29.01.2015 Views

presentation - NGI

presentation - NGI

presentation - NGI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Water Depth (m)<br />

The Frontier<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

1940 1950 1960 1970 1980 1990 2000 2010<br />

Year


Water Depth (m)<br />

Air Speed (km/hr)<br />

The Frontier<br />

3500<br />

3000<br />

4000<br />

3500<br />

2500<br />

3000<br />

2000<br />

1500<br />

1000<br />

500<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0<br />

1940 1950 1960 1970 1980 1990 2000 2010<br />

Year


The Frontier<br />

Image Courtesy of Jeanjean


The Frontier


The Frontier


Risk and Reliability<br />

on the Frontier<br />

of Offshore Geotechnics<br />

Bob Gilbert, The University of Texas at Austin<br />

Don Murff, Consultant<br />

Ed Clukey, BP America<br />

6


Achieving<br />

Appropriate Risk<br />

Requires Balancing<br />

Risk and<br />

Conservatism


Probability of Failure with C or More Cost in Lifetime<br />

Target Risk<br />

1.E+00<br />

1.E-01<br />

1.E-02<br />

Not Tolerable<br />

1.E-03<br />

1.E-04<br />

Tolerable<br />

1.E-05<br />

1.E-06<br />

10 100 1,000 10,000 100,000<br />

Cost, C ($1,000,000 U.S.)


Riser – Installation Load<br />

Ballast Box<br />

Driven Pile


Probability of Failure with C or More Cost in Lifetime<br />

1.E+00<br />

1.E-01<br />

Not Tolerable<br />

1.E-02<br />

1.E-03<br />

1.E-04<br />

Tolerable<br />

1.E-05<br />

1.E-06<br />

Riser Tower Foundation<br />

10 100 1,000 10,000 100,000<br />

Cost, C ($1,000,000 U.S.)


Required Weight of Ballast (% of Design Load)<br />

80%<br />

70%<br />

Proposed Design<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

0.0001 Probability of Overload<br />

0.001 Probability of Overload<br />

10%<br />

0%<br />

0 20 40 60 80 100<br />

Set-Up Time (days)


Riser Bundle –<br />

Sustained Load<br />

Suction<br />

Caisson


Design Check<br />

Contractor Proposed<br />

Uplift Capacity<br />

<br />

Load Factor<br />

<br />

Resistance Factor<br />

<br />

<br />

<br />

<br />

Tension Load <br />

W caisson<br />

<br />

Versus<br />

Uplift Capacity<br />

<br />

Load Factor<br />

<br />

Resistance Factor<br />

<br />

Tension Load <br />

<br />

W caisson


Probability of Failure with C or More Cost in Lifetime<br />

1.E+00<br />

1.E-01<br />

1.E-02<br />

Not Tolerable<br />

Riser Bundle<br />

Foundation<br />

1.E-03<br />

1.E-04<br />

Tolerable<br />

1.E-05<br />

1.E-06<br />

10 100 1,000 10,000 100,000<br />

Cost, C ($1,000,000 U.S.)


Managing Risk<br />

Requires<br />

Understanding<br />

Loads as well as<br />

Capacities


Annual Probability of Exceedance<br />

10<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

0.0001<br />

0.00001<br />

0.5 0.6 0.7 0.8 0.9 1<br />

Actual Load/Design Load


Gulf of Mexico – Mudslide Prone Area


Mechanism for Wave-Induced Mudslides


Mudslide scars after Hurricane Ivan<br />

3 km<br />

From Thomson et al. 2005 OTC 17738


Pipeline Failure from MP-151 after Hurricane Ivan<br />

From Coyne et al. 2005, OTC 17734


Hurricane Paths<br />

Delta


Hurricane Ivan vs. Hurricane Katrina<br />

Hurricane Ivan<br />

Hurricane Katrina


Factor of Safety<br />

Ivan vs. Katrina at MC 20<br />

1.2<br />

14 sec.<br />

Hurricane Ivan, Period = 16.1 sec.<br />

1.1<br />

Peak Spectral Period = 14 sec.<br />

Hurricane Katrina, Period = 15.2 sec.<br />

15 sec.<br />

Stable<br />

1.0<br />

17 sec.<br />

16 sec.<br />

Ivan<br />

Katrina Katrina<br />

0.9<br />

Unstable<br />

0.8<br />

15 50 15 18 60 18 21 70 21 24 80 24<br />

27 90 27<br />

30 100<br />

Maximum Maximum Wave Wave Height (ft) (m)


Main Pass Oil Gathering Pipeline Damage<br />

Hurricane Ivan<br />

MPOG<br />

Platform<br />

Leg<br />

Pipeline Damage<br />

Photos from Wicklund (2005)


Bottom Currents in Hurricane Ike


Developing<br />

Effective<br />

Geotechnical<br />

Designs Requires<br />

Understanding<br />

Their Role in the<br />

Systems They<br />

Support


Image Courtesy of<br />

Sandstrom et al.


Probability of Failure in Design Life<br />

1.0E-02<br />

1.0E-03<br />

1.0E-04<br />

1.0E-05<br />

Rope&<br />

Chains<br />

Anchor<br />

Total<br />

Rope&<br />

Chains<br />

Total<br />

Rope&<br />

Chains<br />

Total<br />

1.0E-06<br />

Anchor<br />

1.0E-07<br />

1.0E-08<br />

1,000<br />

(Semi-Taut)<br />

2,000<br />

(Taut)<br />

Anchor<br />

3,000<br />

(Taut)<br />

Water Depth (m)


Structural Systems<br />

Grout<br />

Member<br />

Doubler<br />

Repair<br />

Legend<br />

True North<br />

5 deg<br />

Platform<br />

North<br />

(+)10’ Elv.<br />

(-)20’ Elv.<br />

(-)51’ Elv.<br />

B<br />

1<br />

2<br />

3<br />

4<br />

A


Base Shear<br />

Foundation System<br />

Capacity Interaction Curve<br />

Shear<br />

Failure<br />

Unstable<br />

Combined<br />

Failure<br />

Unstable<br />

Unstable<br />

Stable<br />

Stable<br />

Stable<br />

Overturning<br />

Failure<br />

Overturning Moment


Structural System


Structural System


Structural System


Tripod Failure in Hurricane Ike<br />

Leg C<br />

Leg A<br />

Leg B


Base Shear (kips)<br />

Pile Flexibility<br />

2500<br />

2000<br />

Peak Side<br />

Shear<br />

Mobilized on<br />

All Piles<br />

1500<br />

1000<br />

Residual Side<br />

Shear Mobilized<br />

on All Piles<br />

500<br />

0<br />

Maximum<br />

Load in Ike<br />

0.0E+00 1.0E+05 2.0E+05 3.0E+05 4.0E+05 5.0E+05<br />

Overturning Moment (ft-kips)<br />

Maximum<br />

Capacity<br />

Mobilized on<br />

All Piles


Base Shear (kN)<br />

Base Shear (kN)<br />

Pile System Robustness<br />

3-Pile System Failed in<br />

Overturning<br />

6-Pile System Survived<br />

Potential Shear Failure<br />

12000<br />

*Foundation system capacity includes the effect of the conductor.<br />

30000<br />

* Foundation system capacity includes the effect of the conductors.<br />

25000<br />

8000<br />

20000<br />

15000<br />

4000<br />

Sensitivity<br />

Possible<br />

to +/-30%<br />

range of<br />

Change<br />

foundation<br />

in<br />

system<br />

Lateral<br />

capacity* due to increasing or decreasing the<br />

& Axial Soil Capacity for Single Pile<br />

axial and lateral capacity of one pile by 30 %<br />

0<br />

0.0E+00 2.0E+05 4.0E+05 6.0E+05<br />

Overturning Moment (kN-m)<br />

10000<br />

5000<br />

Possible range of foundation system<br />

Sensitivity to +/-30% Change in Lateral<br />

capacity* due to increasing or decreasing the<br />

& Axial axial Soil and lateral Capacity capacity for of one Single pile by Pile 30 %<br />

0<br />

0.0E+00 5.0E+05 1.0E+06 1.5E+06<br />

Overturning Moment (kN-m)


Maximizing Value<br />

of Information<br />

Requires<br />

Considering How It<br />

Might Affect<br />

Decisions


Value of Reliability Approach<br />

Less Data<br />

Acceptable<br />

Reliability<br />

Cost of<br />

Foundation<br />

Unacceptable<br />

Reliability<br />

Conventional<br />

More Data<br />

Cost of Investigation


Mature Field<br />

N<br />

Boring (pre 1982)<br />

Boring (post 1982)<br />

20 km<br />

Geophysics<br />

Geophysics + Boring


500<br />

1000<br />

1500<br />

2000<br />

2500<br />

3000<br />

3500<br />

4000<br />

0<br />

Expected Pile Capacity (MN)<br />

Geo-Statistical Model<br />

34<br />

Older Boring<br />

Modern Boring<br />

33<br />

32<br />

31<br />

30<br />

29<br />

Unconditional Mean<br />

28<br />

27<br />

26<br />

x Coordinate (m)<br />

1-m Diameter, 100-m Long Pile<br />

0<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

y Coordinate (m)


500<br />

1000<br />

1500<br />

2000<br />

2500<br />

3000<br />

3500<br />

4000<br />

0<br />

c.o.v. in Pile Capacity<br />

Geo-Statistical Model<br />

0.080<br />

Unconditional c.o.v.<br />

0.060<br />

0.040<br />

0.020<br />

Older Boring<br />

Modern Boring<br />

0.000<br />

x Coordinate (m)<br />

0<br />

500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

y Coordinate (m)<br />

1-m Diameter, 100-m Long Pile


Partial FS due to Spatial Variability<br />

Value of Information<br />

2.00<br />

1.75<br />

Marine Clay over<br />

Alluvial Sand and<br />

1.50<br />

Platform<br />

Site<br />

1.25<br />

Marine<br />

Alluvial Sand<br />

and Clay<br />

1.00<br />

0.00 0.05 0.10 0.15 0.20 0.25 0.30<br />

Coefficient of Variation due to Spatial Variability


Communicating Uncertainty<br />

Boring A<br />

Platform<br />

Location<br />

Boring B<br />

Normally<br />

Consolidated<br />

Marine Clay<br />

100 m<br />

Over<br />

Consolidated<br />

Clay Crusts<br />

<br />

Buried<br />

Alluvial<br />

Channels<br />

300 m<br />

200 m


Uncertainty Multiples


Tension Leg Platform


Probability Density Function<br />

Tendon Load<br />

Pile Capacity<br />

Pile Design<br />

Method B<br />

Pile Design Pile Design<br />

Method A Method C<br />

0 1 2 3 4 5 6<br />

Failure Region<br />

Force/Design Load


Design Pile Capacity


Lower-Bound Pile Capacity


Probability Mass Function (PMF)<br />

Probability Density Function (PDF)<br />

Lower Bound Capacity<br />

PDF<br />

PMF<br />

Lower<br />

Bound<br />

Design or<br />

Median<br />

Pile Capacity


Probability of Foundation Failure in Design Life<br />

1.E-02<br />

Estimated Lower Bound of Pile Capacity (% of Median)<br />

0% 10% 20% 30% 40% 50% 60%<br />

1.E-03<br />

Target<br />

1.E-04<br />

1.E-05


Probability of Foundation Failure in Design Life<br />

1.E-02<br />

Estimated Lower Bound of Pile Capacity (% of Median)<br />

0% 10% 20% 30% 40% 50% 60%<br />

1.E-03<br />

Installation<br />

Target<br />

1.E-04<br />

Re-Tap<br />

1.E-05


Summary<br />

Risks<br />

Costs


Probability of Failure with C or More Cost in Lifetime<br />

Target Risk<br />

1.E+00<br />

1.E-01<br />

1.E-02<br />

Not Tolerable<br />

1.E-03<br />

1.E-04<br />

Tolerable<br />

1.E-05<br />

1.E-06<br />

10 100 1,000 10,000 100,000<br />

Cost, C ($1,000,000 U.S.)


Offshore Oil<br />

Industry<br />

Hurricane Protection<br />

System<br />

$30 Billion Damage<br />

100% Evacuation<br />

0 Fatalities<br />

$30 Billion Damage<br />

80% Evacuation<br />

1,600 Fatalities

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!