<br />

station 5<br />

t<br />

busy<br />

medium not idle (frame, ack etc.)<br />

bo e<br />

elapsed backoff time<br />

packet arrival at MAC<br />

bo r<br />

residual backoff time<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 24


802.11 - CSMA/CA access method II<br />

Sending unicast packets<br />

q station has to wait for DIFS before sending data<br />

q receivers acknowledge at once (after waiting for SIFS) if the packet was<br />

received correctly (CRC)<br />

q automatic retransmission of data packets in case of transmission errors<br />

sender<br />

DIFS<br />

data<br />

receiver<br />

SIFS<br />

ACK<br />

other<br />

stations<br />

waiting time<br />

DIFS<br />

contention<br />

data<br />

t<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 25<br />

802.11 – DFWMAC (CSMA/CA: Collision Avoidance, also called<br />

Multiple Access CA - MACA)<br />

Sending unicast packets<br />

q station can send RTS with reservation parameter after waiting for DIFS<br />

(reservation determines amount of time the data packet needs the medium)<br />

q acknowledgement via CTS after SIFS by receiver (if ready to receive)<br />

q sender can now send data at once, acknowledgement via ACK<br />

q other stations store medium reservations distributed via RTS and CTS<br />

(Station store the Net Allocation Vector (NAV))<br />

sender<br />

DIFS<br />

RTS<br />

data<br />

receiver<br />

SIFS<br />

CTS<br />

SIFS<br />

SIFS<br />

ACK<br />

other<br />

stations<br />

NAV (RTS)<br />

NAV (CTS)<br />

defer access<br />

DIFS<br />

contention<br />

data<br />

t<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 26


Fragmentation<br />

q<br />

q<br />

q<br />

Sender may fragment large data frames<br />

Purpose: decrease the probability of frame errors in difficult<br />

environments<br />

Fragment sizes may be adapted to fit error behavior of medium<br />

sender<br />

DIFS<br />

RTS<br />

frag 1<br />

frag 2<br />

receiver<br />

SIFS<br />

CTS<br />

SIFS<br />

SIFS<br />

ACK<br />

SIFS<br />

1<br />

SIFS<br />

ACK2<br />

other<br />

stations<br />

NAV (RTS)<br />

NAV (CTS)<br />

NAV (frag 1 )<br />

NAV (ACK 1 )<br />

DIFS<br />

contention<br />

data<br />

t<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 27<br />

DFWMAC-PCF I<br />

q<br />

q<br />

q<br />

q<br />

Base station may establish framing contention-free polling<br />

Used for QoS-sensitive applications<br />

Superframe consists of contention-free period and period with<br />

contention<br />

Not possible in ad-hoc mode<br />

t 0<br />

t 1<br />

SuperFrame<br />

medium busy<br />

PIFS<br />

SIFS<br />

SIFS<br />

point<br />

coordinator<br />

D 1<br />

SIFS<br />

U 1<br />

D 2<br />

SIFS<br />

U 2<br />

wireless<br />

stations<br />

stations‘<br />

NAV<br />

NAV<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 28


DFWMAC-PCF II<br />

t 2 t 3 t 4<br />

point<br />

coordinator<br />

D 3<br />

PIFS<br />

D 4<br />

SIFS<br />

U 4<br />

SIFS<br />

CFend<br />

wireless<br />

stations<br />

stations‘<br />

NAV<br />

NAV<br />

contention free period<br />

contention<br />

period<br />

t<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 29<br />

802.11 - Frame format<br />

Types<br />

q control frames, management frames, data frames<br />

Sequence numbers<br />

q important against duplicated frames due to lost ACKs<br />

Addresses<br />

q receiver, transmitter (physical), BSS identifier, sender (logical)<br />

Miscellaneous<br />

bytes<br />

q sending time, checksum, frame control, data<br />

2 2 6 6 6 6<br />

Duration/<br />

ID<br />

Address<br />

1<br />

Address<br />

2<br />

Address<br />

3<br />

Sequence<br />

Control<br />

Frame<br />

Control<br />

Protocol<br />

version<br />

Type Subtype<br />

To<br />

DS<br />

More<br />

Frag<br />

Power<br />

Retry<br />

Mgmt<br />

2 0-2312 4<br />

Address<br />

Data<br />

4<br />

bits 2 2 4 1 1 1 1 1 1 1 1<br />

From<br />

DS<br />

More<br />

Data<br />

WEP<br />

Order<br />

CRC<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 30


MAC address format<br />

scenario<br />

to DS from address 1<br />

DS (phys. dest.)<br />

ad-hoc network 0 0 DA<br />

(phys. dest.)<br />

infrastructure<br />

network, from AP<br />

infrastructure<br />

network, to AP<br />

infrastructure<br />

network, within DS<br />

0 1 DA<br />

(log & phys.<br />

dest.)<br />

1 0 BSSID<br />

(phys. dest.)<br />

1 1 RA<br />

(phys. dest.)<br />

address 2<br />

(phys. source)<br />

SA<br />

(phys. source)<br />

BSSID<br />

(phys. source.)<br />

SA<br />

(log & phys.<br />

source)<br />

TA<br />

(phys. source)<br />

address 3<br />

(log. Addr.)<br />

address 4<br />

(log. Addr.)<br />

BSSID -<br />

SA<br />

(log. source)<br />

DA<br />

(log. dest)<br />

DA<br />

(log. dest)<br />

-<br />

-<br />

SA<br />

(log. source)<br />

DS: Distribution System<br />

AP: Access Point<br />

DA: Destination Address<br />

SA: Source Address<br />

BSSID: Basic Service Set Identifier<br />

RA: Receiver Address<br />

TA: Transmitter Address<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 31<br />

802.11 - MAC management<br />

Synchronization<br />

q try to find a LAN, try to stay within a LAN<br />

q clocks, timers etc.<br />

Power management<br />

q sleep-mode without missing a message<br />

q periodic sleep, frame buffering, traffic measurements<br />

Association/Reassociation<br />

q integration into a LAN<br />

q roaming, i.e. change networks by changing access points<br />

q scanning, i.e. active search for a network<br />

MIB - Management Information Base<br />

q managing, read, write<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 32


Synchronization using a Beacon (infrastructure)<br />

q<br />

q<br />

q<br />

q<br />

Are sent at regular intervals (schedule)<br />

Beacon frames are sent using DIFS + random backoff interval<br />

Beacon frames contain timestamp, BSSID, other management information<br />

If delayed, contain actual time in timestamp<br />

beacon interval<br />

access<br />

point<br />

medium<br />

B<br />

B B B<br />

busy busy busy busy<br />

value of the timestamp B beacon frame<br />

t<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 33<br />

Synchronization using a Beacon (ad-hoc)<br />

q<br />

Winner of contention will serve as a beaconing station<br />

beacon interval<br />

station 1<br />

B 1<br />

B 1<br />

station 2<br />

B 2 B 2<br />

random delay<br />

medium<br />

busy<br />

busy busy busy<br />

value of the timestamp B beacon frame<br />

t<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 34


802.11 - Roaming<br />

No connection or bad connection Then perform:<br />

Scanning<br />

q scan the environment, i.e., listen into the medium for beacon signals or<br />

send probes into the medium and wait for an answer<br />

Reassociation Request<br />

q station sends a request to one or several AP(s)<br />

Reassociation Response<br />

q success: AP has answered, station can now participate<br />

q failure: continue scanning<br />

AP accepts Reassociation Request<br />

q signal the new station to the distribution system<br />

q the distribution system updates its data base (i.e., location information)<br />

q typically, the distribution system now informs the old AP so it can release<br />

resources<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 35<br />

WLAN: IEEE 802.11b<br />

Data rate<br />

q<br />

1, 2, 5.5, 11 Mbit/s, depending on<br />

SNR<br />

q User data rate max. approx. 6<br />

Mbit/s<br />

Transmission range<br />

q<br />

q<br />

Frequency<br />

q<br />

Security<br />

Cost<br />

q<br />

q<br />

Availability<br />

q<br />

300m outdoor, 30m indoor<br />

Max. data rate ~10m indoor<br />

Free 2.4 GHz ISM-band<br />

Limited, WEP insecure, SSID<br />

100€ adapter, 250€ base station,<br />

dropping<br />

Many products, many vendors<br />

Connection set-up time<br />

q Connectionless/always on<br />

Quality of Service<br />

q Typ. Best effort, no guarantees<br />

(unless polling is used, limited<br />

support in products)<br />

Manageability<br />

q Limited (no automated key<br />

distribution, sym. Encryption)<br />

Special Advantages/Disadvantages<br />

q Advantage: many installed systems,<br />

lot of experience, available<br />

worldwide, free ISM-band, many<br />

vendors, integrated in laptops,<br />

simple system<br />

q Disadvantage: heavy interference<br />

on ISM-band, no service<br />

guarantees, slow relative speed<br />

only<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 36


IEEE 802.11b – PHY frame formats<br />

Long PLCP PPDU format<br />

128 16 8 8 16 16 variable bits<br />

synchronization SFD signal service length HEC payload<br />

PLCP preamble<br />

PLCP header<br />

192 µs at 1 Mbit/s DBPSK 1, 2, 5.5 or 11 Mbit/s<br />

Short PLCP PPDU format (optional)<br />

56 16 8 8 16 16 variable bits<br />

short synch. SFD signal service length HEC payload<br />

PLCP preamble<br />

(1 Mbit/s, DBPSK)<br />

PLCP header<br />

(2 Mbit/s, DQPSK)<br />

96 µs 2, 5.5 or 11 Mbit/s<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 37<br />

Channel selection (non-overlapping)<br />

Europe (ETSI)<br />

channel 1 channel 7 channel 13<br />

2400 2412 2442 2472 2483.5<br />

22 MHz<br />

[MHz]<br />

US (FCC)/Canada (IC)<br />

channel 1 channel 6 channel 11<br />

2400<br />

2412 2437 2462 2483.5<br />

22 MHz<br />

[MHz]<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 38


IEEE 802.11 overview<br />

q<br />

q<br />

q<br />

q<br />

q<br />

q<br />

Standard for <strong>Wireless</strong> Local Area Networks, developed by the IEEE,<br />

see http://grouper.ieee.org/groups/802/11/<br />

802.11b: max. 11 Mbit/s, using 8-Chip Complementary Code Keying<br />

(CCK) at 2.4 GHz; commercial breakthrough; downgrade to 1, 2, 5.5<br />

Mbit/s. Channel bands of 22 MHz.<br />

802.11a: max. 54 Mbit/s, using Orthogonal FDM (OFDM) at 5 GHz.<br />

Channel bands of 100 MHz, smaller cells than 802.11b. Unlicenced<br />

use allowed only indoors.<br />

802.11g: max. 54 Mbit/s, improved OFDM modulation at 2.4 GHz. Can<br />

co-exist with 802.11b; multi-mode implementations available.<br />

802.11h: European version of 802.11a, implements dynamic<br />

transmission power management to fit European regulations.<br />

802.11e: QoS extensions with DCF<br />

q 802.11f: Inter-Access-Point Protocol; improves roaming<br />

q 802.11i: Improved security, interworking with 802.1x<br />

Slides courtesy of Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ 39

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!