29.01.2015 Views

Principle And Practice Of Hotwire Constant Temperature ...

Principle And Practice Of Hotwire Constant Temperature ...

Principle And Practice Of Hotwire Constant Temperature ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

11 th Israeli Symposium on<br />

Jet Engines and Gas<br />

Turbines, October 2012<br />

Technion, Israel<br />

<strong>Principle</strong> <strong>And</strong> <strong>Practice</strong> <strong>Of</strong> <strong>Hotwire</strong> Anemometry In<br />

Turbomachinery Applications<br />

Beni Cukurel<br />

Technion - Israel Institute of Technology<br />

Aerospace Engineering<br />

Haifa, Israel


11 th Israeli Symposium on<br />

Jet Engines and Gas<br />

Turbines, October 2012<br />

Technion, Israel<br />

Introduction<br />

Advantages of Hot wire Anemometry<br />

Ideal tool for Measurement of Perturbation Quantities in Time Domain<br />

• High Frequency Response (~ 10 2 kHz) Accurately follow transients<br />

• Wide Velocity Range<br />

• High Accuracy / High Signal to Noise Ratio<br />

• Signal Analysis: Output is continuous analogue signal<br />

Both Time and Frequency Domain analysis is possible<br />

Challenges of Hot-wire in Turbomachinery Flows:<br />

• Transonic Multi-Dimensional Flow with Large Independent Fluctuating Components<br />

– HW Data Reduction for Compressible Subsonic / Transonic Flow (0.4


11 th Israeli Symposium on<br />

Jet Engines and Gas<br />

Turbines, October 2012<br />

Technion, Israel<br />

Objectives<br />

Development and Validation of X-<strong>Hotwire</strong> Methodology for Turbomachinery flows:<br />

Experimental Technique Development Requirements:<br />

• Practical : Absent of Closed Loop Wind Tunnels Varying Each Flow Quantity Independently<br />

• Reliable / Repeatable Precise & Accurate Results<br />

• Applicable in Wide range of Flow Conditions (from Subsonic to Transonic)<br />

• Intuitive: Based on Scientific Concepts, not Empirical Collapse of Data<br />

Limitations and Capabilities Well Known<br />

Validation and Exemplary Implementation<br />

• 2-D Fluctuation Measurements in Compressible Subsonic / Transonic Flow regimes<br />

Downstream of a Gas Turbine Fan<br />

• Instantaneous Mass Flow, Velocity, Density, Pressure are Measured


11 th Israeli Symposium on<br />

Jet Engines and Gas<br />

Turbines, October 2012<br />

Technion, Israel<br />

<strong>Constant</strong> <strong>Temperature</strong><br />

<strong>Hotwire</strong> Anemometry<br />

Wheatstone Bridge<br />

Keeps Bridge in Balance via<br />

Controlling current to the wire<br />

∴ R wire ( T wire ) is constant<br />

E b<br />

ρ, U, T<br />

Represents Heat Transfer<br />

∴ Measure of Flow Properties<br />

• Low Sensor Thermal Inertia<br />

• High Servo Loop Amplifier Gain<br />

High Frequency Response


11 th Israeli Symposium on<br />

Jet Engines and Gas<br />

Turbines, October 2012<br />

Technion, Israel<br />

<strong>Hotwire</strong> Voltage Dependency<br />

Bridge Voltage is Sensitive to Variations in Velocity, but also:<br />

a. Total <strong>Temperature</strong><br />

b. Density<br />

c. Flow angle<br />

E f( , U , T , )<br />

0


11 th Israeli Symposium on<br />

Jet Engines and Gas<br />

Turbines, October 2012<br />

Technion, Israel<br />

Sensitivity analysis:<br />

e' ρ' u'<br />

0<br />

=S<br />

ρ<br />

+S<br />

u<br />

+S<br />

T<br />

+S '<br />

0<br />

0<br />

E ρ U T<br />

Conventional Methodology<br />

T'<br />

<br />

In supersonic flow S =S u ;<br />

<br />

e'<br />

ρu'<br />

T'<br />

0<br />

=S<br />

ρ<br />

+ S<br />

T<br />

+S '<br />

0<br />

0<br />

E ρU T<br />

<br />

logE<br />

S(ρ,U,T<br />

ρ 0<br />

, ) =<br />

log <br />

logE<br />

S(ρ,U,T<br />

u 0, ) =<br />

logU<br />

logE<br />

S<br />

T<br />

(ρ,U,T<br />

0 0, )=<br />

logT<br />

S(ρ,U,T , ) =<br />

<br />

0<br />

logE<br />

<br />

U=const., T =const.,<br />

0<br />

0<br />

const.<br />

=const., T =const., const.<br />

0 =const., U=const., const.<br />

=const., U=const., T const.<br />

0<br />

Not True for<br />

Subsonic & Transonic<br />

• Parameterizing one parameter at a time while others remain constant<br />

Impractical Non-Physical (Purely Empirical) Not Reliable


11 th Israeli Symposium on<br />

Jet Engines and Gas<br />

Turbines, October 2012<br />

Technion, Israel<br />

Dimensional Analysis<br />

Dimensional Analysis of Thin Heated Wires:<br />

Nu = f(Re, Pr, M, Gr,<br />

l<br />

, , )<br />

d<br />

<br />

T -T<br />

w<br />

T<br />

0<br />

0<br />

= f(Re, M, )<br />

(η = Recovery factor)<br />

High speed air flow for a given probe at constant overheating:<br />

Pr , l / d and τ are constant and negligible natural convection (if Gr< Re 3 )<br />

Nu = f(Re, M, )<br />

U d w<br />

Re <br />

h d<br />

Nu = w<br />

U<br />

M=<br />

k γRT<br />

s<br />

q"<br />

<br />

h = and q" =<br />

T -T <br />

E<br />

AR<br />

2<br />

w<br />

w r w<br />

=


11 th Israeli Symposium on<br />

Jet Engines and Gas<br />

Turbines, October 2012<br />

Technion, Israel<br />

Non-Dimensional Methodology<br />

Nu = f(Re, M, )<br />

Where;<br />

Nu (Re) =<br />

corr<br />

Nu (Re, M)<br />

(Re, M)<br />

1.109<br />

<br />

Re<br />

φ(Re, M) = 1+ A(M) 1.834 -1.634 <br />

<br />

2.765+ Re<br />

1.109<br />

<br />

<br />

<br />

0.0650 Re <br />

x 1+ 0.3 - M<br />

1.670 4+Re<br />

<br />

<br />

1.222<br />

1.569<br />

0.6039 <br />

M <br />

A(M)= +0.5701<br />

-1<br />

1.222 <br />

M 1+M<br />

<br />

<br />

All Mach numbers<br />

Nu<br />

corr<br />

= f(Re, )


11 th Israeli Symposium on<br />

Jet Engines and Gas<br />

Turbines, October 2012<br />

Technion, Israel<br />

Required Calibration Facility<br />

The calibration setup schematic view:


11 th Israeli Symposium on<br />

Jet Engines and Gas<br />

Turbines, October 2012<br />

Technion, Israel<br />

Wire <strong>Temperature</strong> Calculation<br />

h d w<br />

q"<br />

For Ma


11 th Israeli Symposium on<br />

Jet Engines and Gas<br />

Turbines, October 2012<br />

Technion, Israel<br />

Mass Flux Calibration<br />

Nu<br />

corr<br />

= f(Re, )<br />

Nu (Re) =<br />

corr<br />

Nu (Re, M)<br />

(Re, M)<br />

Ma independent!<br />

Cold calibration<br />

is possible!!


11 th Israeli Symposium on<br />

Jet Engines and Gas<br />

Turbines, October 2012<br />

Technion, Israel<br />

Angular Calibration<br />

Re<br />

eff1<br />

= Re f1( ) Reeff1 f1( )<br />

<br />

Re<br />

eff2<br />

= Re f2( ) Reeff2 f2( )<br />

Re<br />

Re eff : Same Nu if the probe<br />

was aligned at the reference<br />

position<br />

Ma and Re<br />

independent!!


11 th Israeli Symposium on<br />

Jet Engines and Gas<br />

Turbines, October 2012<br />

Technion, Israel<br />

Procedure Steps<br />

• Mass flux uncertainty is 1.8 % (95% confidence level)<br />

• Flow angle uncertainty is 1.1 degrees (95% confidence level)


11 th Israeli Symposium on<br />

Jet Engines and Gas<br />

Turbines, October 2012<br />

Technion, Israel<br />

Sensitivity Analysis<br />

Logarithmic differentiation of Nu gives:<br />

Re f ( , U , T 0<br />

) M f( U , T 0<br />

)<br />

<br />

(Re, M, )<br />

1 logNu 1 log<br />

<br />

S<br />

<br />

2logRe logRe<br />

1 logNu 1 log<br />

<br />

Su<br />

S<br />

+ <br />

2<br />

logM logM<br />

<br />

K 1 1<br />

S K1n mS S S<br />

<br />

T0<br />

t t u<br />

Aw<br />

2 2<br />

11log<br />

logNu<br />

S<br />

<br />

2 <br />

<br />

K logRw<br />

logTw<br />

<br />

A logR logI<br />

w<br />

e' ρ' u'<br />

= S<br />

ρ<br />

+ S<br />

u<br />

+ S '<br />

E ρ U<br />

w<br />

nt logk logT0<br />

m log<br />

logT<br />

<br />

t 0<br />

<br />

<br />

e'<br />

1 ρ' <br />

E<br />

<br />

1 S1 Sρ1<br />

Su1 ρ <br />

- '=<br />

e' S<br />

<br />

S<br />

2 <br />

ρ2<br />

S<br />

<br />

u2<br />

u' <br />

E<br />

<br />

<br />

<br />

2 <br />

U<br />

<br />

∆ [S ρ /S u ] with ∆ is limited to 8 % [ ] ill-conditioned<br />

∆ [S ρ /S u ] with ∆d wire = 5μm to 9 μm up to 20 %<br />

Instantaneous Density AND Velocity Fluctuations can be Computed


11 th Israeli Symposium on<br />

Jet Engines and Gas<br />

Turbines, October 2012<br />

Technion, Israel<br />

Why Should You Care<br />

RTD<br />

5-Hole Probe<br />

X-wire<br />

X-wire<br />

5μm wire (~60kHz @M=0.8)


11 th Israeli Symposium on<br />

Jet Engines and Gas<br />

Turbines, October 2012<br />

Technion, Israel<br />

Exemplary Analysis<br />

Mass Flux [kg/m 2 -s]<br />

This is not CFD!!!!<br />

Interpolation<br />

in Direction<br />

<strong>Of</strong> Cross-<br />

Correlation<br />

Possible to Calculate:<br />

■ Mass flux Independent Fluctuation<br />

■ Angle of Each Component<br />

■ Velocity<br />

+<br />

■ Density Blade to Blade Variation<br />

■ P o<br />

of Each Component<br />

Data Useful in:<br />

■ Time/Frequency Domain Analysis<br />

▫ CFD Validation ▫ Test-Aided Design<br />

▫ Performance Characterization<br />

▫ Length/Time Scale Identification<br />

▫ Effects of Manufacturing Tolerance<br />

▫ Noise Spectra


11 th Israeli Symposium on<br />

Jet Engines and Gas<br />

Turbines, October 2012<br />

Technion, Israel<br />

Separation of ρ and U<br />

The Perturbation Quantities in a Real Gas Turbine Fan<br />

Perturbation Quantities<br />

For The First Time: Instantaneous Velocity & Density in Compressible Flows


11 th Israeli Symposium on<br />

Jet Engines and Gas<br />

Turbines, October 2012<br />

Technion, Israel<br />

Summary & Conclusions<br />

Demonstrated Novel High Speed Cross-<strong>Hotwire</strong> Operation Scheme:<br />

‣ Practical<br />

• Nondimensional Parameters (Re, Nu, Ma) and widely accepted<br />

correlations are used<br />

• No need for closed loop wind tunnels<br />

• Effort equivalent to that of operation in isothermal low speed flows<br />

‣ Accurate<br />

• Instantaneous mass flux and flow angle can be determined within 1.8% and<br />

1.1° uncertainty (95% confidence level)<br />

‣ Valid over a wide range of Reynolds and Mach numbers (Subsonic + Transonic)<br />

• Calibrations obtained in cold jet (e.g. T 0 =290K) are valid at measurement<br />

environments (e.g. Gas turbine fan where T 0 =335K).<br />

‣ Instantaneous density and velocity fluctuations can be independently computed<br />

‣ Application is demonstrated by measurements conducted in gas turbine fan


11 th Israeli Symposium on<br />

Jet Engines and Gas<br />

Turbines, October 2012<br />

Technion, Israel<br />

Associated Publication<br />

Cukurel, B., Acarer, S., Arts T., “A Novel Perspective to High Speed Cross-<strong>Hotwire</strong><br />

Calibration Methodology”, Experiments in Fluids, Vol. 53, pp. 1073-1085, 2012.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!