29.01.2015 Views

Oxidation of 2-Phenylethylamine with N-Bromosuccinimide in Acid ...

Oxidation of 2-Phenylethylamine with N-Bromosuccinimide in Acid ...

Oxidation of 2-Phenylethylamine with N-Bromosuccinimide in Acid ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Journal <strong>of</strong> the Ch<strong>in</strong>ese Chemical Society, 2007, 54, 1223-1232 1223<br />

<strong>Oxidation</strong> <strong>of</strong> 2-<strong>Phenylethylam<strong>in</strong>e</strong> <strong>with</strong> N-<strong>Bromosucc<strong>in</strong>imide</strong> <strong>in</strong> <strong>Acid</strong> and<br />

Alkal<strong>in</strong>e Media: A K<strong>in</strong>etic and Mechanistic Study<br />

Kikkeri N. Mohana* and Paanemangalore M. Ramdas Bhandarkar<br />

Department <strong>of</strong> Studies <strong>in</strong> Chemistry, University <strong>of</strong> Mysore, Manasagangotri, Mysore - 570 006, India<br />

A k<strong>in</strong>etic study <strong>of</strong> oxidation <strong>of</strong> 2-phenylethylam<strong>in</strong>e (PEA), a bioactive compound, <strong>with</strong> potent oxidant,<br />

N-bromosucc<strong>in</strong>imide (NBS) has been carried out <strong>in</strong> HCl and NaOH media at 313 K. The experimental<br />

rate laws obta<strong>in</strong>ed are: -d [NBS]/dt = k[NBS][PEA][H ] <strong>in</strong> hydrochloric acid medium and -d [NBS]/dt<br />

= k[NBS][PEA] x [OH - ] y <strong>in</strong> alkal<strong>in</strong>e medium where x and y are less than unity. Accelerat<strong>in</strong>g effect <strong>of</strong> [Cl - ],<br />

and retardation <strong>of</strong> the added succ<strong>in</strong>imide on the reaction rate have been observed <strong>in</strong> acid medium. Variation<br />

<strong>of</strong> ionic strength <strong>of</strong> the medium shows negligible effect on rate <strong>of</strong> reaction <strong>in</strong> both media. Decrease <strong>in</strong><br />

dielectric permittivity <strong>of</strong> the medium decreased the rate <strong>in</strong> both media. The stoichiometry <strong>of</strong> the reaction<br />

was found to be 1:1 <strong>in</strong> acid medium and 1:2 <strong>in</strong> the case <strong>of</strong> alkal<strong>in</strong>e medium. The oxidation products <strong>of</strong> PEA<br />

were identified as the correspond<strong>in</strong>g aldehyde and nitrile <strong>in</strong> acid and alkal<strong>in</strong>e medium, respectively. The<br />

reactions were studied at different temperatures and the activation parameters have been evaluated. The<br />

reaction constants <strong>in</strong>volved <strong>in</strong> the proposed mechanisms were computed. The reaction was found to be<br />

faster <strong>in</strong> alkal<strong>in</strong>e medium <strong>in</strong> comparison <strong>with</strong> the acid medium, which is attributed to the <strong>in</strong>volvement <strong>of</strong><br />

different oxidiz<strong>in</strong>g species. The proposed mechanisms and the derived rate laws are consistent <strong>with</strong> the<br />

observed experimental results.<br />

Keywords: <strong>Oxidation</strong> k<strong>in</strong>etics; N-<strong>Bromosucc<strong>in</strong>imide</strong>; <strong>Acid</strong> and alkal<strong>in</strong>e media;<br />

2-<strong>Phenylethylam<strong>in</strong>e</strong>.<br />

INTRODUCTION<br />

2-<strong>Phenylethylam<strong>in</strong>e</strong> (PEA) is a naturally occurr<strong>in</strong>g<br />

endogenous am<strong>in</strong>e, which is present <strong>in</strong> several mammalian<br />

tissues 1 <strong>in</strong>clud<strong>in</strong>g the bra<strong>in</strong>. 2 2-<strong>Phenylethylam<strong>in</strong>e</strong> is formed<br />

by decarboxylation <strong>of</strong> am<strong>in</strong>o acid, L-phenylalan<strong>in</strong>e. 3 It<br />

crosses the presynaptic membrane and potentiates the postsynaptic<br />

effects <strong>of</strong> dopam<strong>in</strong>e. 4 PEA may act as neuromodulator<br />

<strong>of</strong> catecholam<strong>in</strong>e neurotransmission <strong>in</strong> the bra<strong>in</strong>. 4<br />

This bioactive am<strong>in</strong>e is also present <strong>in</strong> certa<strong>in</strong> foodstuffs<br />

such as chocolate, cheese and w<strong>in</strong>e and may cause undesirable<br />

side effects <strong>in</strong> susceptible <strong>in</strong>dividuals. 5 After review<strong>in</strong>g<br />

the literature we found that there was no <strong>in</strong>formation<br />

available on the oxidation k<strong>in</strong>etics <strong>of</strong> 2-phenylethylam<strong>in</strong>e<br />

<strong>with</strong> any oxidant. In view <strong>of</strong> its biological importance, the<br />

present study was undertaken to deal <strong>with</strong> the oxidation<br />

mechanism <strong>of</strong> PEA <strong>in</strong> acid and alkal<strong>in</strong>e media so that the<br />

study could throw some light on the fate <strong>of</strong> the compound<br />

<strong>in</strong> biological systems.<br />

N-bromosucc<strong>in</strong>imide (NBS) is a source <strong>of</strong> positive<br />

halogen, and this reagent has been selectively used as an<br />

oxidant for a variety <strong>of</strong> substrates <strong>in</strong> both acid and alkal<strong>in</strong>e<br />

media. 6-8 This potent oxidiz<strong>in</strong>g agent has been used <strong>in</strong> the<br />

oxidation <strong>of</strong> esters, 9 alcohols 10,11 and ketones. 12,13 In the<br />

present work the k<strong>in</strong>etics <strong>of</strong> oxidation <strong>of</strong> PEA <strong>with</strong> NBS <strong>in</strong><br />

acid and alkal<strong>in</strong>e media has been studied <strong>with</strong> a view to elucidate<br />

the mechanism <strong>of</strong> the reaction and to identify the reactive<br />

species <strong>of</strong> oxidant <strong>in</strong> acid and alkal<strong>in</strong>e media.<br />

RESULTS<br />

The oxidation <strong>of</strong> PEA <strong>with</strong> NBS was k<strong>in</strong>etically <strong>in</strong>vestigated<br />

at several <strong>in</strong>itial concentrations <strong>of</strong> the reactants<br />

<strong>in</strong> HCl and NaOH media. The salient features obta<strong>in</strong>ed <strong>in</strong><br />

these two media are discussed separately.<br />

K<strong>in</strong>etics <strong>of</strong> oxidation <strong>in</strong> acid medium<br />

Under pseudo-first-order conditions ([PEA] [NBS])<br />

at constant [HCl] and temperature, plots <strong>of</strong> log [NBS] vs.<br />

time were l<strong>in</strong>ear (r 0.994) <strong>in</strong>dicat<strong>in</strong>g a first-order dependence<br />

<strong>of</strong> rate on [NBS] o . The pseudo-first-order rate constants<br />

(k) calculated are given <strong>in</strong> Table 1. Further, the values<br />

<strong>of</strong> k calculated from these plots are unaltered <strong>with</strong> variation<br />

<strong>of</strong> [NBS] o , confirm<strong>in</strong>g the first-order dependence on<br />

[NBS] o . The rate <strong>in</strong>creased <strong>with</strong> <strong>in</strong>crease <strong>in</strong> [PEA] o (Table


1224 J. Ch<strong>in</strong>. Chem. Soc., Vol. 54, No. 5, 2007 Mohana and Ramdas Bhandarkar<br />

Table 1. Effect <strong>of</strong> vary<strong>in</strong>g concentrations <strong>of</strong> oxidant, substrate<br />

and HCl on the reaction rate at 313 K<br />

10 4 [NBS]<br />

(mol dm -3 )<br />

10 3 [PEA]<br />

(mol dm -3 )<br />

10 2 [HCl]<br />

(mol dm -3 )<br />

k 10 4<br />

(s -1 )<br />

1.0 08.0 5.0 3.62<br />

3.0 08.0 5.0 3.70<br />

5.0 08.0 5.0 3.56<br />

7.0 08.0 5.0 3.42<br />

9.0 08.0 5.0 3.67<br />

5.0 06.0 5.0 2.69<br />

5.0 10.0 5.0 4.60<br />

5.0 12.0 5.0 5.98<br />

5.0 14.0 5.0 6.81<br />

5.0 08.0 4.0 2.50<br />

5.0 08.0 6.0 4.79<br />

5.0 08.0 7.0 6.20<br />

5.0 08.0 9.0 8.87<br />

5.0* 08.0 5.0 3.62<br />

5.0** 08.0 5.0 3.66<br />

*ationicstrength() = 0.5 mol dm -3 and ** at = 0.75 mol dm -3<br />

1). A plot <strong>of</strong> log k vs. log [PEA] was l<strong>in</strong>ear (Fig. 1; r <br />

0.996) <strong>with</strong> the unit slope show<strong>in</strong>g first-order dependence<br />

<strong>of</strong> the rate on [PEA] o . Similarly, the rate <strong>of</strong> reaction <strong>in</strong>creased<br />

<strong>with</strong> <strong>in</strong>crease <strong>in</strong> [HCl] (Table 1). The order <strong>with</strong> respect<br />

to [HCl], as calculated from the slope <strong>of</strong> the plot <strong>of</strong><br />

log k vs. log [HCl], was found to be 1.31.<br />

The total [Cl - ] <strong>in</strong> the reaction mixture was kept constant<br />

at 0.15 mol dm -3 by add<strong>in</strong>g NaCl, then [H ] was varied<br />

by us<strong>in</strong>g HCl. The rate <strong>in</strong>creases <strong>with</strong> an <strong>in</strong>crease <strong>in</strong> [H ]<br />

(Table 2) and the plot <strong>of</strong> log k vs. log [H ] (Fig. 2) was<br />

found to be l<strong>in</strong>ear (r 0.999) <strong>with</strong> a unit slope <strong>in</strong>dicat<strong>in</strong>g<br />

first order dependence on [H ]. At constant [H ], addition<br />

Table 2. Effect <strong>of</strong> vary<strong>in</strong>g concentrations <strong>of</strong> H + and Cl - on the<br />

reaction rate at 313 K<br />

10 2 [H + ]<br />

(mol dm -3 )<br />

10 2 [Cl - ]<br />

(mol dm -3 )<br />

k 10 4<br />

(s -1 )<br />

3.0 15.0 03.27<br />

5.0 15.0 05.66<br />

7.0 15.0 08.04<br />

9.0 15.0 10.12<br />

10.0 15.0 11.39<br />

5.0 06.0 04.31<br />

5.0 08.0 04.72<br />

5.0 10.0 05.07<br />

5.0 12.0 05.37<br />

5.0 14.0 05.60<br />

[NBS] = 5 10 -4 mol dm -3 ;[PEA]=8 10 -3 mol dm -3 ; =0.25<br />

mol dm -3<br />

<strong>of</strong> chloride ions <strong>in</strong> the form <strong>of</strong> NaCl <strong>in</strong>creases the reaction<br />

rate and is shown <strong>in</strong> Table 2. From the plot <strong>of</strong> log k vs. log<br />

[Cl - ] (Fig. 2; r 0.999), the order <strong>with</strong> respect to [Cl - ]is<br />

found to be 0.32. Addition <strong>of</strong> succ<strong>in</strong>imide (NH) to the reaction<br />

mixture retards the rate (Table 3). Further, a plot <strong>of</strong> log<br />

k vs. log [NH] was l<strong>in</strong>ear (r 0.992) <strong>with</strong> a negative slope<br />

<strong>of</strong> 0.65 <strong>in</strong>dicat<strong>in</strong>g an <strong>in</strong>verse fractional-order dependence<br />

<strong>of</strong> the rate on [NH]. Variation <strong>of</strong> ionic strength <strong>of</strong> the medium<br />

(0.25-0.75 mol dm -3 ) and addition <strong>of</strong> mercuric acetate<br />

(0.001-0.01 mol dm -3 ) had no significant effect on the rate.<br />

Hence no attempt was made to keep ionic strength constant<br />

for k<strong>in</strong>etic runs.<br />

The effect <strong>of</strong> dielectric permittivity (D) on the reaction<br />

rate was studied by add<strong>in</strong>g various proportions <strong>of</strong><br />

Fig. 1. Plot <strong>of</strong> 4+logk versus 3+log[PEA].<br />

Fig. 2. Plot <strong>of</strong> 4+logk versus (2+log[H + ]) a or (2log<br />

[Cl - ]) b or (3log[OH - ]) c .


K<strong>in</strong>etics <strong>of</strong> <strong>Oxidation</strong> <strong>of</strong> 2-<strong>Phenylethylam<strong>in</strong>e</strong> J. Ch<strong>in</strong>. Chem. Soc., Vol. 54, No. 5, 2007 1225<br />

Table 3. Effect <strong>of</strong> vary<strong>in</strong>g concentration <strong>of</strong> succ<strong>in</strong>imide (NH) on<br />

the reaction rate <strong>in</strong> acid medium<br />

10 3 [NH] (mol dm -3 ) k 10 4 (s -1 )<br />

1.0 2.64<br />

2.0 1.75<br />

4.0 1.09<br />

5.0 0.91<br />

6.0 0.80<br />

[NBS] = 5 10 -4 mol dm -3 ;[PEA]=8 10 -3 mol dm -3 ;[HCl]=5<br />

10 -2 mol dm -3 ; = 0.25 mol dm -3 ; T = 313 K.<br />

CH 3 CN (0-20 v/v) to the react<strong>in</strong>g system. It was observed<br />

that an <strong>in</strong>crease <strong>in</strong> CH 3 CN composition decreased the rate<br />

and a plot <strong>of</strong> log k vs. log 1/D gave a straight l<strong>in</strong>e (r =<br />

0.999) <strong>with</strong> a negative slope (Fig. 3). The values are reported<br />

<strong>in</strong> Table 4. The values <strong>of</strong> permittivity for CH 3 CN-<br />

H 2 O mixtures are taken from the literature. 16,17 Blank experiments<br />

performed showed that CH 3 CN was not oxidized<br />

<strong>with</strong> NBS under the present experimental conditions. The<br />

reaction was studied at different temperatures (303-323 K),<br />

keep<strong>in</strong>g other experimental conditions constant. From the<br />

l<strong>in</strong>ear Arrhenius plot <strong>of</strong> log k vs. 1/T (Fig. 4; r 0.999), the<br />

values <strong>of</strong> activation parameters for the overall reaction<br />

were computed. The results are compiled <strong>in</strong> Table 5. Absence<br />

<strong>of</strong> free radicals dur<strong>in</strong>g the course <strong>of</strong> oxidation was<br />

confirmed when no polymerization was <strong>in</strong>itiated <strong>with</strong> addition<br />

<strong>of</strong> acrylonitrile solution to the reaction mixture.<br />

Table 4. Effect <strong>of</strong> vary<strong>in</strong>g dielectric permittivity <strong>of</strong> the medium<br />

on the reaction rate at 313 K<br />

%CH 3 CN<br />

(v/v)<br />

D<br />

<strong>Acid</strong> a<br />

k 10 4 (s -1 )<br />

Alkal<strong>in</strong>e b<br />

0 70.8 3.56 4.11<br />

5 69.0 2.72 3.61<br />

10 67.3 2.17 3.23<br />

15 65.7 1.70 2.87<br />

20 64.2 1.35 2.56<br />

a [NBS] = 5 10 -4 mol dm -3 ;[PEA]=8 10 -3 mol dm -3 ;[HCl]=<br />

5 10 -2 mol dm -3 ; = 0.25 mol dm -3 .<br />

b [NBS] = 5 10 -4 mol dm -3 ;[PEA]=8 10 -3 mol dm -3 ; [NaOH]<br />

=3 10 -2 mol dm -3 ; = 0.25 mol dm -3 .<br />

K<strong>in</strong>etics <strong>of</strong> oxidation <strong>in</strong> alkal<strong>in</strong>e medium<br />

With substrate <strong>in</strong> excess at constant [NaOH] and temperature,<br />

the [NBS] o was varied. Plots <strong>of</strong> log [NBS] vs.<br />

time were l<strong>in</strong>ear (r 0.998) <strong>in</strong>dicat<strong>in</strong>g a first-order dependence<br />

<strong>of</strong> the rate on [NBS] o . The pseudo first-order rate constants<br />

(k) obta<strong>in</strong>ed are listed <strong>in</strong> Table 6. The value <strong>of</strong> k <strong>in</strong>creased<br />

<strong>with</strong> an <strong>in</strong>crease <strong>in</strong> [PEA] o (Table 6), and a plot <strong>of</strong><br />

log k vs. log [PEA] was l<strong>in</strong>ear (Fig. 1; r = 0.999) <strong>with</strong> a<br />

slope <strong>of</strong> 0.58 <strong>in</strong>dicat<strong>in</strong>g a fractional-order dependence <strong>of</strong><br />

the rate on [PEA] o . Similarly, an <strong>in</strong>crease <strong>in</strong> [OH - ] <strong>in</strong>creased<br />

the rate (Table 6) and from the l<strong>in</strong>ear plot <strong>of</strong> log k vs. log<br />

[NaOH] (Fig. 2; r 0.998) an order <strong>of</strong> 0.76 was obta<strong>in</strong>ed<br />

and hence show<strong>in</strong>g the fractional-order dependence <strong>of</strong> rate<br />

on [NaOH].<br />

Addition <strong>of</strong> succ<strong>in</strong>imide (0.001-0.005 mol dm -3 ) and<br />

NaCl (0.005 mol dm -3 ) or variation <strong>of</strong> ionic strength <strong>of</strong> the<br />

medium us<strong>in</strong>g NaClO 4 solution (0.25-0.75 mol dm -3 )or<br />

mercuric acetate (0.001-0.01 mol dm -3 ) showed no significant<br />

effect on the rate. The rate decreased <strong>with</strong> <strong>in</strong>creas<strong>in</strong>g<br />

CH 3 CN content (0-20 v/v) and the results are shown <strong>in</strong><br />

Table 4. Plot <strong>of</strong> log k vs. 1/D was l<strong>in</strong>ear (Fig. 3; r 0.999)<br />

Fig. 3. Plot <strong>of</strong> 4+logk versus 10 2 /D.<br />

Fig. 4. Plot <strong>of</strong> 4+logk versus 10 3 /T.


1226 J. Ch<strong>in</strong>. Chem. Soc., Vol. 54, No. 5, 2007 Mohana and Ramdas Bhandarkar<br />

Table 5. Effect <strong>of</strong> vary<strong>in</strong>g temperature on the reaction rate and activation parameters for the<br />

oxidation <strong>of</strong> PEA<br />

k 10 4 (s -1 ) G (kJ mol -1 )<br />

Temperature (K)<br />

<strong>Acid</strong> Alkal<strong>in</strong>e <strong>Acid</strong> Alkal<strong>in</strong>e<br />

303 1.59 04.11 96.3 94.0<br />

308 2.36 05.11 96.9 95.0<br />

313 3.56 06.60 97.5 95.9<br />

318 5.25 08.65 98.0 96.7<br />

321 - 11.59 - 96.9<br />

323 7.68 - 98.6 -<br />

E a /kJ mol -1 64.9 42.9 - -<br />

H /kJ mol -1 62.3 40.4 - -<br />

S /J K -1 mol -1 -112.4 -177.0 - -<br />

[NBS] = 5 10 -4 mol dm -3 ;[PEA]=8 10 -3 mol dm -3 ; [HCl] = [NaOH] = 5 10 -2 mol dm -3 ;<br />

= 0.25 mol dm -3 .<br />

Table 6. Effect <strong>of</strong> vary<strong>in</strong>g concentrations <strong>of</strong> oxidant, substrate<br />

and alkali on the reaction rate at 313 K<br />

10 4 [NBS]<br />

(mol dm -3 )<br />

10 3 [PEA]<br />

(mol dm -3 )<br />

10 2 [NaOH] k 10 4 (s -1 )<br />

(mol dm -3 ) Experimental Calculated<br />

1.0 08.0 05.0 06.61 6.40<br />

3.0 08.0 05.0 06.58 6.40<br />

5.0 08.0 05.0 06.60 6.40<br />

7.0 08.0 05.0 06.64 6.40<br />

10.0 08.0 05.0 06.59 6.40<br />

5.0 02.0 05.0 02.89 2.61<br />

5.0 04.0 05.0 04.29 4.13<br />

5.0 06.0 05.0 05.45 5.41<br />

5.0 10.0 05.0 07.22 7.20<br />

5.0 12.0 05.0 08.18 7.96<br />

5.0 08.0 01.0 01.46 1.48<br />

5.0 08.0 03.0 04.11 4.28<br />

5.0 08.0 07.0 07.78 7.60<br />

5.0 08.0 10.0 10.67 9.98<br />

5.0* 08.0 05.0 06.71 -<br />

5.0** 08.0 05.0 06.69 -<br />

5.0 a 08.0 05.0 06.71 -<br />

5.0 b 08.0 05.0 06.72 -<br />

*At =0.5moldm -3 and ** at = 0.75 mol dm -3<br />

a [NH] = 0.002 mol dm -3 . b [NH] = 0.006 mol dm -3 .<br />

<strong>with</strong> a negative slope. Blank experiments performed <strong>in</strong>dicated<br />

that CH 3 CN was not oxidized <strong>with</strong> NBS under the experimental<br />

conditions employed. K<strong>in</strong>etic and thermodynamic<br />

parameters were calculated by study<strong>in</strong>g the reaction<br />

at different temperatures (303-321 K). A plot <strong>of</strong> log k vs.<br />

1/T was l<strong>in</strong>ear (Fig. 4; r 0.993). These results are given <strong>in</strong><br />

Table 5. Absence <strong>of</strong> free radicals <strong>in</strong> the reaction mixture<br />

has been demonstrated by the acrylonitrile test.<br />

DISCUSSION<br />

It has been shown 18-20 that probable reactive species<br />

<strong>of</strong> NBS <strong>in</strong> acid solution are NBS itself or Br + or protonated<br />

NBS viz., N + BSH, and the reactive species <strong>in</strong> alkal<strong>in</strong>e solutions<br />

are NBS, HOBr or OBr - . It may be po<strong>in</strong>ted out that all<br />

k<strong>in</strong>etic studies have been made <strong>in</strong> the presence <strong>of</strong> mercuric<br />

acetate <strong>in</strong> order to avoid any possible brom<strong>in</strong>e oxidation,<br />

which may be produced as follows:<br />

O<br />

O<br />

NBr<br />

+ HBr NH<br />

+ Br2<br />

Mercuric acetate acts as a capture agent for any Br -<br />

formed <strong>in</strong> the reaction and exists as HgBr 4 2 or unionized<br />

HgBr 2 and ensures that oxidation takes place purely through<br />

NBS. 21,22<br />

Mechanism and rate law <strong>in</strong> acid medium<br />

NBS is known to exist <strong>in</strong> acid medium <strong>in</strong> the follow<strong>in</strong>g<br />

equilibria:<br />

>NBr + H2 O NH + HOBr<br />

+<br />

+<br />

>NBr + H<br />

NHBr<br />

>NBr + H + NH +<br />

+<br />

Br<br />

Br+ + HO 2<br />

( HOBr) +<br />

(1)<br />

(2)<br />

(3)<br />

(4)<br />

(5)<br />

In the present studies the positive effect <strong>of</strong> [H + ]onthe<br />

2<br />

O<br />

O


K<strong>in</strong>etics <strong>of</strong> <strong>Oxidation</strong> <strong>of</strong> 2-<strong>Phenylethylam<strong>in</strong>e</strong> J. Ch<strong>in</strong>. Chem. Soc., Vol. 54, No. 5, 2007 1227<br />

reaction rate observed allows us to assume either protonated Scheme II<br />

NBS i.e., N + BSH or Br + or (H 2 OBr) + as active oxidiz<strong>in</strong>g<br />

+<br />

K5<br />

species, and negative effect <strong>of</strong> the <strong>in</strong>itially added product,<br />

+<br />

NBS + H NH + Br fast<br />

(i)<br />

K k k<br />

+<br />

dipole and a negative slope for a negative ion-dipole or dipole-dipole<br />

<strong>in</strong>teractions. In the present <strong>in</strong>vestigations, a<br />

k'<br />

1 2 3 [H ][S]<br />

= (9)<br />

k-2 + k 3 [NH]<br />

succ<strong>in</strong>imide restricts us to take Br + as the oxidiz<strong>in</strong>g species.<br />

+ k6<br />

On the basis <strong>of</strong> the above discussions and observed k<strong>in</strong>etic Br + S X<br />

fast<br />

(ii)<br />

- 6<br />

data, a probable mechanism (Scheme I) is proposed for the<br />

- k<br />

X + Cl<br />

7<br />

X<br />

oxidation <strong>of</strong> PEA.<br />

slow and rds (iii)<br />

k8<br />

X' + HO<br />

(iv)<br />

2 Products fast<br />

Scheme I<br />

NBS +<br />

+<br />

H<br />

K1<br />

NH +<br />

+<br />

Br fast (i) From slow step <strong>in</strong> Scheme II,<br />

+<br />

Br + S<br />

k2<br />

k_ 2<br />

X<br />

fast (ii) rate = k 7 [X] [Cl - ] (10)<br />

X<br />

k<br />

3<br />

X' slow and rds (iii) Apply<strong>in</strong>g steady state approximation for the species X, and<br />

k<br />

by solv<strong>in</strong>g [X], one obta<strong>in</strong>s,<br />

4<br />

X' + H O<br />

Products fast (iv)<br />

2<br />

+<br />

K k<br />

1 2[NBS][H ][S]<br />

[X] =<br />

(11)<br />

k-2 + k 3 [Cl<br />

-<br />

][NH]<br />

In Scheme I, S is the substrate, X is a Br + -S complex<br />

By substitut<strong>in</strong>g [X] from equation (11) <strong>in</strong>to equation (10),<br />

species and X is another <strong>in</strong>termediate complex species<br />

the follow<strong>in</strong>g rate law (equation 12) is obta<strong>in</strong>ed:<br />

whose structures are shown <strong>in</strong> Scheme III, where a detailed<br />

+<br />

mechanistic <strong>in</strong>terpretation <strong>of</strong> PEA oxidation by NBS <strong>in</strong><br />

K k [NBS][H ][S][Cl - ]<br />

1 2k rate<br />

3<br />

=<br />

(12)<br />

acid medium is proposed.<br />

k-2 + k 3 [Cl<br />

-<br />

][NH]<br />

Step (iii) <strong>of</strong> Scheme I determ<strong>in</strong>es the overall rate,<br />

rate = k 3 [X] (6)<br />

The rate law (12) clearly demonstrates the fractional<br />

order dependence <strong>of</strong> the rate on [Cl - ] and retardation <strong>of</strong> the<br />

rate by added succ<strong>in</strong>imide and is also <strong>in</strong> good agreement<br />

Apply<strong>in</strong>g steady state condition for X, it can be shown that,<br />

<strong>with</strong> the experimental results.<br />

S<strong>in</strong>ce rate = k [NBS], equation (12) can be transferred<br />

<strong>in</strong>to equation (13).<br />

+<br />

K k [NBS][H ][S]<br />

[X]<br />

1 2<br />

=<br />

(7)<br />

k-2 + k 3 [NH]<br />

+<br />

Kk [Cl<br />

-<br />

2 k 3 [H][S] ]<br />

k'<br />

1<br />

=<br />

(13)<br />

On substitut<strong>in</strong>g equation (7) <strong>in</strong> equation (6), the follow<strong>in</strong>g<br />

k -2 [NH] + k 3 [Cl<br />

-<br />

][NH]<br />

rate law [equation (8)] is obta<strong>in</strong>ed:<br />

Laidler and Ery<strong>in</strong>gs 23 have described the effect <strong>of</strong><br />

<br />

K1k 2k 3[NBS][H ][S]<br />

vary<strong>in</strong>g solvent composition on the reaction k<strong>in</strong>etics <strong>in</strong> detail.<br />

For the limit<strong>in</strong>g case <strong>of</strong> zero angle <strong>of</strong> approach be-<br />

rate = (8)<br />

k<br />

2[NH] k<br />

3[NH]<br />

tween two dipoles or an ion-dipole system, Emis 24 has<br />

S<strong>in</strong>ce rate k [NBS], rate law (8) can be transferred <strong>in</strong>to<br />

shown that a plot <strong>of</strong> log k vs. 1/D gives a straight l<strong>in</strong>e <strong>with</strong><br />

equation (9).<br />

a positive slope for a reaction <strong>in</strong>volv<strong>in</strong>g a positive ion and a<br />

plot <strong>of</strong> log k vs 1/D was l<strong>in</strong>ear <strong>with</strong> a negative slope. This<br />

Rate law (8) is <strong>in</strong> good agreement <strong>with</strong> the experimental results<br />

observed.<br />

observation <strong>in</strong>dicates the ion-dipole nature <strong>of</strong> the rate-determ<strong>in</strong><strong>in</strong>g<br />

step <strong>in</strong> the reaction sequence and also po<strong>in</strong>ts to<br />

In the presence <strong>of</strong> chloride ion at constant [H + ],<br />

the extend<strong>in</strong>g <strong>of</strong> the charge <strong>in</strong> the transition state. The <strong>in</strong>hibition<br />

<strong>of</strong> succ<strong>in</strong>imide on the rate suggests its<br />

Scheme II is proposed for the reaction mechanism.<br />

<strong>in</strong>volvement<br />

k


1228 J. Ch<strong>in</strong>. Chem. Soc., Vol. 54, No. 5, 2007 Mohana and Ramdas Bhandarkar<br />

Scheme III<br />

<strong>in</strong> a fast equilibrium prior to the rate-determ<strong>in</strong><strong>in</strong>g step. The<br />

fairly high positive values <strong>of</strong> Gibbs energy <strong>of</strong> activation<br />

and enthalpy <strong>of</strong> activation <strong>in</strong>dicate that the transition state<br />

is highly solvated. The large negative S suggests the formation<br />

<strong>of</strong> a compact activated complex <strong>with</strong> a reduction <strong>in</strong><br />

the degrees <strong>of</strong> freedom <strong>of</strong> molecules.<br />

Mechanism and rate law <strong>in</strong> alkal<strong>in</strong>e medium<br />

NBS is a two equivalent oxidant, which oxidizes many<br />

substrates through NBS itself, or hypobromite anion. 25-27<br />

The reaction exhibits 1:2 stoichiometry <strong>of</strong> PEA and NBS<br />

<strong>with</strong> unit order dependence on [NBS]. Increase <strong>in</strong> rate <strong>with</strong><br />

<strong>in</strong>creas<strong>in</strong>g [OH - ] can be well-expla<strong>in</strong>ed 27 by the formation


K<strong>in</strong>etics <strong>of</strong> <strong>Oxidation</strong> <strong>of</strong> 2-<strong>Phenylethylam<strong>in</strong>e</strong> J. Ch<strong>in</strong>. Chem. Soc., Vol. 54, No. 5, 2007 1229<br />

<strong>of</strong> oxidant species such as OBr - <strong>in</strong> the follow<strong>in</strong>g equilibrium:<br />

results observed.<br />

S<strong>in</strong>ce rate = k [NBS] t , equation (19) can be transferred<br />

<strong>in</strong>to equations (20) and (21).<br />

-<br />

NBS+OH - NH + OBr - (14)<br />

K [S][OH k'<br />

9K 10 k 11 ]<br />

=<br />

Insignificant effect <strong>of</strong> the added succ<strong>in</strong>imide on the rate can<br />

[H O]+ [OH<br />

-<br />

2 K9 ] + K 9 K 10 [S][OH ]<br />

K [NBS] [S][OH ]<br />

rate<br />

9K10k 11 t<br />

=<br />

(19)<br />

[H O] + [OH<br />

-<br />

2 K9 ] + K 9 K 10 [S][OH ]<br />

be attributed to the <strong>in</strong>volvement <strong>of</strong> the reactive species,<br />

1<br />

OBr - <strong>in</strong> the equilibrium below,<br />

k' = [H2O]<br />

K [S][OH]<br />

1<br />

+ +<br />

9K 10k 11<br />

K 10 k 11 [S]<br />

1<br />

HOBr + OH - OBr - +H 2 O (15)<br />

Hence, OBr - reacts <strong>with</strong> the substrate (S) to form a complex<br />

(X), which decomposes <strong>in</strong> a rate-limit<strong>in</strong>g step to give an <strong>in</strong>termediate<br />

(X). This <strong>in</strong>termediate reacts <strong>with</strong> one more<br />

molecules <strong>of</strong> the active species <strong>of</strong> oxidant <strong>in</strong> the fast step to<br />

give the products shown <strong>in</strong> Scheme IV. A detailed mechanistic<br />

<strong>in</strong>terpretation is shown <strong>in</strong> Scheme V.<br />

Scheme IV<br />

HOBr + OH<br />

K9<br />

OBr - + HO 2 fast (i)<br />

OBr - K 10<br />

+ S<br />

X<br />

fast (ii)<br />

X' +<br />

X<br />

HOBr<br />

k11<br />

k12<br />

X'<br />

Products<br />

slow and rds<br />

fast<br />

(iii)<br />

(iv)<br />

From the slow step <strong>of</strong> Scheme IV,<br />

rate = k 11 [X] (16)<br />

The total effective concentration <strong>of</strong> NBS is [NBS] t , then<br />

[NBS] t = [OBr - ] + [HOBr] + [X] (17)<br />

Solv<strong>in</strong>g for [HOBr] and [OBr - ] from steps (i) and (ii), one<br />

obta<strong>in</strong>s,<br />

K [NBS][S][OH 9K 10 t ]<br />

[X] =<br />

[H O] + K [OH<br />

-<br />

2 9 ] + K 9 K 10 [S][OH ]<br />

(18)<br />

By substitut<strong>in</strong>g [X] from equation (18) <strong>in</strong>to equation (16)<br />

one obta<strong>in</strong>s the follow<strong>in</strong>g rate law:<br />

Rate law (19) is <strong>in</strong> good agreement <strong>with</strong> the experimental<br />

(20)<br />

(21)<br />

Accord<strong>in</strong>g to equation (21), the plots <strong>of</strong> 1/k vs. 1/[S]<br />

(r = 0.995) and 1/k vs. 1/[OH - ](r 0.999) should be l<strong>in</strong>ear<br />

which is verified (Fig. 5). From the slopes and <strong>in</strong>tercepts <strong>of</strong><br />

such plots and [H 2 O] 55.56 mol dm -3 , the values <strong>of</strong> K 9 ,<br />

K 10 and k 11 were calculated. Us<strong>in</strong>g these values <strong>in</strong> rate<br />

equation (20), the rate constants under different conditions<br />

were calculated and compared <strong>with</strong> experimental values<br />

given <strong>in</strong> Table 6. There is a reasonable agreement between<br />

calculated and experimental rate constants.<br />

The negligible <strong>in</strong>fluence <strong>of</strong> the ionic strength <strong>of</strong> the<br />

medium and <strong>of</strong> the added halide ions is consistent <strong>with</strong> the<br />

proposed mechanism. The negative dielectric effect observed<br />

<strong>in</strong> the alkal<strong>in</strong>e medium shows charge dispersal <strong>in</strong><br />

the transition state, <strong>in</strong>dicat<strong>in</strong>g a negative ion-dipole <strong>in</strong>teraction<br />

<strong>in</strong> the rate-limit<strong>in</strong>g step. The sign and magnitude <strong>of</strong><br />

S as observed suggested that the activated complex is<br />

more compact than the ground state. The positive free energy<br />

<strong>of</strong> activation shows that the transition state is highly<br />

solvated.<br />

Fig. 5. Plot <strong>of</strong> 10 3 /k versus (10 2 /[PEA]) a or (10 2 /<br />

[OH - ]) b .<br />

k 11


1230 J. Ch<strong>in</strong>. Chem. Soc., Vol. 54, No. 5, 2007 Mohana and Ramdas Bhandarkar<br />

Scheme V<br />

EXPERIMENTAL<br />

An aqueous solution <strong>of</strong> NBS was prepared afresh<br />

each day from a G. R. Merck sample <strong>of</strong> the reagent, and its<br />

strength was checked by the iodometric method. 6 Analar<br />

grade 2-phenylethylam<strong>in</strong>e (Himedia) was used as received.<br />

All other reagents, namely hydrochloric acid, sodium perchlorate,<br />

mercuric acetate, succ<strong>in</strong>imide and sodium hydroxide,<br />

were <strong>of</strong> Analar grade. Doubly distilled water was<br />

used throughout the <strong>in</strong>vestigations.<br />

K<strong>in</strong>etic Measurements<br />

All k<strong>in</strong>etic measurements were performed <strong>in</strong> glass<br />

stoppered Pyrex boil<strong>in</strong>g tubes coated black to elim<strong>in</strong>ate<br />

photochemical effects. The reactions were carried out under<br />

pseudo first-order conditions by tak<strong>in</strong>g a known excess<br />

<strong>of</strong> [PEA] o over [NBS] o at 313 K. Appropriate amounts <strong>of</strong><br />

PEA, HCl or NaOH solutions, mercuric acetate, sodium<br />

perchlorate and water to keep the total volume constant<br />

were equilibrated at constant temperature ( 0.1 C). A<br />

measured amount <strong>of</strong> NBS solution also pre-equilibrated at<br />

the same temperature was rapidly added to the mixture. The<br />

progress <strong>of</strong> the reaction was monitored by estimat<strong>in</strong>g the<br />

amount <strong>of</strong> unconsumed NBS at regular time <strong>in</strong>tervals iodometrically.<br />

The course <strong>of</strong> reaction was studied for at least<br />

two half lives. The pseudo first-order rate constants (k),<br />

calculated from the l<strong>in</strong>ear plots <strong>of</strong> log [NBS] vs. time were<br />

reproducible <strong>with</strong><strong>in</strong> 4%. Regression analysis <strong>of</strong> the experimental<br />

data to obta<strong>in</strong> the regression co-efficient, r, was<br />

performed us<strong>in</strong>g an fx-570 MS scientific calculator.


K<strong>in</strong>etics <strong>of</strong> <strong>Oxidation</strong> <strong>of</strong> 2-<strong>Phenylethylam<strong>in</strong>e</strong> J. Ch<strong>in</strong>. Chem. Soc., Vol. 54, No. 5, 2007 1231<br />

Stoichiometry and Product Analysis<br />

Reaction mixtures conta<strong>in</strong><strong>in</strong>g vary<strong>in</strong>g ratios <strong>of</strong> NBS<br />

and PEA <strong>in</strong> the presence <strong>of</strong> 0.05 mol dm -3 HCl or NaOH at<br />

313 K were kept aside for 24 h, so that the substrate was<br />

completely converted <strong>in</strong>to products. Estimation <strong>of</strong> the unreacted<br />

NBS showed that one mole <strong>of</strong> substrate utilized one<br />

mole <strong>of</strong> oxidant <strong>in</strong> acid medium and one mole <strong>of</strong> substrate<br />

reacted <strong>with</strong> two moles <strong>of</strong> oxidant <strong>in</strong> alkal<strong>in</strong>e medium. The<br />

observed stoichiometry may be represented by the equations<br />

(1) and (2).<br />

where<br />

RNBr + RCH 2 CH 2 NH 2 +H 2 O <br />

RCH 2 CHO+RNH+NH 3 +H + +Br - (22)<br />

2RNBr + RCH 2 CH 2 NH 2 <br />

RCH 2 CN+2RNH+2H + + 2Br - (23)<br />

R = (CH 2 CO) 2 ;R =C 6 H 5 .<br />

The reduction product <strong>of</strong> NBS, succ<strong>in</strong>imide (NH),<br />

was detected by the method reported elsewhere. 14 The reaction<br />

mixture was extracted <strong>with</strong> ether and the oxidation<br />

product <strong>of</strong> PEA was found to be 2-phenylacetaldehyde <strong>in</strong><br />

acid medium and 2-phenylacetonitrile <strong>in</strong> the case <strong>of</strong> alkal<strong>in</strong>e<br />

medium. The aldehyde was detected by conventional<br />

spot tests 14 and also by 2,4-DNP derivatives. The nitrile<br />

was identified by its colour reactions 15 <strong>with</strong> hydroxylam<strong>in</strong>e<br />

and ferric chloride. Furthermore, the presence <strong>of</strong> aldehyde<br />

and nitrile was confirmed by their IR absorption bands<br />

1720 cm -1 (C=O stretch), 2850 cm -1 (aldehydic C-H stretch)<br />

2274 cm -1 (CN stretch) and 3025 cm -1 (aromatic C-H<br />

stretch).<br />

CONCLUSION<br />

In conclusion, the stoichiometry and products <strong>of</strong> oxidation<br />

<strong>of</strong> 2-phenylethylam<strong>in</strong>e <strong>with</strong> NBS <strong>in</strong> acid and alkal<strong>in</strong>e<br />

media are different. K<strong>in</strong>etic studies <strong>in</strong> acid medium reveal<br />

that Br + as active oxidant species oxidizes the substrate<br />

to the correspond<strong>in</strong>g aldehyde. In alkal<strong>in</strong>e medium<br />

the reaction takes place between the substrate and OBr - to<br />

form the correspond<strong>in</strong>g nitrile. The magnitude <strong>of</strong> the two<br />

activation energies (Table 4) <strong>in</strong>dicates that the PEA-NBS<br />

oxidation is faster <strong>in</strong> alkal<strong>in</strong>e medium compared to acid<br />

medium. The different active oxidiz<strong>in</strong>g species <strong>in</strong>volved <strong>in</strong><br />

the two media are responsible for the difference <strong>in</strong> activity.<br />

Hence, the k<strong>in</strong>etics <strong>of</strong> oxidation <strong>of</strong> PEA <strong>with</strong> NBS is more<br />

facile <strong>in</strong> alkal<strong>in</strong>e medium <strong>in</strong> comparison <strong>with</strong> acid medium.<br />

ACKNOWLEDGEMENTS<br />

The authors are thankful to University <strong>of</strong> Mysore,<br />

Mysore for f<strong>in</strong>ancial support.<br />

Received November 30, 2006.<br />

REFERENCES<br />

1. Nakajima, T.; Kakimoto, Y.; Sano, I. J. Pharmacol. Exp.<br />

Therap. 1964, 143, 314.<br />

2. Henry, D. P.; Russell, W. L.; Clemens, J. A.; Plebus, L. A. In<br />

Trace Am<strong>in</strong>es: Comparative and Cl<strong>in</strong>ical Neurobiology;<br />

Boulton, A. A., Ed.; Humana Press: Clifton, 1988; pp<br />

239-250.<br />

3. Dyck, L. E.; Yang, C. R.; Boulton, A. A. J. Neurochem. Res.<br />

1983, 10,211.<br />

4. Barroso, N.; Rodriguez, M. E. J. Pharmacol. 1996, 297, 195.<br />

5. Mart<strong>in</strong>, J. G.; Yee, M. M. Pediatr. Neurol. 2003, 28,9.<br />

6. Mathur, N. K.; Narang, C. R. The Determ<strong>in</strong>ation <strong>of</strong> Organic<br />

Compounds <strong>with</strong> N-bromosucc<strong>in</strong>imide; Academic Press:<br />

New York, 1975.<br />

7. Filler, R. Chem. Rev. 1963, 63, 21.<br />

8. Kamble, D. L.; Nandibewoor, S. T. Polish. J. Chem. 1997,<br />

71, 91.<br />

9. Radhakrishnamurthy, P. S.; Pati, S. C. J. Indian Chem. Soc.<br />

1969, 66(9), 847.<br />

10. Sr<strong>in</strong>ivasan, N. S.; Venkatasubramanian, N. Indian J. Chem.<br />

1971, 9, 726.<br />

11. Venkatasubramanian, N.; Thiagarajan, V. Can. J. Chem.<br />

1969, 47, 694.<br />

12. Pandey, L.; S<strong>in</strong>gh, K.; Mushran, S. P. Curr. Sci. 1978,<br />

47(17), 611.<br />

13. S<strong>in</strong>gh, K.; Tiwari, J. N.; Mushran, S. P. Int. J. Chem. K<strong>in</strong>et.<br />

1978, 10, 995.<br />

14. Fegiel, F.; Anger, V. Spot Tests <strong>in</strong> Organic Analysis;<br />

Elsevier: New York, 1975; pp 132, 195, 203.<br />

15. Soloway, S.; Lipschietz, A. Anal. Chem. 1952, 24, 898.<br />

16. Sreekumar, T. K.; Rajendran, G.; Kalidas, C. Indian J.<br />

Chem. 1992, 31A, 782.<br />

17. Niazi, S. K.; Ali, J. Bull. Chem. Soc. Jpn. 1990, 63, 3619.<br />

18. Berl<strong>in</strong>er, E. J. Chem. Edu. 1966, 43(3), 124.


1232 J. Ch<strong>in</strong>. Chem. Soc., Vol. 54, No. 5, 2007 Mohana and Ramdas Bhandarkar<br />

19. Bharat S<strong>in</strong>gh; Pandey, L.; Sharma, J.; Pandey, S.-M.<br />

Tetrahedran 1982, 38, 169.<br />

20. Thimmegowda, B.; Ishwara Bhat, J. Indian J. Chem. 1989,<br />

28A, 43.<br />

21. Bailer, J. C. The Chemistry <strong>of</strong> Coord<strong>in</strong>ation Compounds;<br />

Re<strong>in</strong>hold: New York, 1956; p 4.<br />

22. Gopalakrishnan, G.; Rai, B. R.; Venkatasubramanian, N. Indian<br />

J. Chem. 1980, 19B, 293.<br />

23. Laidler, K. J.; Eyr<strong>in</strong>gs, H. Am. N.Y. Acad. Sci. 1940, 39, 303;<br />

Laidler, K. J. Reaction K<strong>in</strong>etics; Pergamon: New York,<br />

1963.<br />

24. Emis, E. M. Solvent Effects on Reaction Rates and Mechanisms;<br />

Academic Press: New York, 1966.<br />

25. Saroja, P.; Kishore Kumar, B.; Sushma Kandlikar, Indian J.<br />

Chem. 1989, 28A, 501.<br />

26. Kamble, D. L.; Chougale, R. B.; Nandibewoor, S. T. Indian<br />

J. Chem. 1996, 35A, 865.<br />

27. Mavalangi, S. K.; Kembhavi, M. R.; Nandibewoor, S. T.<br />

Turk. J. Chem. 2001, 25, 355.<br />

28. Kamble, D. L.; Hugar, G. H.; Nandibewoor, S. T. Indian J.<br />

Chem. 1996, 35A, 144.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!