29.01.2015 Views

Mesoscopic quantum measurements

Mesoscopic quantum measurements

Mesoscopic quantum measurements

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Mesoscopic</strong> <strong>quantum</strong> <strong>measurements</strong><br />

D.V. Averin<br />

Department of Physics and Astronomy,<br />

SUNY, Stony Brook<br />

A. Di Lorentzo, K. Rabenstein, V.K. Semenov<br />

D. Shepelyanskii, E.V. Sukhorukov


Summary<br />

α 0 + β 1<br />

Example of the trivial wavefunction<br />

reduction:<br />

Basic understanding of <strong>quantum</strong><br />

<strong>measurements</strong>:<br />

the measurement process is<br />

``decoherence with an output’’;<br />

reduction of the wave-function is<br />

a classically trivial act of picking<br />

one random outcome out of several<br />

possibilities.<br />

``Quantum measurement<br />

problem’’: wave function is<br />

typically reduced in an unusual<br />

way, not compatible with the<br />

Schrödinger equation.


Outline<br />

1. Basics<br />

- superconductor and semiconductor single-charge qubits<br />

- QPC as a <strong>quantum</strong> detector<br />

- ideal <strong>quantum</strong> detectors: trade-off between information<br />

gain and back-action dephasing in <strong>quantum</strong> <strong>measurements</strong><br />

2. Dynamics of <strong>quantum</strong> <strong>measurements</strong><br />

- linear<br />

- quadratic


R.A. Millikan, Phys. Rev. (Ser. I)<br />

32, 349 (1911).


Quantum dynamics of Josephson<br />

junctions<br />

• Superconductor can be thought of as a BEC of Cooper pairs:<br />

one single-particle state<br />

Ψ =<br />

iϕ<br />

ne<br />

occupied with macroscopic number of particles. The phase φ<br />

and the number of particles n are conjugate <strong>quantum</strong> variables<br />

(Anderson, 64; Ivanchenko, Zil’berman, 65):<br />

[n,ϕ] =i.<br />

This relation describes dynamics of addition or removal of<br />

particles to/from the condensate.


• If <strong>quantum</strong> fluctuations of phase φ become large, junction<br />

behavior can be described as a semiclassical dynamics of charge<br />

that leads to controlled transfer of individual Cooper pairs<br />

(D.V. Averin, A.B. Zorin, and K.K. Likharev, 1985):<br />

H<br />

2<br />

= −E<br />

∂ / ∂ϕ<br />

− E cosϕ<br />

=<br />

=<br />

E<br />

C<br />

C<br />

( n − q)<br />

2<br />

2<br />

−<br />

E<br />

J<br />

J<br />

2(<br />

n<br />

n ± 1<br />

+<br />

n ± 1<br />

n<br />

),<br />

E C ≡ (2e)<br />

2<br />

2C<br />

.<br />

2<br />

1.0<br />

(a)<br />

E C<br />

/E J<br />

= 10<br />

(b)<br />

ε 0<br />

/E J<br />

1<br />

0<br />

6<br />

3<br />

1<br />

<br />

0.5<br />

−1<br />

0.5<br />

−0.5 −0.3 −0.1 0.1 0.3 0.5<br />

q=V g<br />

C/2e<br />

0.0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

q


Cooper-pair box as charge qubit<br />

If a small Josephson junction is biased through a capacitor not<br />

resistor, one obtains configuration of a ``Cooper-pair box’’<br />

(M. Buttiker, 1987, H. Pothier et al., 1989) which avoids the problem of<br />

electromagnetic environment.<br />

For E J


Coherent oscillations in two coupled charge qubits<br />

a<br />

reservoir 2<br />

reservoir 1<br />

probe 2<br />

coupling<br />

island<br />

probe 1<br />

aI 2<br />

( pA)<br />

I 1<br />

(pA)<br />

4<br />

3<br />

13.4 GHz<br />

box 2 box 1<br />

dc gate 2<br />

pulse gate dc gate 1<br />

1µ<br />

m<br />

b E J2, CJ 2 E J1, CJ1<br />

C b2 C b1<br />

V b2 V b1<br />

C m<br />

C g2<br />

C p<br />

C C<br />

p<br />

g1<br />

V g2<br />

V g1<br />

V p<br />

b<br />

c<br />

I 1<br />

(pA)<br />

d<br />

I 2<br />

(pA)<br />

2<br />

5<br />

4<br />

3<br />

2<br />

1<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

∆t(ns)<br />

Yu. A. Pashkin et al., Nature 421, 823 (2003).<br />

9.1 GHz<br />

0 10 20 30<br />

f(GHz)


Oscillations of probability p j to have a Cooper on the box j=1,2:<br />

2 2<br />

2<br />

1 ⎡<br />

E<br />

1,2 2,1<br />

4<br />

⎤<br />

J<br />

− EJ<br />

+ Em<br />

p1 ,2(1)<br />

= ⎢1<br />

− cos( Ωt)cos(<br />

εt)<br />

−<br />

sin( Ωt)sin(<br />

εt)<br />

⎥,<br />

2 ⎣<br />

4Ωε<br />

⎦<br />

Ω =<br />

2 2 2<br />

( ∆ ) 1/<br />

,<br />

+ E m<br />

2 2 2<br />

( ) 1/<br />

,<br />

δ ∆ = ( E + E ) 2.<br />

ε = δ + E m<br />

= ( EJ<br />

2<br />

− EJ1) 2,<br />

1.0<br />

J1 J 2<br />

Entanglement between the qubits in the process<br />

of oscillations<br />

1<br />

E = 1−<br />

∑ p±<br />

log2 p±<br />

, p±<br />

= 1±<br />

1−<br />

r ,<br />

2<br />

±<br />

E<br />

0.5<br />

r<br />

= 1 2<br />

2<br />

4<br />

Em<br />

2 Em<br />

2 2Em<br />

2<br />

[ 1−<br />

sin ( Ωt)<br />

− sin ( εt)<br />

+ sin ( Ωt)sin<br />

2 ( εt)<br />

+<br />

2<br />

2<br />

2 2<br />

2 Ω<br />

ε<br />

Ω ε<br />

+<br />

∆<br />

2<br />

Ω<br />

2<br />

m<br />

4<br />

E<br />

sin<br />

4<br />

δ<br />

( Ωt)<br />

+<br />

ε<br />

2 2<br />

Em<br />

4<br />

sin<br />

4<br />

( εt)<br />

+<br />

2<br />

m<br />

E<br />

sin(2Ωt)sin(2εt<br />

2Ωε<br />

0.0<br />

)]<br />

0.0 5.0 10.0<br />

t∆/2π<br />

1/ 2<br />

.


Quantum-dot qubits<br />

J.M. Elzerman et al., PRB 767, 161308 (2003).


Quantum antidot qubits<br />

G j<br />

- control gates<br />

Ω- inter-QAD tunnel<br />

amplitude<br />

ε - quasiparticle<br />

"localization"<br />

energy<br />

• Information encoded in the position of a<br />

quasiparticle in the system of two antidots.<br />

• Adiabatic level-crossing dynamics can be used to<br />

transfer quasiparticles between the antidots.<br />

• Conditions of operation: T


Fractional Charge of Laughlin Quasiparticles<br />

V.J. Goldman and B. Su, 1995


Invariance of the quasiparticle charge<br />

V.J. Goldman et al., PRB 64, 085319 (01).


Antidot transport of the FQHE quasiparticles<br />

Antidot ``molecule’’ demonstrates coherent quasiparticle<br />

transport in the double-antidot system<br />

I.J.Maasilta and V.J. Goldman, PRL 84, 1776 (00).


Quantum point contacts (QPC)<br />

M. Field et al., PRL 70, 1311 (1993).<br />

E. Buks et al., Nature 391, 871 (1999).


<strong>Mesoscopic</strong> <strong>quantum</strong> <strong>measurements</strong> II<br />

D.V. Averin<br />

Department of Physics and Astronomy,<br />

SUNY, Stony Brook<br />

A. Di Lorentzo, K. Rabenstein, V.K. Semenov<br />

D. Shepelyanskii, E.V. Sukhorukov


Summary<br />

α 0 + β 1<br />

Example of the trivial wavefunction<br />

reduction:<br />

Basic understanding of <strong>quantum</strong><br />

<strong>measurements</strong>:<br />

the measurement process is<br />

``decoherence with an output’’;<br />

reduction of the wave-function is<br />

a classically trivial act of picking<br />

one random outcome out of several<br />

possibilities.<br />

``Quantum measurement<br />

problem’’: wave function is<br />

typically reduced in an unusual<br />

way, not compatible with the<br />

Schrödinger equation.


Outline<br />

1. Basics<br />

- superconductor and semiconductor single-charge qubits<br />

- QPC as a <strong>quantum</strong> detector<br />

- ideal <strong>quantum</strong> detectors: trade-off between information<br />

gain and back-action dephasing in <strong>quantum</strong> <strong>measurements</strong><br />

2. Dynamics of <strong>quantum</strong> <strong>measurements</strong><br />

- linear<br />

- quadratic


Counting statistics in mesoscopic electron transport<br />

(a)<br />

j<br />

I<br />

V<br />

(b)<br />

ε<br />

I<br />

U (x) j<br />

ε+eV<br />

Average current:<br />

Current noise:<br />

∑<br />

I = ( eV / 2πh)<br />

.<br />

k<br />

D k<br />

SI<br />

( 0) = ( eV / 2 πh<br />

) ∑ Dk<br />

(1 − Dk<br />

).<br />

k<br />

Full counting statistics:<br />

(one mode)<br />

P<br />

( N )<br />

n<br />

= C<br />

n<br />

N<br />

D<br />

n<br />

(1 − D)<br />

N −n<br />

,<br />

N = ( eV<br />

L.S. Levitov and G.B. Lesovik, 1993<br />

/ 2πh)<br />

t.


Counting statistics and detector properties of a QPC<br />

( α 0<br />

Detector-induced ``back-action’’<br />

dephasing of the qubit<br />

→ α 0<br />

+ β 1 ) ⊗ in<br />

→<br />

⊗ ( t0 R + r0<br />

L ) + β 1 ⊗ ( t1<br />

R + r1<br />

L<br />

)<br />

( qubit)<br />

ρ out Tr{<br />

R,<br />

L}<br />

ρout<br />

ρin → ρ out<br />

( qubit)<br />

∗ ∗ ∗ ∗<br />

12<br />

( 0 1 0 r1<br />

= ρ = α β → α β t t + r ) ≤ α β<br />

Finally, summing scattering processes of different electrons we<br />

obtain back-action dephasing rate by the QPC detector at T=0:<br />

∗<br />

Γ<br />

d<br />

= −( eV 2πh)ln<br />

| t1 t0<br />

+ r1<br />

r0<br />

∗<br />

∗<br />

| .<br />

The dephasing rate at finite temperature:<br />

[<br />

−1<br />

Γ = ∫ dε<br />

2πh)ln det(1 − f ( ε)<br />

+ f ( ε)<br />

S 0 S )].<br />

d<br />

( 1


Information acquisition rate is determined by distinguishability<br />

of the distributions P j (n) of the transferred charge in different<br />

qubit states:<br />

W<br />

⎛<br />

1/ 2<br />

(1/ )ln [ 0(<br />

) 1(<br />

)] ,<br />

⎟ ⎞<br />

= − t ⎜<br />

∑ P n P n<br />

⎝ n<br />

⎠<br />

The usual counting statistics result for the QPC gives<br />

and<br />

W<br />

∑<br />

n<br />

1/ 2<br />

( )<br />

N<br />

D D R R ,<br />

[ P 0(<br />

n)<br />

P1<br />

( n)]<br />

= 0 1 + 0 1<br />

)ln( ) = − eV 2πh<br />

D D + R R ≤ Γ .<br />

( 0 1 0 1 d<br />

We see that the QPC is an ideal <strong>quantum</strong> detector with W=Γ d’ if<br />

no information is contained in the phases of the scattering<br />

amplitudes:<br />

φ0 = φ1,<br />

φ j = arg( t j / rj<br />

).<br />

D.V.A. and E.V. Sukhorukov, 2005


An electronic Mach-Zehnder interferometer<br />

Y. Ji et al., Nature 422, 415 (2003).


Phase information can be utilized for measurement if the QPC is<br />

included in the electronic Mach-Zender interferometer:<br />

V<br />

j<br />

r j r’<br />

j<br />

χ<br />

’<br />

t j<br />

t j<br />

S<br />

m<br />

⎛<br />

⎜<br />

i<br />

⎜<br />

⎝<br />

−iχ<br />

Rm<br />

, Dm<br />

e<br />

=<br />

−iχ<br />

Dm<br />

, i Rm<br />

e<br />

⎞<br />

⎟ ⎟ ⎠<br />

The QPC can always be turned into an ideal detector by adjusting<br />

the scattering matrix S m of the second QPC of the interferometer.<br />

If all measurement information is in the phases of the scattering<br />

amplitudes:<br />

φ = φ −φ<br />

≠ , D = ,<br />

this happens if<br />

0 1 0 0 D1<br />

χ = ( φ −φ1) / 2, D m = Rm<br />

0 =<br />

1/ 2.


Conditional qubit evolution<br />

Since transmission and reflection of an electron are classical<br />

alternatives, evolution of the qubit density matrix can be<br />

conditioned on the particular outcome of scattering (following<br />

``<strong>quantum</strong>-trajectories’’ approach in <strong>quantum</strong> optics; or A.N. Korotkov, 1999,<br />

in solid-state context). Depending on whether electron is transmitted<br />

or reflected,<br />

| α |<br />

or<br />

2<br />

| α |<br />

2<br />

0<br />

0<br />

0<br />

D0<br />

| α | 0<br />

→<br />

2<br />

[| α | D + | β |<br />

0<br />

Important points:<br />

R0<br />

| α | 0<br />

→<br />

2<br />

[| α | R + | β |<br />

0<br />

2<br />

2<br />

0<br />

D<br />

1<br />

0<br />

]<br />

1/ 2<br />

]<br />

,<br />

1/ 2<br />

• the qubit does not decohere;<br />

0<br />

2<br />

2<br />

R<br />

1<br />

,<br />

αβ<br />

*<br />

αβ<br />

*<br />

0<br />

0<br />

1<br />

1<br />

*<br />

0t1<br />

t αβ 0<br />

→<br />

2<br />

[| α | D + | β |<br />

r<br />

→<br />

[| α |<br />

• probabilities to be in the states 0 and 1 change.<br />

0<br />

2<br />

0<br />

*<br />

1<br />

r<br />

R<br />

0<br />

*<br />

αβ<br />

*<br />

2<br />

0<br />

+ | β |<br />

2<br />

1<br />

D<br />

1<br />

1<br />

R<br />

1<br />

]<br />

1/ 2<br />

]<br />

1/ 2<br />

,<br />

.


Bell-type relation for mesoscopic tunneling<br />

One can devise a simple sequence of qubit transformations<br />

demonstrating that charge is indeed being transferred between the<br />

qubit states even if the tunneling amplitude is vanishing.<br />

Start with the state σ x =1. After transmission of an electron<br />

ψ<br />

=<br />

D 0 0 + D1<br />

1 [ D0<br />

+ D<br />

The sequence of two pulses, one creating tunneling for a period of<br />

time, and another changing the phase between the states 0,1:<br />

∫<br />

∫<br />

1<br />

]<br />

1/ 2<br />

∆( t)<br />

dt / h = π / 4, ε(<br />

t)<br />

dt / h = 2 tan D1<br />

/ D0<br />

−1<br />

.<br />

−π<br />

/ 2,<br />

returns the qubit to the initial σ x =1 state, i.e. we have a closed cycle<br />

which involves tunneling and transfer of charge at ∆=0. For any<br />

classical charge state, there is a probability p to find the state σ x =-1,<br />

p = min{ D0,<br />

D1}<br />

[ D0<br />

+ D<br />

1<br />

]<br />

1/ 2<br />

.


Ballistic Read-out for Flux Qubits<br />

(flux analog of the QPC detector)<br />

f =<br />

1<br />

∆T<br />

Qubit<br />

SFQ pulses Distributed Josephson Junction Voltmeter<br />

mv<br />

H = H 0 + σ z δU<br />

( x)<br />

+ + U ( x)<br />

2<br />

It is convenient to characterize the qubit-detector interaction by the scattering<br />

parameters t 0 ,t 1 ,r 0 ,r 1 .<br />

2


Quantum dynamics of a single fluxon<br />

A. Wallraff et al., Nature 425, 155 (2003).


Generic model of a mesoscopic detector<br />

Detector dynamics should exhibit macroscopically different trajectories (see,<br />

e.g., J.W. Lee et al., 2005) most of the actual mesoscopic detectors are<br />

based on tunneling.<br />

qubit 1 detector<br />

Detector Hamiltonian<br />

H = ( t[<br />

Mˆ<br />

] ξ + h.<br />

c.)<br />

+ Hex,<br />

|0> |1><br />

t<br />

where ξ creates excitations in the process of particle<br />

transfer between the detector reservoirs.<br />

∆ 1<br />

( n)<br />

& kl<br />

ρ<br />

1 2 2 ( n)<br />

* ( n−1)<br />

* ( n+<br />

1<br />

)( )<br />

)<br />

+ + Γ−<br />

tk<br />

+ tl<br />

ρkl<br />

+ Γ+<br />

tktl<br />

ρij<br />

+ Γ−t<br />

ktl<br />

ρkl<br />

= − ( Γ<br />

2<br />

Γ<br />

+<br />

=<br />

∫<br />

dt ξ(<br />

t)<br />

ξ<br />

+<br />

,<br />

Γ<br />

−<br />

=<br />

∫<br />

+<br />

dt ξ ( t)<br />

ξ .<br />

Ensemble-averaged evolution Conditional evolution<br />

,<br />

ρ&<br />

γ<br />

kl<br />

kl<br />

= −γ<br />

kl<br />

1<br />

= ( Γ<br />

2<br />

ρ<br />

+<br />

kl<br />

+ Γ<br />

− i[<br />

H,<br />

ρ]<br />

−<br />

) t<br />

k<br />

− t<br />

j<br />

kl<br />

,<br />

2<br />

.<br />

ρ<br />

( n)<br />

kl<br />

( τ )<br />

= ρ (0)( Γ<br />

kl<br />

exp{ −(1/<br />

2)( Γ<br />

+<br />

+<br />

/ Γ<br />

−<br />

+ Γ<br />

)<br />

−<br />

n/ 2<br />

)( t<br />

k<br />

I<br />

n<br />

2<br />

(2t<br />

+<br />

t<br />

k<br />

l<br />

t<br />

l<br />

2<br />

Γ<br />

+<br />

Γ<br />

−<br />

) − inϕ<br />

)<br />

kl<br />

}.


Linear <strong>quantum</strong> <strong>measurements</strong><br />

Linear-response theory enables one to develop quantitative<br />

description of the <strong>quantum</strong> measurement process with an arbitrary<br />

detector provided that it satisfies some general conditions:<br />

• the detector/system coupling is weak so that the detector’s<br />

response is linear;<br />

• the detector is in the stationary state;<br />

• the response is instantaneous.<br />

H<br />

=<br />

H S + H D +<br />

xf<br />

D.V.A., cond-mat/00044364,<br />

cond-mat/0301524.<br />

S.Pilgram and M. Büttiker,<br />

PRL 89, 200401 (2002).<br />

A.A. Clerk, S.M. Girvin, and<br />

A.D.Stone, PRB, (2003).


Information/back-action trade-off in linear<br />

<strong>measurements</strong><br />

Dynamics of the measurement process consists of information<br />

acquisition by the detector and back-action dephasing of the<br />

measured system. The trade-off between them has the simplest form<br />

for <strong>measurements</strong> of the static system with H S =0. If x|j>=x j |j>, we<br />

have for the back-action dephasing:<br />

d<br />

ρ t)<br />

= ρ (0) e , Γ = π ( x − x ) S h .<br />

jj'<br />

( jj'<br />

−Γ<br />

t<br />

Information acquisition by the detector is the process of<br />

distinguishing different levels of the output signal =λx j in the<br />

presence of output noise S q . The signal level (and the corresponding<br />

eigenstates of x) can be distinguished on the time scale given by the<br />

by the measurement time τ m :<br />

2<br />

τ = 8πS<br />

[ λ(<br />

x − x )] , τ Γ = 8( π hλ)<br />

S S ≥ 1 2.<br />

m<br />

q<br />

j<br />

j'<br />

m<br />

d<br />

d<br />

j<br />

j'<br />

2<br />

2<br />

q<br />

f<br />

f<br />

2


FDT analog for linear <strong>quantum</strong> <strong>measurements</strong><br />

h λ ≤ 4π<br />

[ S<br />

f<br />

S<br />

q<br />

−<br />

(Re S<br />

fq<br />

)<br />

2<br />

]<br />

1/ 2<br />

,<br />

where λ is the linear response coefficient of the detector, S f and S q<br />

are the low-frequency spectral densities of the, respectively, backaction<br />

and output noise, ReS fq is the classical part of their crosscorrelator.<br />

As one can see, this inequality characterizes the efficiency of the<br />

trade-off between the information acquisition by the detector and<br />

back-action dephasing of the measured system. The detector that<br />

satisfies this inequality as equality is ``ideal’’ or ``<strong>quantum</strong>limited’’.


Continuous monitoring of the MQC oscillations<br />

The trade-off between the information acquisition by the detector<br />

and back-action dephasing manifests itself in the directly<br />

measurable quantity in the case of measurement of coherent<br />

<strong>quantum</strong> oscillations in a qubit.<br />

H = −<br />

∆ σ + σ f +<br />

2<br />

x<br />

z<br />

H<br />

D<br />

Spectral density S o (ω) of the detector output reflects coherent<br />

<strong>quantum</strong> oscillations of the measured qubit:<br />

S o ( ω)<br />

= S q<br />

+<br />

Γ<br />

d<br />

λ<br />

4π<br />

2<br />

( ω<br />

The height of the oscillation peak in the output spectrum is limited<br />

by the link between the information and dephasing:<br />

2<br />

− ∆<br />

Smax S q ≤ 4.<br />

2<br />

∆<br />

)<br />

2<br />

2<br />

+ Γ<br />

2<br />

d<br />

ω<br />

2<br />

.


12<br />

12<br />

ε=0.7∆<br />

S o<br />

/S q<br />

8<br />

Γ=0.1∆<br />

S o<br />

/S q<br />

8<br />

Γ/∆= 1.5<br />

1.0<br />

4<br />

4<br />

0.7<br />

Ω/∆=1.0 1.5 2.0<br />

0.3<br />

0<br />

0 1 2<br />

ω/∆<br />

0<br />

0.1 0.03<br />

0 1 2<br />

ω/∆<br />

A.N.Korotkov and D.V.A.,<br />

Phys. Rev. B 64, 165310 (2001).


Experimental continuous monitoring of the Rabi<br />

oscillations<br />

M<br />

L L T C T<br />

S V,max<br />

/S 0<br />

1<br />

0.5<br />

(a)<br />

a<br />

b<br />

c<br />

ω R<br />

/ω T<br />

1.1<br />

1<br />

(b)<br />

a<br />

b<br />

c<br />

E.Il’ichev et al.,PRL 91,<br />

097906 (2003).<br />

0<br />

0.96 0.98 1 1.02 1.04<br />

(P/P 0<br />

) 1/2<br />

0.9<br />

0.96 0.98 1 1.02 1.04<br />

(P/P 0<br />

) 1/2


Quadratic <strong>measurements</strong><br />

t [ Mˆ<br />

] = t + c Mˆ<br />

+ c<br />

ˆ<br />

2<br />

0 1 2M<br />

,<br />

Example: DC SQUID<br />

Mˆ<br />

1<br />

(1)<br />

z<br />

= λ σ + λ σ<br />

2<br />

(2)<br />

z<br />

t(<br />

Mˆ<br />

)<br />

= t<br />

(1) (2) (1) (2)<br />

0 + δ 1σ<br />

z + δ 2σ<br />

z + λσ z σ z<br />

Purely quadratic <strong>measurements</strong>, δ j =0.<br />

H 0 = 0<br />

.<br />

Quadratic measurement distinguishes ``parallel’’ from the ``antiparallel’’<br />

qubit state, i,.e., is the measurement of the product operator<br />

of the two qubits σ z<br />

(1)<br />

σ z<br />

(2)<br />

.<br />

The measurement time is<br />

τ<br />

S<br />

I<br />

m<br />

0<br />

a<br />

=<br />

S<br />

= ( Γ<br />

= ( I<br />

0<br />

+<br />

↑↑<br />

/ I<br />

2<br />

a<br />

,<br />

+ Γ<br />

− I<br />

−<br />

)(| t<br />

↑↓<br />

0<br />

|<br />

2<br />

+ | λ |<br />

) / 2 = ( Γ<br />

+<br />

2<br />

),<br />

0<br />

*<br />

*<br />

0<br />

− Γ )( t λ + t λ).<br />

−<br />

t(<br />

Φ)<br />

=<br />

E J<br />

2<br />

(1 −π<br />

Φ<br />

Φ


∑<br />

H0 = −∆ 2 σ x<br />

j<br />

( j)<br />

In this case, quadratic <strong>measurements</strong> can entangle two non-interacting symmetric<br />

qubits. Indeed, there are three possible measurement outcomes. In the first two,<br />

the qubits are entangled:<br />

I<br />

I<br />

I<br />

I<br />

0<br />

= I<br />

= I<br />

= I<br />

0<br />

0<br />

0<br />

+ I<br />

− I<br />

,<br />

λ<br />

λ<br />

= ( Γ+ − Γ−<br />

)(| t<br />

,<br />

,<br />

ψ ∈<br />

ψ = ↑↑ − ↓↓ ,<br />

ψ<br />

{ ↑↑ + ↓↓ , ↑↓ + ↓↑ },<br />

0<br />

|<br />

2<br />

=<br />

↑↓<br />

+ | λ |<br />

−<br />

2<br />

).<br />

↓↑<br />

,<br />

In the third outcome, the qubits perform coherent qubit oscillations at frequency<br />

that is twice the oscillation frequency of individual qubits.<br />

S<br />

I<br />

( ω)<br />

=<br />

S<br />

0<br />

+<br />

( ω<br />

2<br />

γ =<br />

8I<br />

− 4∆<br />

a<br />

2<br />

2( Γ<br />

∆<br />

)<br />

2<br />

2<br />

γ<br />

+ γ<br />

+ + Γ−<br />

2<br />

ω<br />

) λ<br />

2<br />

2<br />

.<br />

,<br />

W. Mao et al., PRL 93, 056803 (04)


Continuously-measured spectroscopy of two qubits<br />

Non-linear <strong>measurements</strong>,<br />

δ j ≠0, λ≠0.<br />

(1) (2)<br />

0 −∆<br />

σ z<br />

j<br />

S I<br />

/S 0<br />

t = t0 + 2δS z + λ(2Sz<br />

−1).<br />

2<br />

2 I jγ<br />

j<br />

w ≈ j∆,<br />

SI<br />

( ω)<br />

= S0<br />

+<br />

,<br />

2 2<br />

3 ( ω − j∆)<br />

+ γ j<br />

2 2<br />

γ 1 = ( Γ+<br />

+ Γ−<br />

)(| δ | + | λ | / 2), γ 2 = 2γ<br />

1,<br />

I1<br />

= ( I↑↑<br />

− I↓↓) / 2, I2<br />

= ( I↑↑<br />

+ I↓↓<br />

− 2I↓↑) / 2.<br />

I = ( I↑↑ + I↓↓<br />

+ I↓↑ ) / 3<br />

( j)<br />

H = 2∑ σ x + ( ν 2) σ z .<br />

2<br />

S I<br />

/S 0<br />

12<br />

8<br />

4<br />

0<br />

8<br />

4<br />

ν/∆=0.0<br />

1.0<br />

0.1<br />

0.2<br />

0<br />

0 1 2<br />

W. Mao et al., PRB 71, 085320 (05)<br />

ω/∆<br />

(a)<br />

(b)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!