29.01.2015 Views

Büchi Complementation via Alternating Automata

Büchi Complementation via Alternating Automata

Büchi Complementation via Alternating Automata

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Automata</strong> Theory Seminar<br />

<strong>Büchi</strong> <strong>Complementation</strong> <strong>via</strong><br />

<strong>Alternating</strong> <strong>Automata</strong><br />

Fabian Reiter<br />

July 16, 2012


<strong>Büchi</strong> <strong>Complementation</strong><br />

BA B<br />

2 Θ(n log n) BA B<br />

BA: <strong>Büchi</strong><br />

Automaton<br />

AA A<br />

AA A<br />

AA: <strong>Alternating</strong><br />

Automaton<br />

Expensive: If B has n states, B has 2 Θ(n log n) states in<br />

the worst case (Michel 1988, Safra 1988).<br />

Complicated: Direct approaches are rather involved.<br />

Consider indirect approach: detour over alternating automata.<br />

1 / 33


Transition Modes (1)<br />

Existential: some run is accepting<br />

q 0 q 1a q 2a q 3a q 4a q 5a · · ·<br />

q 0 q 1b q 2b q 3b q 4b q 5b · · ·<br />

q 0 q 1c q 2c q 3c q 4c q 5c · · ·<br />

q 0 q 1d q 2d q 3d q 4d q 5d · · ·<br />

q 0 q 1e q 2e q 3e q 4e q 5e · · ·<br />

Universal: every run is accepting<br />

q 0 q 1a q 2a q 3a q 4a q 5a · · ·<br />

q 0 q 1b q 2b q 3b q 4b q 5b · · ·<br />

q 0 q 1c q 2c q 3c q 4c q 5c · · ·<br />

q 0 q 1d q 2d q 3d q 4d q 5d · · ·<br />

q 0 q 1e q 2e q 3e q 4e q 5e · · ·<br />

2 / 33


Transition Modes (2)<br />

<strong>Alternating</strong>: in some set of runs every run is accepting<br />

q 0 q 1a q 2a q 3a q 4a q 5a · · ·<br />

q 0 q 1b q 2b q 3b q 4b q 5b · · ·<br />

q 0 q 1c q 2c q 3c q 4c q 5c · · ·<br />

q 0 q 1d q 2d q 3d q 4d q 5d · · ·<br />

q 0 q 1e q 2e q 3e q 4e q 5e · · ·<br />

q 0 q 1f q 2f q 3f q 4f q 5f · · ·<br />

q 0 q 1g q 2g q 3g q 4g q 5g · · ·<br />

q 0 q 1h q 2h q 3h q 4h q 5h · · ·<br />

q 0 q 1i q 2i q 3i q 4i q 5i · · ·<br />

3 / 33


Alternation and <strong>Complementation</strong><br />

Special case: A in existential mode<br />

A accepts iff ∃ run ρ : ρ fulfills acceptance condition of A<br />

A accepts iff ∀ run ρ : ¬(ρ fulfills acceptance condition of A)<br />

iff ∀ run ρ: ρ fulfills dual acceptance condition of A<br />

⇒ complementation ̂= dualization of:<br />

transition mode<br />

acceptance condition<br />

Want acceptance condition that is closed under dualization.<br />

4 / 33


Outline<br />

1 Weak <strong>Alternating</strong> Parity <strong>Automata</strong><br />

2 Infinite Parity Games<br />

3 Proof of the <strong>Complementation</strong> Theorem<br />

4 <strong>Büchi</strong> <strong>Complementation</strong> Algorithm<br />

5 / 33


Outline<br />

1 Weak <strong>Alternating</strong> Parity <strong>Automata</strong><br />

Definitions and Examples<br />

Dual Automaton<br />

2 Infinite Parity Games<br />

3 Proof of the <strong>Complementation</strong> Theorem<br />

4 <strong>Büchi</strong> <strong>Complementation</strong> Algorithm<br />

6 / 33


Preview<br />

Example ( (b ∗ a) ω )<br />

<strong>Büchi</strong> automaton B:<br />

b<br />

a<br />

a<br />

q 0 q 1<br />

b<br />

Equivalent WAPA A:<br />

a<br />

b<br />

a, b<br />

q 0<br />

2<br />

b<br />

•<br />

q 1<br />

1<br />

a<br />

q 2<br />

0<br />

7 / 33


Weak <strong>Alternating</strong> Parity Automaton<br />

☺<br />

Definition (Weak <strong>Alternating</strong> Parity Automaton)<br />

A weak alternating parity automaton (WAPA) is a tuple<br />

where<br />

Q<br />

Σ<br />

finite set of states<br />

finite alphabet<br />

δ : Q × Σ → B + (Q)<br />

q in<br />

initial state<br />

π : Q → N<br />

A := 〈Q, Σ, δ, q in , π〉<br />

parity function<br />

transition function<br />

(Thomas and Löding, ∼ 2000)<br />

B + (Q): set of all positive Boolean formulae over Q<br />

(built only from elements in Q ∪ {∧ , ∨, ⊤, ⊥})<br />

8 / 33


Transitions<br />

☺<br />

Example (a ω )<br />

a<br />

q 0<br />

2<br />

a<br />

a a<br />

q<br />

• 1<br />

•<br />

1<br />

•<br />

δ : Q × Σ → B + (Q)<br />

〈q 0 , a〉 ↦→ q 0 ∨ (q 1 ∧ q 2 )<br />

〈q 1 , a〉 ↦→ (q 0 ∧ q 1 ) ∨ (q 1 ∧ q 2 )<br />

q 2<br />

0<br />

a<br />

〈q 2 , a〉 ↦→ q 2<br />

Definition (Minimal Models)<br />

Mod ↓ (θ) ⊆ 2 Q : set of minimal models<br />

of θ ∈ B + (Q), i.e. the set of minimal<br />

subsets M ⊆ Q s.t. θ is satisfied by<br />

{<br />

true if q ∈ M<br />

q ↦→<br />

false otherwise<br />

Example<br />

Mod ↓ (q 0 ∨ (q 1 ∧ q 2 ))<br />

= {{q 0 }, {q 1 , q 2 }}<br />

9 / 33


Run Graph (1)<br />

☺<br />

Example (a ω )<br />

Accepting run:<br />

a<br />

q 0<br />

2<br />

a<br />

a a<br />

q<br />

• 1<br />

•<br />

1<br />

•<br />

q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 · · ·<br />

Rejecting run:<br />

q 2<br />

0<br />

q 0 , 0 q 0 , 1 q 0 , 4<br />

q 1 , 2 q 1 , 3 q 1 , 4 q 1 , 5 · · ·<br />

q 2 , 2 q 2 , 3 q 2 , 4 q 2 , 5 · · ·<br />

a<br />

10 / 33


Run Graph (2)<br />

☺<br />

Definition (Run)<br />

A run of a WAPA A = 〈Q, Σ, δ, q in , π〉 on a word a 0 a 1 a 2 . . . ∈ Σ ω<br />

is a directed acyclic graph<br />

where<br />

V ⊆ Q × N<br />

R := 〈V , E〉<br />

with 〈q in , 0〉 ∈ V<br />

V contains only vertices reachable from 〈q in , 0〉.<br />

E contains only edges of the form 〈 〈p, i〉, 〈q, i + 1〉 〉 .<br />

For every vertex 〈p, i〉 ∈ V the set of successors is a minimal<br />

model of δ(p, a i )<br />

{<br />

q ∈ Q |<br />

〈<br />

〈p, i〉, 〈q, i + 1〉<br />

〉<br />

∈ E<br />

}<br />

∈ Mod↓ (δ(p, a i ))<br />

11 / 33


Acceptance<br />

☺<br />

Definition (Acceptance)<br />

Let A be a WAPA, w ∈ Σ ω and R = 〈V , E〉 a run of A on w.<br />

An infinite path ρ in R satisfies the acceptance condition of A<br />

iff the smallest occurring parity is even, i.e.<br />

min{π(q) | ∃ i ∈N:〈q, i〉 occurs in ρ} is even.<br />

R is an accepting run iff every infinite path ρ in R satisfies the<br />

acceptance condition.<br />

A accepts w iff there is some accepting run of A on w.<br />

12 / 33


Infinitely many a’s<br />

Example ( (b ∗ a) ω )<br />

a<br />

b<br />

a, b<br />

q 0<br />

2<br />

b<br />

•<br />

q 1<br />

1<br />

a<br />

q 2<br />

0<br />

Run on b ω :<br />

q 0 , 0<br />

b<br />

q 0 , 1<br />

b<br />

q 0 , 2<br />

b<br />

q 0 , 3<br />

b<br />

q 0 , 4<br />

b<br />

q 0 , 5<br />

b<br />

q 0 , 6<br />

b<br />

· · ·<br />

q 1 , 1 q 1 , 2 q 1 , 3 q 1 , 4 q 1 , 5 q 1 , 6 · · ·<br />

Run on (ba) ω :<br />

q 0 , 0<br />

b<br />

q 0 , 1<br />

a<br />

q 0 , 2<br />

b<br />

q 0 , 3<br />

a<br />

q 0 , 4<br />

b<br />

q 0 , 5<br />

a<br />

q 0 , 6<br />

b<br />

· · ·<br />

q 1 , 1 q 1 , 3 q 1 , 5 · · ·<br />

q 2 , 2 q 2 , 3 q 2 , 4 q 2 , 5 q 2 , 6 · · ·<br />

13 / 33


Dual Automaton (1)<br />

☺<br />

Definition (Dual Automaton)<br />

The dual of a WAPA A = 〈Q, Σ, δ, q in , π〉 is<br />

A := 〈Q, Σ, δ, q in , π〉<br />

where<br />

δ(q, a) is obtained from δ(q, a) by exchanging ∧ , ∨ and ⊤, ⊥<br />

π(q) := π(q) + 1<br />

for all q ∈ Q and a ∈ Σ<br />

14 / 33


Dual Automaton (2)<br />

Example ( (b ∗ a) ω )<br />

WAPA A:<br />

a<br />

b<br />

a, b<br />

δ(q 0 , a) = q 0<br />

δ(q 0 , b) = q 0 ∧q 1<br />

q 0<br />

2<br />

b<br />

•<br />

q 1<br />

1<br />

a<br />

q 2<br />

0<br />

δ(q 1 , a) = q 2<br />

δ(q 1 , b) = q 1<br />

δ(q 2 , a) = q 2<br />

δ(q 2 , b) = q 2<br />

Dual A:<br />

a, b<br />

b<br />

a, b<br />

δ(q 0 , a) = q 0<br />

δ(q 0 , b) = q 0 ∨q 1<br />

q 0<br />

3<br />

b<br />

q 1<br />

2<br />

a<br />

q 2<br />

1<br />

δ(q 1 , a) = q 2<br />

δ(q 1 , b) = q 1<br />

δ(q 2 , a) = q 2<br />

δ(q 2 , b) = q 2<br />

15 / 33


<strong>Complementation</strong> Theorem<br />

Main statement of this talk:<br />

Theorem (<strong>Complementation</strong>)<br />

The dual A of a WAPA A accepts its complement, i.e.<br />

L(A) = Σ ω \ L(A)<br />

(Thomas and Löding, ∼ 2000)<br />

16 / 33


Outline<br />

1 Weak <strong>Alternating</strong> Parity <strong>Automata</strong><br />

2 Infinite Parity Games<br />

3 Proof of the <strong>Complementation</strong> Theorem<br />

4 <strong>Büchi</strong> <strong>Complementation</strong> Algorithm<br />

17 / 33


Automaton vs. Pathfinder<br />

c<br />

b<br />

a<br />

player A<br />

find accepting run R<br />

player P<br />

find rejecting path in R<br />

18 / 33


Infinite Parity Game (1)<br />

☺<br />

Example (a ω )<br />

a<br />

q 0<br />

a a<br />

q<br />

• 1<br />

•<br />

1<br />

A: •<br />

2 a<br />

w = a ω<br />

q 2<br />

a<br />

0<br />

Game G A,w :<br />

q 0 , 0 {q 0 }, 0 q 0 , 1 {q 0 }, 1 q 0 , 2 · · ·<br />

{q 1 , q 2 }, 0<br />

{q 1 , q 2 }, 1 · · ·<br />

q 1 , 1 {q 0 , q 1 }, 1 q 1 , 2 · · ·<br />

q 2 , 1 {q 2 }, 1 q 2 , 2 · · ·<br />

19 / 33


Infinite Parity Game (2)<br />

☺<br />

Definition (Game)<br />

A game for a WAPA A = 〈Q, Σ, δ, q in , π〉 and w = a 0 a 1 a 2 . . . ∈ Σ ω<br />

is a directed graph<br />

where<br />

G A,w := 〈V A ˙∪ V P , E〉<br />

V A := Q × N (decision nodes of player A)<br />

V P := 2 Q × N (decision nodes of player P)<br />

E ⊆ (V A × V P ) ∪ (V P × V A )<br />

s.t. the only contained edges are<br />

• 〈 〈q, i〉, 〈M, i〉 〉 iff M ∈ Mod ↓ (δ(q, a i ))<br />

• 〈 〈M, i〉, 〈q, i + 1〉 〉 iff q ∈ M<br />

for q ∈ Q, M ⊆ Q, i ∈ N<br />

(Thomas and Löding, ∼ 2000)<br />

20 / 33


Playing a Game<br />

☺<br />

Definition (Play)<br />

A play γ in a game G A,w is an infinite path starting with 〈q in , 0〉.<br />

Definition (Winner)<br />

The winner of a play γ is<br />

player A iff the smallest parity of occurring V A -nodes is even<br />

player P · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · odd<br />

X ∈ {A, P}: a player,<br />

Definition (Strategy)<br />

X : its opponent<br />

A strategy f X : V X → V X<br />

for player X selects for every<br />

decision node of player X one of its successor nodes in G A,w .<br />

f X is a winning strategy iff player X wins every play γ that is<br />

played according to f X .<br />

21 / 33


Strategies<br />

Example<br />

Winning strategy for player A (so far):<br />

parities<br />

q 0 , 0 {q 0 }, 0 q 0 , 1 {q 0 }, 1 q 0 , 2 · · · q 0 ↦→ 2<br />

{q 1 , q 2 }, 1 · · ·<br />

q 1 , 1 {q 0 , q 1 }, 1 q 1 , 2 · · · q 1 ↦→ 1<br />

{q 1 , q 2 }, 0<br />

q 2 , 1 {q 2 }, 1 q 2 , 2 · · · q 2 ↦→ 0<br />

Not a winning strategy for player A:<br />

q 0 , 0 {q 0 }, 0 q 0 , 1 {q 0 }, 1 q 0 , 2 · · ·<br />

{q 1 , q 2 }, 1 · · ·<br />

q 1 , 1 {q 0 , q 1 }, 1 q 1 , 2 · · ·<br />

{q 1 , q 2 }, 0<br />

q 2 , 1 {q 2 }, 1 q 2 , 2 · · ·<br />

22 / 33


Outline<br />

1 Weak <strong>Alternating</strong> Parity <strong>Automata</strong><br />

2 Infinite Parity Games<br />

3 Proof of the <strong>Complementation</strong> Theorem<br />

Lemma 1<br />

Lemma 2<br />

Lemma 3<br />

Sublemma<br />

Putting it All Together<br />

4 <strong>Büchi</strong> <strong>Complementation</strong> Algorithm<br />

23 / 33


Lemma 1<br />

Let A be a WAPA and w ∈ Σ ω .<br />

Lemma 1<br />

Player A has a winning strategy in G A,w iff A accepts w.<br />

Explanation (oral):<br />

Player A wins every play γ<br />

played according to f A .<br />

G A,w :<br />

· · · q, i + 1<br />

There is a run graph R in which<br />

every path ρ is accepting.<br />

q, i + 1<br />

p, i {q, q ′ , q ′′ }, i q ′ , i + 1<br />

· · · q ′′ , i + 1<br />

R:<br />

p, i q ′ , i + 1<br />

q ′′ , i + 1<br />

24 / 33


Lemma 2<br />

Let A be a WAPA and w ∈ Σ ω .<br />

Lemma 2<br />

Player P has a winning strategy in G A,w iff A does not accept w.<br />

Explanation (oral):<br />

Player P wins every play γ<br />

played according to f P .<br />

G<br />

· · ·<br />

A,w :<br />

{.., q, ..}, i q, i + 1<br />

· · ·<br />

· · ·<br />

p, i {.., q ′ , ..}, i q ′ , i + 1<br />

· · ·<br />

· · ·<br />

{.., q ′′ , ..}, i q ′′ , i + 1<br />

· · ·<br />

(pointed out by Jan Leike)<br />

Every run graph R contains a<br />

rejecting path ρ.<br />

R:<br />

· · ·<br />

p, i q, i + 1<br />

· · ·<br />

· · ·<br />

R ′ : p, i q ′ , i + 1<br />

· · ·<br />

· · ·<br />

R ′′ : p, i q ′′ , i + 1<br />

· · ·<br />

25 / 33


Sublemma<br />

☺<br />

Let θ ∈ B + (Q) be a formula over Q.<br />

Sublemma<br />

S ⊆ Q is a model of θ iff for all M ∈ Mod ↓ (θ): S ∩ M ≠ ∅.<br />

Proof:<br />

W.l.o.g. θ is in DNF, i.e.<br />

∨<br />

θ =<br />

Then θ is in CNF, i.e.<br />

θ =<br />

M∈Mod ↓ (θ)<br />

∧<br />

M∈Mod ↓ (θ)<br />

∧<br />

q<br />

q∈M<br />

∨<br />

q<br />

q∈M<br />

Thus S ⊆ Q is a model of θ iff it contains at least one<br />

element from each disjunct of θ.<br />

26 / 33


Lemma 3 (1)<br />

Let A be a WAPA, A its dual and w = a 0 a 1 a 2 . . . ∈ Σ ω .<br />

Lemma 3<br />

Player A has a winning strategy in G A,w<br />

iff player P has a winning strategy in G A,w<br />

.<br />

Proof:<br />

⇒ Construct a winning strategy f P for player P in G A,w<br />

.<br />

· · ·<br />

⇐ Construct a winning strategy f A for player A in G A,w .<br />

· · ·<br />

27 / 33


Lemma 3 (2)<br />

⇒ Construct a winning strategy f P for player P in G A,w<br />

.<br />

At position 〈S, i〉∈V P<br />

in G A,w<br />

:<br />

· · · · · ·<br />

p, · · · i S, i q, · · · i + 1<br />

· · · · · ·<br />

f A : winning strategy for player A in G A,w<br />

Assume there is 〈p, i〉∈V A occurring in a<br />

play γ in G A,w played according to f A s.t.<br />

S ∈ Mod ↓ (δ(p, a i )) (otherwise don’t care).<br />

f A<br />

(<br />

〈p, i〉<br />

)<br />

=〈M, i〉 ⇒ M ∈ Mod↓ (δ(p, a i ))<br />

(sublemma)<br />

=⇒ There exists a q ∈S ∩ M.<br />

Define f P<br />

(<br />

〈S, i〉<br />

)<br />

:= 〈q, i + 1〉<br />

in G A,w :· · · · · ·<br />

p, i M, · · · i q, · · · i + 1<br />

· · · · · ·<br />

∀ γ: play in G A,w<br />

played according to f P<br />

∃ γ: play in G A,w played according to f A<br />

s.t. γ and γ contain the same V A -nodes.<br />

• Player A wins γ in G A,w .<br />

• ∀ q ∈Q : π(q) = π(q) + 1<br />

⇒ Player P wins γ in G A,w<br />

.<br />

28 / 33


Lemma 3 (3)<br />

⇐ Construct a winning strategy f A for player A in G A,w .<br />

At position 〈p, i〉∈V A<br />

in G A,w :· · · q, i + 1<br />

p, i M, · · · i q ′ , i + 1<br />

· · · q ′′ , i + 1<br />

in G A,w<br />

:<br />

· · ·<br />

S, i q, i + 1<br />

· · ·<br />

· · ·<br />

p, i S ′ , i q ′ , i + 1<br />

· · ·<br />

· · ·<br />

S ′′ , i q ′′ , i + 1<br />

· · ·M∗<br />

f P : winning strategy for player P in G A,w<br />

M ∗ := { q ∈ Q | ∃ S ∈Mod ↓ (δ(p, a i )) :<br />

f P<br />

(<br />

〈S, i〉<br />

)<br />

= 〈q, i + 1〉<br />

}<br />

(sublemma)<br />

=⇒ M ∗ is a model of δ(p, a i ).<br />

M: subset of M ∗ that is a minimal model<br />

M ⊆ M ∗ , M ∈ Mod ↓ (δ(p, a i ))<br />

Define f A<br />

(<br />

〈p, i〉<br />

)<br />

:= 〈M, i〉<br />

∀ γ: play in G A,w played according to f A<br />

∃ γ: play in G A,w<br />

played according to f P<br />

s.t. γ and γ contain the same V A -nodes.<br />

• Player P wins γ in G A,w<br />

.<br />

• ∀ q ∈Q : π(q) = π(q) − 1<br />

⇒ Player A wins γ in G A,w .<br />

29 / 33


All Three Lemmas<br />

☺<br />

Let A be a WAPA, A its dual and w ∈ Σ ω .<br />

Lemma 1<br />

Player A has a winning strategy in G A,w iff A accepts w.<br />

Lemma 2<br />

Player P has a winning strategy in G A,w iff A does not accept w.<br />

Lemma 3<br />

Player A has a winning strategy in G A,w<br />

iff player P has a winning strategy in G A,w<br />

.<br />

30 / 33


<strong>Complementation</strong> Theorem<br />

☺<br />

Theorem (<strong>Complementation</strong>)<br />

The dual A of a WAPA A accepts its complement, i.e.<br />

L(A) = Σ ω \ L(A)<br />

Proof:<br />

A accepts w<br />

(lemma 1)<br />

⇐⇒<br />

(lemma 3)<br />

⇐⇒<br />

(lemma 2)<br />

⇐⇒<br />

(Thomas and Löding, ∼ 2000)<br />

player A has a winning strategy in G A,w<br />

player P has a winning strategy in G A,w<br />

A does not accept w<br />

31 / 33


Outline<br />

1 Weak <strong>Alternating</strong> Parity <strong>Automata</strong><br />

2 Infinite Parity Games<br />

3 Proof of the <strong>Complementation</strong> Theorem<br />

4 <strong>Büchi</strong> <strong>Complementation</strong> Algorithm<br />

32 / 33


<strong>Büchi</strong> <strong>Complementation</strong> Algorithm<br />

☺<br />

BA B<br />

2Ω(n log n)<br />

BA B<br />

O(n 2 )<br />

WAPA A<br />

O(1)<br />

2 O(n)<br />

WAPA A<br />

Total complexity: 2 O(n2 )<br />

Can reach 2 O(n log n) (lower bound) by improving A → B.<br />

33 / 33


References<br />

Thomas, W. (1999)<br />

<strong>Complementation</strong> of <strong>Büchi</strong> <strong>Automata</strong> Revisited.<br />

In J. Karhumäki et al., editors, Jewels are Forever, Contributions on Th.<br />

Comp. Science in Honor of Arto Salomaa, pages 109–122, Springer.<br />

Klaedtke, F. (2002)<br />

<strong>Complementation</strong> of <strong>Büchi</strong> <strong>Automata</strong> Using Alternation.<br />

In E. Grädel et al., editors, <strong>Automata</strong>, Logics, and Infinite Games, LNCS<br />

2500, pages 61-77. Springer.<br />

Löding, C. and Thomas, W. (2000)<br />

<strong>Alternating</strong> <strong>Automata</strong> and Logics over Infinite Words.<br />

In J. van Leeuwen et al., editors, IFIP TCS 2000, LNCS 1872, pages<br />

521–535. Springer.<br />

Kupferman, O. and Vardi, M. Y. (2001)<br />

Weak <strong>Alternating</strong> <strong>Automata</strong> Are Not that Weak.<br />

In ACM Transactions on Computational Logic, volume 2, No. 3, July<br />

2001, pages 408–429.


Appendix


From BA to WAPA<br />

Given:<br />

B = 〈Q, Σ, δ, q in , F 〉: BA<br />

n = |Q|<br />

☺<br />

Construction (BA → WAPA)<br />

where<br />

A := 〈 Q ×{0, . . . , 2n} , Σ, δ ′ , 〈q<br />

} {{ }<br />

in , 2n〉, π 〉<br />

⎧∨<br />

⎪⎨ ∨<br />

δ ′ (〈p, i〉, a) := ∨<br />

π(〈p, i〉) := i<br />

⎪⎩ ∨<br />

O(n 2 )<br />

q∈δ(p,a)<br />

q∈δ(p,a)<br />

q∈δ(p,a)<br />

q∈δ(p,a)<br />

〈q, 0〉 if i = 0<br />

〈q, i〉 ∧ 〈q, i − 1〉 if i even, i > 0<br />

〈q, i〉<br />

〈q, i − 1〉<br />

if i odd, p /∈ F<br />

if i odd, p ∈ F<br />

for p ∈ Q, a ∈ Σ, i ∈ {0, . . . , 2n}<br />

(Thomas and Löding, ∼ 2000)<br />

Back


From WAPA to BA<br />

Given:<br />

A = 〈Q, Σ, δ, q in , π〉: stratified WAPA, i.e.<br />

∀p ∈Q ∀a∈Σ : δ(p, a) ∈ B +( {q ∈ Q | π(p) ≥ π(q)} )<br />

E ⊆ Q: all states with even parity<br />

Construction (WAPA → BA)<br />

where<br />

B := 〈 2<br />

} Q ×2<br />

{{ Q<br />

}<br />

, Σ, δ ′ , 〈{q in }, ∅〉, 2 Q ×{∅} 〉<br />

2 O(n) {<br />

〈M ′ , M ′ \E〉 ∣ M ′ ( ∧<br />

∈ Mod ↓<br />

δ ′ (〈M, ∅〉, a) :=<br />

δ ′ (〈M, O〉, a) :=<br />

{<br />

〈M ′ , O ′ \E〉<br />

for a ∈ Σ, M, O ⊆ Q, O ≠ ∅<br />

Back<br />

q∈M<br />

δ(q, a))}<br />

∣ M ′ (<br />

∈ Mod ↓<br />

∧q∈M δ(q, a)) ,<br />

O ′ ⊆ M ′ ,<br />

O ′ ( ∧<br />

∈ Mod ↓ q∈O<br />

δ(q, a))}<br />

(Miyano and Hayashi, 1984)<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!